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A B S T R A C T

Multi-temporal optical remote sensing images acquired from cross-sensor platforms often show significant
radiometric differences, posing challenges when mosaicking images. These challenges include inconsistent global
radiometric tones, unsmooth local radiometric transitions, and visible seamlines. In this paper, to address these
challenges, we propose a two-stage approach for global and local radiometric normalization (RN) using joint
block adjustment and variational optimization. In the first stage, a block adjustment based global RN (BAGRN)
model is established to simultaneously perform global RN on all the images, eliminating global radiometric
differences and achieving overall radiometric tonal consistency. In the second stage, a variational optimization
based local RN (VOLRN) model is introduced to address the remaining local radiometric differences after global
RN. The VOLRN model applies local RN to all the image blocks within a unified energy function and imposes the
l 1 norm constraint on the data fidelity term, providing the model with a more flexible local RN capability to
radiometrically normalize the intersection and transition areas of the images. Therefore, the local radiometric
discontinuities and edge artifacts can be eliminated, resulting in natural and smooth local radiometric transi-
tions. The experimental results obtained on five challenging datasets of cross-sensor and multi-temporal remote
sensing images demonstrate that the proposed approach excels in both visual quality and quantitative metrics.
The proposed approach effectively eliminates global and local radiometric differences, preserves image gradients
well, and has high processing efficiency. As a result, it outperforms the state-of-the-art RN approaches.

1. Introduction

In recent years, mosaicked images covering a wide range of regions
of interest, generated from multiple remote sensing images, have
become increasingly important in various fields, such as geographic
mapping, resource and environmental monitoring, and disaster moni-
toring (Li et al., 2020b; West et al., 2019; Sui et al., 2020). However,
factors such as the solar incidence angle, atmospheric conditions,
lighting conditions, and acquisition time often cause global and local
radiometric differences between images during remote sensing imaging
(Chen et al., 2005; Yu et al., 2017). These differences manifest as bright
and dark patterns, discontinuous radiometry, and unnatural transitions

in the images, making seamless mosaicked image generation chal-
lenging. Therefore, to eliminate these radiometric differences, radio-
metric normalization (RN) must be performed between the multiple
images before stitching. In the literature, RN is also referred to as
radiometric equalization, balancing, correction, and color correction,
transfer, or stabilization.

In RN, it is generally assumed that the reflection conditions in the
overlapping region do not change. RN involves establishing a mapping
relationship based on the radiometric correspondence in the over-
lapping region and generalizing it to the entire image, to achieve RN of
multiple images. RN methods for multiple images can be classified into
three categories: global models, local models, and combined models (Li
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et al., 2019b).
The global model based approaches (Brown and Lowe, 2007; Xiong

and Pulli, 2010; Cresson and Saint-Geours, 2015; Shen et al., 2016; Xia
et al., 2017b) express the radiometric mapping relationship between
images as a global linear or nonlinear model, solving the RN coefficients
of each image by a path propagation based or global optimization based
approach. The path propagation based approaches are frame-by-frame
color transfer methods(Li et al., 2015; Reinhard et al., 2001; Xiang
et al., 2009) that correct the target image based on a given reference
image. Examples of the path propagation based approaches are the
combination of the Voronoi diagram and Dijkstra shortest path method
(Pan et al., 2010; Li et al., 2019a) and the minimum spanning tree
method (Xia et al., 2017a). These approaches work well when the image
content is simple and the differences in imaging conditions are small,
but struggle with more complex scenarios and larger numbers of images
as the cumulative errors become larger. To avoid the issues encountered
with the path propagation based approaches, the global optimization
based approaches incorporate radiometric correspondence into a unified
optimization model to obtain a simultaneous solution. These approaches
include the quadratic optimization method (Cresson and Saint-Geours,
2015), the block adjustment based method (Yu et al., 2017; Liu et al.,
2020; Zhang et al., 2022), the multi-surface model combination method
(Zhou, 2015), and the maximum a posteriori based method (Li et al.,
2022). These global optimization based approaches can overcome the
cumulative error and uneven error distribution of the path propagation
based approaches, often achieving a better overall radiometric consis-
tency. However, the global models can effectively eliminate the radio-
metric differences in images with simple scenes, low spatial resolution,
and small imaging differences, but struggle with local radiometric dif-
ferences in complex scenes, small overlapping areas, and large imaging
differences, resulting in local feature discontinuities and edge artifacts.

In contrast to the global models, the local model based approaches
adopt the idea of subregions or classification, establishing local RN
models based on subregional or categorized information to obtain RN
coefficients for each region or category, achieving fine local RN. For
example, Tai et al. (2005) divided the image into multiple regions based
on probabilistic segmentation, statistically characterized the radiometry
of each region as a component of a Gaussian mixture model, and used an
improved expectation–maximization method to obtain the radiometric
mapping function. However, this approach can only achieve natural
radiometric transitions in simple scenes, is very time-consuming, and
requires a parameter to determine the desired regions. Xiang et al.
(2009) optimized the expectation–maximization method based on Tai
et al. (2005), supported the use of multiple reference images to improve
the color transfer in complex scenes, and improved the computational
efficiency. Li et al., 2015 used the local moment matching method for
local RN and obtained good results, but this method can only perform
RN between two images. Oliveira et al. (2015) used mean shift to
segment the image into regions, followed by a region fusion algorithm to
extract the connected regions. Local joint image histograms based on all
the regions were then modeled as truncated Gaussians, and maximum
likelihood estimation was used to solve the local color palette mapping
functions. In addition, Zhang et al. (2022) introduced normalized dif-
ference vegetation index (NDVI) data into the model for local RN by
different feature classes. In summary, the local models can usually
eliminate the local radiometric differences and achieve natural and
smooth radiometric transitions. However, these approaches are often
insufficient to achieve overall tonal consistency across multiple images.
In addition, if the segmentation or classification results do not match the
local features of the images, new radiometric differences may be intro-
duced, leading to obvious differences and transition discontinuities be-
tween different regions or classes.

The combined model based approaches leverage the strengths of
both the global and local models. For example, Pan et al. (2010) pro-
posed a network-based radiometric equalization method to achieve a
global and local performance. This method first performs linear global

processing using a path propagation based method, followed by
nonlinear optimization through a combination of the multilinear re-
lationships established by dividing each overlapping region into sub-
regions. Yu et al. (2017) proposed an auto-adapting global-to-local color
balancing approach, first performing global correction on multiple im-
ages based on block adjustment, and then establishing a global color
distribution surface by adaptive image blocking to realize local RN for
image blocks. The local RN step can also be considered as a kind of post-
processing. Li et al. (2020a) proposed a method based on “jointly opti-
mizing global and local color consistency”, dividing the image into
multiple regions based on superpixel segmentation, imposing local
constraints on each subregion, and global constraints on the subregions
belonging to the same image, to perform global and local RN in a unified
model. This method provides natural and smooth local radiometric
transitions, but the overall tonal consistency is insufficient, and the
method is very time-consuming. Zhang et al. (2022) proposed a block
adjustment based global-to-local RN method, where the global RN
eliminates the global radiometric differences, and two local strategies
are further employed to remove the local residual radiometric differ-
ences using NDVI data. Hong et al. (2023) presented an approach in
which a global optimization based model is applied to the chromaticity
channel, and the block-based Wallis transform method is used to opti-
mize the luminance and contrast, effectively reducing the textural dif-
ferences. The combined models often achieve better global and local
radiometric consistency than the global and local models, and represent
an important future direction for RN. However, the existing approaches
still struggle to achieve satisfactory results in terms of overall radio-
metric tonal consistency, as well as natural and smooth local radiometric
transitions. Meanwhile, the spatial texture details of the image should be
effectively preserved, and the computation time should be fast enough
to satisfy the actual requirements.

In this paper, to address these challenges, we propose a two-stage
approach that joints block adjustment and variational optimization for
global and local RN. Firstly, a block adjustment based global RN
(BAGRN) model is used to eliminate the global radiometric differences.
The images are then rectangularly blocked, and a variational
optimization-based local RN (VOLRN) model is flexibly applied to
address the remaining local differences. As a result, overall tonal con-
sistency, smooth local transitions, good gradient preservation, and high
processing efficiency can be achieved.

The rest of this paper is organized as follows. Section II introduces
the proposed approach, Section III presents the experiments and a dis-
cussion, and Section IV provides our conclusions.

2. Methodology

2.1. Overview

The proposed approach includes two stages: block adjustment based
global RN (BAGRN) and variational optimization based local RN
(VOLRN). The processing flow for global and local RN is shown in Fig. 1.
The purpose of the proposed approach is to efficiently perform global
and local RN to eliminate the overall radiometric tone differences be-
tween images and the local radiometric feature discontinuities and edge
artifacts, to achieve overall radiometric tone consistency and smooth
local radiometric transitions between multiple images, and to effectively
preserve the textural details and spatial information. The input to the
approach is a set of geometrically aligned images with dramatic radio-
metric differences L {Ii}N

i=1, and the output is a set of radiometrically

normalized images F {Î i}
N
i=1. Note that Ii is the source image, Î i denotes

the radiometrically normalized image, and N is the number of input/
output images.
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2.2. Block adjustment based global radiometric normalization (BAGRN)

The BAGRN model is designed to eliminate the overall radiometric
tonal differences between images and reduce the cumulative errors
caused by the transfer paths in the classical one-after-another pipeline.
In this study, we built the BAGRN model based on the general idea of
block adjustment RN (Zhang et al., 2022). The main processing flow is
shown in Stage 1 of Fig. 1.

In the proposed approach, the mean μ and standard deviation δ of the
image pixels are used as the radiometric correspondence. Given a set of
geometrically aligned images L {Ii}N

i=1, there are a total of N frames, of
which Q pairs of images have an overlapping relationship. All the pixels
in the overlapping region of the image pairs can be extracted by the
geographic location relationship, and the radiometric correspondences
required for BAGRN model construction can be easily computed.

One of the basic assumptions of RN is that the radiometric infor-
mation in the overlapping areas of image pairs should be equal or have
minimal differences. The mean μ and standard deviation δ of an image
are collectively referred to as the radiometric information of the image,
and the purpose of RN is to obtain the compensation value θ

(
θμ, θδ

)
for

the radiometric information of each image so that the radiometrically
normalized image satisfies this assumption. Since the form of solving the
compensation value of the mean μ and standard deviation δ is consistent,
the following is an example of modeling the mean μ. The source i th and j
th images with overlapping relationships can be represented by the
radiometric information of their overlapping area as:

θi − θj = μj − μi (1)

where μi, μj and θi , θj are the mean of the pixels and the compensated
values in the overlapping area of the i th and j th images, respectively.

Q pairs of images with overlapping relationships can be listed as Q
equations, as in Eq. (1), which can be expressed as:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
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⎝
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⋯

⋯
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⋯
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⎜
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⎟
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⎟
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⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2)

Eq. (2) can be abbreviated as:

DαXμ = Lα (3)

In Eq. (3), Dα is the overlapping matrix, where the elements of each row
record a pair of overlapping images, and the column number of the two
elements with a value of 1 is the identity number of the pair of images.
Dα is the sparse matrix of Q× N, Xμ is the vector of N× 1, and Lα is the
vector of Q× 1.

For Eq. (3), it can be challenging when the number of images exceeds
the number of overlapping regions, resulting in an underdetermined
linear system. While the least squares method can obtain a solution that
minimizes the sum of the squared residuals, such solutions can be sen-
sitive to small variations in the input data or problem parameters. This
sensitivity can cause the solution to vary significantly under different
conditions. By introducing additional control conditions, the behavior of
the solution can be stabilized and the occurrence of solution drift can be
reduced.

Therefore, the solution can be obtained by specifying a certain image
with a better radiometric tone as the control image, which does not need
to be adjusted. We let the r th image be the control image, i.e., the mean
compensation of this image is 0, which can be expressed as:

θr = 0 (4)

Eq. (4) can then be rewritten as:

Fig. 1. Flowchart of global and local RN. Note that RN stands for radiometric normalization.
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(0 ⋯ ⋯ 1 ⋯ ⋯ 0 )
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θ1

⋮

⋮
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= ( 0 ) (5)

Eq. (5) can be abbreviated as:

DβXμ = Lβ (6)

In Eq. (6), Dβ is the sparse matrix of 1× N, and Lβ is the zero vector of 1×
1.

Combining Eq. (3) and Eq. (6), the BAGRN model can be constructed
as:

DXμ = L (7)

In Eq. (7), D is a sparse augmented matrix with dimension (Q+1)× N,

D =
(
DT

α DT
β

)T
, L =

(
LT

α LT
β

)T
, and L is the vector of (Q + 1)× 1.

In addition, the proportion of the pixel number in the overlapping
area of the image is used as the weight to construct the weight matrix P
of the least squares equation (Eq. (7)). P can be expressed as:

P =

(
W O

O E

)

(8)

In Eq. (8),O is the zero matrix, E is the unit matrix of 1× 1 because there
is only one image selected as the control image, and P and W are the
diagonal matrices of (Q+1) × (Q+1) and Q× Q, respectively. Each
element of W represents the proportion of the pixel number in the i th
pair of overlapping areas to the sum of the pixel number in all the
overlapping areas.

The BAGRN model can be solved using the weighted least squares
method, so that the compensation coefficients of the mean μ for all the
images can be obtained:

X̂μ =
(

θ1μ θ2μ ⋯ θN
μ

)T
(9)

Similarly, the compensation coefficients of the standard deviation δ can
also be obtained.

After obtaining the compensation coefficients for the mean μ and
standard deviation δ of each image, moment matching is applied to the
RN to obtain a better effect. RN based on moment matching is achieved
by approximating the moments of the data distribution of the target
image to those of the reference image. By calculating the mean and
standard deviation of the two above, corresponding approximate
Gaussian distributions can be constructed, allowing moment matching
to be performed to achieve radiometric correction. RN based on moment
matching is calculated as:

f ’
k = ω × fk + υ (10)

The image to be radiatively normalized is considered as the target
image, and the image with an overlapping relationship with the target
image is considered as the reference image. In Eq. (10), fk represents the
value of the k th pixel of the target image, and fʹk represents the value of
the k th pixel of the target image after RN. The gain coefficient ω and
offset coefficient υ for moment matching are calculated as follows:
⎧
⎨

⎩

ω =
δref

δtar

υ = μref − μtar × ω
(11)

where μref and δref respectively denote the mean and standard deviation
of the pixels in the overlapping region of the reference image, while μtar
and δtar respectively denote the mean and standard deviation of the
pixels in the overlapping region of the target image.

2.3. Variational optimization based local radiometric normalization
(VOLRN)

The VOLRN model is designed to eliminate the residual local
radiometric feature discontinuities and edge artifacts after global RN,
the model includes four steps: image blocking, variational model con-
struction, variational model optimization, and weighted linear inter-
polation of the coefficients. The main processing flow is shown in Stage
2 of Fig. 1.

2.3.1. Image blocking
The first step is to generate the minimum outer rectangle of the

image set L {Ii}N
i=1 with the geographic grid information. From the

geographic range of all the source images, the minimum outer rectangle
of the image set can be calculated. Based on the geographic coordinates
and the grid size, the location and geometric information of all the grid
cells can be generated. The next step is to obtain valid image blocks and
pairs of image blocks with overlapping relationships. Each grid cell is
traversed to determine the image blocks it contains, and the numbering
is incremented, starting from one. The image blocks are numbered if
there are valid pixels; otherwise, they are not numbered. For valid image
blocks that fall in the same grid cell, valid overlapping image block pairs
are formed. After traversing all the grid cells, information about all the
valid image blocks and pairs of image blocks with overlapping re-
lationships can be generated, including the location of each image block
and its position and size in the source image. Finally, the mean and
standard deviation of the pixels of each image block can be calculated
and the desired radiometric correspondences can be obtained. The
specific procedure is shown in Fig. 2.

2.3.2. Variational model construction
For image RN, a widely accepted underlying assumption is that there

is a linear relationship between the pixels in the overlapping areas of the
images before and after RN, which can be expressed as:

f ’
k = a × fk + b (12)

In Eq. (12), fʹk is the RN result of the k th pixel, fk is the source pixel value
of the k th pixel, a is the multiplicative coefficient, and b is the additive
coefficient.

Assuming that the RN coefficients for any image block are a and b,
and that the mean and the standard deviation of the radiometrically
normalized image block are μʹ and δ́ , this can be expressed as:
{

μʹ = aμ + b

δʹ = aδ
(13)

From Eq. (13), the mean and standard deviation of the pixels of the
radiometrically normalized image can be expressed as the mean and
standard deviation of the pixels of the source image and the RN
coefficients.

Based on the previous assumptions, the radiometric difference rela-
tionship between pairs of image blocks with overlapping relationships
after RN can be constructed.

Suppose that the input image set L {Ik}N
k=1 is divided into T image

blocks according to the method described in Section 2.3.1, and there are
M pairs of image blocks with an overlapping relationship. We let the i th
image block and the j th image block have an overlapping relationship,
and denote them as the t th (t = 1, 2,⋯,M) pair of overlapping image
blocks. The mean and the standard deviation of the source pixels of the i
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th and j th image blocks are μi, μj and δi, δj, respectively. The RN co-
efficients of the i th and j th image blocks are ai, bi and aj, bj, respectively.
Their mean and the standard deviation of the pixels of the RN results are
μí, μj́ and of δ́i, δ́j, respectively. Then, from Eq. (13), the mean and
standard deviation of the pixels before and after RN have the following
relationship:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

μʹ
i = aiμi + bi

δʹ
i = aiδi − δi

μʹ
j = ajμj + bj

δʹ
j = ajδj − δj

(14)

Therefore, the radiometric difference between the i th image block and
the j th image block after RN can be expressed as:
⎧
⎨

⎩

εμ
i,j = μ’

i
− μ’

j = aiμi + bi −
(
ajμj + bj

)

εδ
i,j = δ’

i
− δ’

j = aiδi − ajδj

(15)

M pairs of image blocks with overlapping relationships can be listed asM
equations, as in Eq. (15), which can be expressed as:

⎛
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⋮
⋮
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⋮
⋮
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0 ⋯ μi 1 ⋯ − μj − 1 ⋯ 0
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⋮ ⋮
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⋮
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⋮
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bj

⋮
⋮

⎞

⎟
⎟
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⎟
⎟
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⎟
⎟
⎟
⎟
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(16)

Eq. (16) can then be abbreviated as:

ε = Bx (17)

In Eq. (17):

ε =
(

⋯ ⋯ εμ
i,j εδ

i,j ⋯ ⋯
)T

(18)

x =
(
⋯ ⋯ ai bi ⋯ aj bj ⋯ ⋯

)T (19)

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝
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⋮ ⋮

0 ⋯ μi 1 ⋯ − μj − 1 ⋯ 0

0 ⋯ δi ⋯ ⋯ − δj ⋯ ⋯ 0

⋮ ⋮

0 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(20)

In Eq. (17), B is the coefficient matrix of 2M× 2T, x is a column vector of
2T× 1, and ε is a column vector of 2M× 1.

In addition, the textural details and spatial information of the image
before and after RN should be kept as consistent as possible, so that the
radiometric difference relationship of the image before and after RN can
be constructed.

We let the mean and standard deviation of the source pixels of the k
th (k = 1,2,⋯,T) image block be μk,δk, the RN coefficients of the image
block be ak,bk, and the mean and standard deviation of the pixels of the
image block after RN be μʹ

k, δ́k. Then, from Eq. (13), the mean and
standard deviation of the pixels of the image block before and after the
RN have the following relationship:
{

μʹ
k = akμk + bk

δʹ
k = akδk

(21)

Therefore, the radiometric difference between the k th image block
before and after RN can be expressed as:
⎧
⎨

⎩

τμ
k = μʹ

k − μk = akμk + bk − μk

τδ
k = δʹ

k − δk = akδk − δk
(22)

T image blocks can be listed as T equations, as in Eq. (22), which can be

Fig. 2. Schematic diagram of image blocking and numbering.
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expressed as:
⎛
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(23)

Eq. (23) can then be abbreviated as:

τ = Ax − b (24)

In Eq. (23): τ =
(
⋯ ⋯ τμ

k τδ
k ⋯ ⋯

)T (25)

x = (⋯ ⋯ ak bk ⋯ ⋯)
T (26)

b = (⋯ ⋯ μk δk ⋯ ⋯)
T (27)

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 ⋯ ⋯ ⋯ ⋯ 0
⋮ ⋮
0 ⋯ μk 1 ⋯ 0
0 ⋯ δk ⋯ ⋯ 0
⋮ ⋮
0 ⋯ ⋯ ⋯ ⋯ 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(28)

In Eq. (24), A is the coefficient matrix of 2T× 2T, and τ, x, b are the
column vectors of 2T× 1.

Based on the previously constructed radiometric difference rela-
tionship of image block pairs with overlapping relationships after RN
and the radiometric difference relationship of image blocks before and
after RN, the VOLRN model can be constructed. For the radiometric
difference of image block pairs with overlapping relationships after RN,
the widely used l 2 norm constraint is imposed on them so that the sum
of squares of their radiometric differences is minimal. As for the radio-
metric difference of image blocks before and after RN, the previous
related studies also generally imposed an l 2 norm constraint on them.
For example, Yu et al. (2017) and Li et al. (2020a) applied an l 2 norm
constraint to this radiometric difference term and solved it using the
least squares method to minimize the sum of squares of the radiometric
difference. However, when the image radiometric difference is dra-
matic, applying the l 2 norm constraint to this term is often not an
optimal way to form a reliable constraint and may even weaken the
effect of RN. After application of the BAGRNmodel, there will already be
good overall radiometric tonal consistency between images, and in the
VOLRN stage, the main objective is to eliminate the local radiometric
differences and edge artifacts remaining after the global RN. For the
local radiometric differences after BAGRN model application, we
consider that the image blocks that are not in the overlapping area
remain unchanged or change very little, while the image blocks in the
overlapping area and the transition between the overlapping and non-
overlapping areas should be radiometrically normalized effectively.
Therefore, we propose a new idea to impose an l 1 norm constraint on
this radiometric difference term, because the l 1 norm has better spar-
sity, which can be used to radiometrically normalize only some of the
image blocks, and not the other blocks, i.e., to keep the RN coefficients
of some of them to be ak = 1,bk = 0. Thus, the final VOLRN model can
be constructed as:

E(x) =
1
2
‖Bx||22 + λ‖Ax − b||1 (29)

In Eq. (29), the energy functional E(x) is the objective function, λ is the
regularization parameter, and ‖ • ‖1 and ‖ • ‖2 denote the l 1 norm and

l 2 norm, respectively.

2.3.3. Variational model optimization
Clearly, Eq. (29) is an unconstrained optimization problemwith both

l 2 norm and l 1 norm, which is difficult to convert into a linear problem
for solving, but can be solved by using the alternating direction method
of multipliers (ADMM) (Boyd, 2010). The problem can be rewritten in
ADMM form as:

min
1
2
‖Bx||22 + λ‖z||1

s.t.Ax − z − b = 0
(30)

For which the augmented Lagrangian function is:

Lρ(x, z, y) =
1
2
||Bx| |22 + λ||z| |1 +

ρ
2
||Ax − z − b + u| |22 (31)

An optimization formulation for each subproblem can be obtained as
follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1 := argminxLρ
(
x,zk,uk)= argminx

(
1
2
‖Bx||22+

ρ
2
‖Ax − z − b+u||22

)

zk+1 := argminzLρ
(
xk+1,z,uk)= argminz

(
λ‖z||1+

ρ
2
‖Ax − z − b+u||22

)

uk+1 := uk +Axk+1 − zk+1 − b

(32)

The solution formula for each subproblem can be obtained by the de-
rivative method, which is calculated analytically as:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xk+1 :=
(
BTB + ρATA

)− 1( ρAT ( zk − uk + b
) )

zk+1 := Sλ/ρ
(
Bxk+1 + uk − b

)

uk+1 := uk + Axk+1 − zk+1 − b

(33)

To solve each subproblem in Eq. (33), the z subproblem can be solved
using the soft threshold method, while for the x subproblem, due to the
large scale of the equations, the preconditioned conjugate gradient
method is used for the solution. In the specific solution process, each
subproblem can be solved by iteratively alternating until a preset
number of iterations or iteration errors is reached, where the RN co-
efficients for each image block can be obtained.

2.3.4. Weighted linear interpolation of coefficients
After application of the VOLRN model, T pairs of RN coefficients

corresponding to T image blocks can be obtained. If the coefficients of
each image block are directly used to radiometrically normalize all the
pixels within the block, the result may suffer from the block effect,
leading to a significant reduction in data availability. Therefore, the nine
pairs of RN coefficients of the image block and its eight neighboring
image blocks are used for inverse distance weighted linear interpolation
to calculate the RN coefficients for each pixel. The interpolation prin-
ciple is shown in Fig. 3, where the red dot represents the center of the
image block (m, n), the blue dots represent the center of the eight
neighboring image blocks of image block (m,n), and the small black dot
represents a pixel fk falling in image block (m, n). The inverse of the
distance is used as the weight of the linear interpolation, and the farther
the pixel to be solved is from the center position of a block, the less the
block affects it, and vice versa. The RN coefficient for each pixel can be
calculated as shown in Eqs. (34)–(35):
⎧
⎪⎨

⎪⎩

ak = a→m,n × C→m,n

bk = b
→

m,n × C→m,n

(34)
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In Eq. (34), ak, bk represent the final RN coefficients of pixel fk; a→m,n,

b
→

m,n represent the coefficients of image block (m, n) where pixel fk is

located and its eight neighboring image blocks; and C→m,n represents the
inverse of the distances from pixel fk to the centers of the nine image
blocks, which serve as the weights of the coefficients, and can be
expressed as:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a→m,n =
(
am,n, am±1,n, am,n±1, am±1,n±1

)

b
→

m,n =
(
bm,n, bm±1,n, bm,n±1, bm±1,n±1

)

C→m,n =
(
1/Cm,n, 1/Cm±1,n,1/Cm,n±1,1/Cm±1,n±1

)
(35)

After obtaining the RN coefficients ak, bk for each pixel fk, a linear
calculation can be applied to each pixel using Eq.(12).

3. Experimental results and discussion

We conducted a series of experiments to validate the effectiveness,
robustness, and efficiency of the proposed approach on five remote
sensing datasets from different platforms, all with different spatial res-
olutions, and all suffering from dramatic radiometric differences. The
key information of the five datasets is listed in Table 1. Note that dataset
#4 is a subset of dataset #5, which was selected for the parameter
analysis. Comparative evaluation experiments with three state-of-the-
art approaches were first performed using large datasets #2, #3, and
#5, followed by hyperparametric analysis experiments using the rela-
tively small datasets #1, #3, and #4. Finally, ablation experiments using
datasets #2, #3, and #5 were conducted to compare and evaluate the
performance and difference in the results of the proposed two-stage
model approach. Both the proposed approach and the comparison ap-
proaches were implemented in C++ on Windows 10, and all the ex-
periments were performed on a computer with an Intel i9-10850 k CPU
(3.60 GHz) and 64 GB of RAM.

3.1. Evaluation metrics

To quantitatively evaluate the effectiveness of the RN approaches,
four evaluation metrics are adopted here. The radiometric differences
between adjacent images are characterized by utilizing the metrics of
the absolute difference of the mean (ADM), the absolute difference of the
standard deviation (ADSD) (Zhang et al., 2022), and the color distance
(CD) of the overlapped areas of images. The gradient loss (GL) (Xia et al.,
2019) represents the gradient loss before and after RN. Meanwhile, to
comprehensively evaluate the radiometric difference, we define the
radiometric difference in the overlapping area (RDOA) as the average of
the ADM, ADSD, and CD. And Ave is defined as the average of the ADM,
ADSD, CD, and GL. Lower values for these metrics represent better RN
and gradient preservation capacity. The metrics are calculated as
follows:

ADM =
∑

Ii∩Ij∕=∅

⃒
⃒ΔM

(
Î ij, Î ji

) ⃒
⃒

Nl
(36)

ADSD =
∑

Ii∩Ij∕=∅

⃒
⃒ΔS
(
Î ij, Î ji

) ⃒
⃒

Nl
(37)

CD =
∑

Ii∩Ij∕=∅
wij

ΔH
(
Î ij, Î ji

)

Nb
(38)

GL =
1
N
∑N

i=1

ΔG(Ii, Î i)

Np
(39)

RDOA = (ADM + ADSD + CD)/3 (40)

Ave = (ADM + ADSD + CD + GL)/4 (41)

where Ii is the source image, Î i denotes the radiometrically normalized
image, and Î ij represents the area of Î i overlapped by Î j. The normalized
weight wij is set proportional to the area of Î ij

( ∑
wij = 1

)
. Moreover,

ΔM( • ) computes the difference of the mean, ΔS( • ) computes the dif-
ference of the standard deviation, ΔH( • ) computes the difference be-
tween histograms by bins, and ΔG( • ) computes the difference between
the gradient orientation maps by pixels. N is the number of images, Nl is
the number of overlapping areas of the images, Nb is the bin number of a
histogram, and Np is the pixel number of Ii.

3.2. Comparative evaluation

The proposed approach was compared with the three state-of-the-art
approaches of the method developed by (Xia et al., 2019), the method
developed by (Zhang et al., 2022), and Inpho OrthoVista.1 Inpho
OrthoVista is well-known and widely used commercial software, which
shows a good performance in RN and mosaicking of remote sensing
images. In the following, we refer to these three approaches as CDFGA
(Cumulative Distribution Function based Global Adjustment), SDGLBA
(Statistical Distribution based Global and Local Block Adjustment) and
GTA (Global Tilting Adjustment). Since all of the above approaches,
except GTA, have difficulty in handling large datasets, we rewrote and
optimized them using C/C++ to improve their data processing capa-
bilities. For a fair comparison, we made sure that the RN results before
and after optimization of the program did not change, and the relevant
parameters were set according to the author’s recommendations.
Detailed descriptions of all the comparison approaches are provided in
Table 2. Note that, in the comparison experiments, the regularization
parameter was set to 0.5, and the image block sizes were set to 200, 400,
and 600, corresponding to datasets #2, #3, and #5 with spatial

Fig. 3. Schematic of inverse distance weighted linear interpolation
of parameters.

1 https://geospatial.trimble.com/en/products/software/trimble-inpho.
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resolutions of 30 m, 16 m, and 1 m, respectively. An analysis of the
parameter settings is provided in Section 3.3.

3.2.1. Visual judgment
We conducted experiments and evaluations on datasets #2, #3, and

#5, and the RN results for each dataset show the global and local RN
effects of the different approaches. It is worth noting that the yellow and
green boxes labeled in the full map correspond to the two local zoomed-
in maps below it, and the red elliptical circles in the local zoomed-in map
mark the main radiometric differences that exist.

We firstly conducted experiments on dataset #2, which is made up of
30 multi-temporal images acquired by the Landsat 8 satellite with a
spatial resolution of 30 m. Fig. 4(a) shows the input images, where it
can be seen that there are very large radiometric differences between the
images. In terms of the global RN effect, the results of all the approaches
have good overall radiometric tonal consistency. However, the results of
CDFGA, GTA, BAGRN, and SDGLBA still have some radiometric differ-
ences at the image intersections on the left side, especially the results of
GTA, which have obvious radiometric differences in the transition area
between the mountains and the plains in the middle of the area. The RN

Table 1
The details of the five datasets used in the experiments.

Dataset Image
number

Image mean
size

Spatial
resolution

Mean
overlap

Main
feature types

Data
volume (GB)

Covered
area (km2)

Platform

#1 12 7765× 7890 30 m 14 % city, mountain, vegetation 2.05 307,987 Landsat 8
#2 24 8017× 7121 30 m 12 % city, water, mountain, vegetation 5.65 784,380 Landsat 8
#3 8 21546× 16062 16 m 16 % desert, mountain 7.76 283,754 GF-1/6, HJ2A, HJ2B
#4 8 32762× 30213 1 m 23 % city, water, mountain 22.8 4,884 GF-1/2/6/7
#5 39 30938× 27179 1 m 13 % city, water, mountain, vegetation 93.3 17,120 GF-1/2/6/7

Table 2
Detailed introduction to the three comparison approaches used in the experiments.

Approach Abbreviation Model Correspondence Optimization solver Implementation

(Xia et al., 2019) CDFGA Global Same quantiles in
cumulative distribution functions

Constrained linear least squares C/C++

Inpho OrthoVista GTA Global — — —
(Zhang et al., 2022) SDGLBA Global-local Mean and standard deviation Weighted least squares C/C++

Fig. 4. The RN results for dataset #2. (a) The input images. (b)–(f) The results of CDFGA, GTA, BAGRN, SDGLBA, and the proposed approach, respectively.

D. Lin et al. ISPRS Journal of Photogrammetry and Remote Sensing 218 (2024) 187–203 

194 



results of the comparison methods are shown in Fig. 4(b)–(e), respec-
tively. In contrast, the results of the proposed approach shown in Fig. 4
(f) effectively eliminate the radiometric differences at the image in-
tersections. Regarding the local RN effect, the first zoomed-in map
shows the RN results for the mountainous area, which is the intersection
of the four images, where obvious local radiometric differences can be
seen in the results of the other approaches. In contrast, the proposed
approach performs very well, with no radiometric differences visible to
the naked eye. The second zoomed-in map shows the RN results for the
urban area, where the results of GTA are greenish and show obvious
radiometric differences, and the results of CDFGA, BAGRN, and SDGLBA
also show some radiometric differences, while the results of the pro-
posed approach show very small radiometric differences. From Fig. 4, it
can be seen that, from the experimental results obtained on dataset #2,
the local RN effect of the proposed approach, and especially the
smoothness of the transitions, is much better than that of the other ap-
proaches, while maintaining the overall radiometric tonal consistency.

We then conducted experiments on dataset #3, which consists of 8
multi-temporal images acquired by the Chinese Gaofen-1/6 and HJ2A/B
satellites with a spatial resolution of 16 m. Fig. 5(a) shows the input
images, where the intersections of the first image on the left, the four in
the middle, and the three on the right all show severe radiometric dif-
ferences. In terms of the global RN effect, the results of CDFGA in Fig. 5
(b) show vivid hues and good tonal consistency, but some areas are
bright and distorted, and there are obvious radiometric differences at
the intersections of the multiple images. The results of GTA shown in
Fig. 5(c) show obvious tonal inconsistencies, with the four images on the
left and the four images on the right showing two obvious color tones,
and obvious radiometric differences can be seen at each image inter-
section, which is probably due to the higher contrast and saturation. The
results of BAGRN, SDGLBA, and the proposed approach shown in Fig. 5
(d)–(f), respectively, show very good overall radiometric tonal consis-
tency with good radiometric balance and moderate brightness and
contrast. However, the results of BAGRN and SDGLBA also show
radiometric differences at some image intersections, while the results of
the proposed approach show no visible radiometric differences at image
intersections. Regarding the local RN effect, the first and second
zoomed-in maps show the RN effect for a desert region and for a
mountainous region, respectively. The results of both CDFGA and GTA
appear more vivid, with higher brightness and contrast, but both suffer
from local radiometric differences and distortions. The results of BAGRN
and SDGLBA show a natural transition with only slight radiometric
differences, while the results of the proposed approach are radiometri-
cally balanced with a smooth and natural transition and no local
radiometric differences. From Fig. 5, it can be seen that the experimental
results of the proposed approach on dataset #3 show the best RN effect.

Finally, we conducted experiments on dataset #5, which consists of
39 multi-temporal images acquired by the Chinese Gaofen-1/2/6/7
satellites with a spatial resolution of 1 m. The dataset was pre-
processed with geometric registration, pansharpening, super-resolution
reconstruction, and cloud removal, according to our previous work (Lin
et al., 2024). Fig. 6(a) shows the input image, where there are again very
dramatic radiometric differences between the images. In terms of the
global RN effect, the results of GTA shown in Fig. 6(c) show the worst
performance, with obvious tonal inconsistencies in the left, upper right,
and lower regions, and obvious radiometric differences at the image
intersections between the left and lower right regions, with higher
brightness and saturation. The results of CDFGA, BAGRN, SDGLBA, and
the proposed approach shown in Fig. 6 (b), (d)–(f), respectively, show
better radiometric tonal consistency, with no obvious radiometric dif-
ferences at the image intersections, but the results of CDFGA still show
brighter and more distorted effects. Regarding the local RN effect, the
first zoomed-in map shows the RN effect in the area where the water
body meets the island, which is the intersection of the four images. The

results of CDFGA and GTA show obvious unsmooth radiometric transi-
tions at the image intersections. The results of SDGLBA are better than
those of the first three approaches, while there is still a slight radio-
metric difference. The results of the proposed approach show smooth
and natural transitions and no local radiometric differences. The second
zoomed-in map shows the RN effect for the area where the mountain
meets the countryside. Similarly, the RN results of CDFGA, GTA, and
BAGRN show obvious local radiometric differences at the image in-
tersections, and the results of GTA are darker. The results of SDGLBA
also show small radiometric differences, while the results of the pro-
posed approach are very pleasing, with no visible local radiometric
differences, and the transitions are very smooth and natural. From the
experimental results obtained on dataset #5 shown in Fig. 6, it is
apparent that the local RN capacity of the proposed approach is much
better than that of the other approaches, especially for the water and
mountainous regions.

In summary, the RN results of the proposed approach on the three
datasets show a superior visual effect, and in terms of the global RN
effect, it shows good radiometric tonal consistency, natural radiometric
tone, and balanced brightness and contrast. Regarding the local RN ef-
fect, the radiometric transitions are smooth and natural, the details are
clear and bright, and there are almost no visible local radiometric dif-
ferences in most of the zoomed-in maps, which represents a great
advantage over the other approaches. Therefore, it can be said that the
proposed approach has very good global and local RN capabilities.

3.2.2. Quantitative evaluation
To convincingly demonstrate the superiority of the proposed

approach, we performed a quantitative evaluation of all the approaches
on datasets #2, #3, and #5 using the metrics introduced in Section 3.1.
The results are presented in Table 3.

From Table 3, it can be seen that the ADM, ADSD, and CD values of
the proposed approach are the lowest across all the datasets. Notably,
these values are significantly lower than those of the other comparison
approaches, indicating an excellent RN capacity and effective elimina-
tion of both the global and local radiometric differences. Specifically,
optimal metric values are achieved on dataset #2, except for the BAGRN
approach. In addition, the GL values achieved by the proposed
approach, although not the lowest, are very close to the optimal values.
Therefore, it can be considered that the proposed approach has a good
gradient preservation capability. This is primarily because the RN
models used in the two-stage approach are linear, thus avoiding signif-
icant loss of textural details of the images. On average, the metric values
of the proposed approach across all the datasets are significantly lower
than those of the other approaches, demonstrating a superior RN and
gradient preservation performance.

In summary, the results of the qualitative and quantitative evalua-
tions on the three datasets with different characteristics strongly
demonstrate that the proposed approach has very good RN and gradient
preservation capabilities, and is far superior to the other comparison
approaches.

In addition, the computational times of all the approaches are re-
ported in Table 3. The computational time is denoted by Time, and the
units are m for minutes and h for hours. From Table 3, it can be seen
that the proposed approach has the lowest computational time and the
highest computational efficiency on all the datasets. The main reason
for this is that the proposed approach uses a linear model, the image
block method is simple, the model solving is fast, and the algorithm
has good parallelism. Meanwhile, the computational time of the pro-
posed approach when compared to BAGRN, i.e., with the addition of
the VOLRN model, does not become much larger. This is because, with
the two-stage model approach, some computational tasks can be
merged in the specific programming implementations, especially the
task of reading and writing the images, and thus the proposed
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(a) Input images (b) CDFGA

(c) GTA (d) BAGRN

(e) SDGLBA (f) Proposed

Fig. 5. The RN results for dataset #3. (a) The input images. (b)–(f) The results of CDFGA, GTA, BAGRN, SDGLBA, and the.
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approach has a high processing efficiency. It can also be seen that
CDFGA, SDGLBA, and BAGRN have the same magnitude of time as the
proposed approach, although the computational time is longer, while
the processing time of GTA is an order of magnitude higher, especially
for the large dataset #5. In summary, the performance of the proposed

approach is superior in terms of the computational efficiency.

3.3. Parameter analysis

In the VOLRN model, two key parameters need to be tuned: the

Fig. 6. The RN results for dataset #5. (a) The input images. (b)–(f) The results of CDFGA, GTA, BAGRN, SDGLBA, and the proposed approach, respectively.

Table 3
Quantitative assessment of the RN results generated by the different approaches.

Dataset Metric Input CDFGA GTA SDGLBA BAGRN Proposed

#2 ADM 11.692 2.893 1.172 2.797 3.363 0.239
ADSD 3.312 1.997 2.955 1.611 1.727 0.187
CD 7.461 1.989 1.871 2.012 2.339 0.587
GL 0 0.182 1.222 0.311 0.149 0.159
Ave — 1.765 1.805 1.683 1.895 0.293
Time — 6.850 m 18.250 m 6.067 m 2.000 m 3.733 m

#3 ADM 19.130 3.795 1.677 2.173 2.009 0.229
ADSD 3.959 2.734 3.374 2.026 2.120 0.277
CD 11.577 2.609 2.477 2.255 2.313 0.788
GL 0 0.358 0.926 0.344 0.333 0.375
Ave — 2.374 2.114 1.700 1.694 0.417
Time — 8.850 m 39.140 m 3.817 m 1.883 m 3.267 m

#5 ADM 19.349 2.609 3.890 1.256 1.710 0.266
ADSD 3.257 1.874 3.204 0.541 0.623 0.164
CD 10.770 1.948 3.410 1.046 1.374 0.424
GL 0 0.246 0.901 0.336 0.282 0.289
Ave — 1.669 2.851 0.795 0.997 0.286
Time — 2.503 h 11.806 h 3.947 h 1.021 h 1.506 h
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regularization parameter λ and the image block size. In this section, we
analyze the influence of different parameter settings on the RN results
through quantitative assessment and visual evaluation.

3.3.1. Regulation parameter λ
Regularization parameter λ is designed to balance the radiometric

consistency and data fidelity. In this experiment, dataset #1was used for
a comprehensive evaluation of the influence of this parameter. The re-
sults are shown in Fig. 7 and Fig. 8.

(a) (b)

(c) (d)

(e) (f)

Fig. 7. Illustration of the influence of regulation parameter λ.
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In Fig. 7, the x-axis is the value of λ, the left y-axis is the value of the
metric, and the right y-axis is the time in seconds. Fig. 7 (a)–(f) show the
variation of RDOA, GL, and Time during the variation of λ from 0.3 to 10
for image block sizes of 100, 200, 300, 400, 600, and 800, respectively.
It can be observed that the RDOA values all show an increase and then a
decrease with the growth of λ for different image block sizes, and then
remain stable at some stage. However, GL and Time are largely unaf-
fected by changes in the value of λ and the image block size and remain
at a low value. Therefore, to balance the RN capability with the pro-
cessing efficiency, a range of λ of [0.5, 1] is appropriate.

In Fig. 8, we show the visual effect of the RN results as λ increases
when the image block size is set to 200. As can be seen from the full map,
all the results show a good performance in terms of overall radiometric
tonal consistency. From the local zoomed-in map, when λ is between
[0.5, 1], there are no visible local radiometric differences and the
transitions are smooth. However, when λ is greater than 1 and continues
to grow, the radiometric differences between images tend to become
slightly larger in some transition areas, which is consistent with the
trend that can be observed for the RDOA value in Fig. 7. It can be seen

that when the range of λ is [0.5, 1], better visual and quantitative
evaluation results can be obtained. In summary, this parameter is
insensitive. Moreover, for all the datasets in this study, we found that the
proposed approach has a very good performance when λ is 0.5, i.e., it
can effectively complete the RN in less time. Therefore, λ was set to 0.5
in the experiments conducted in this study.

3.3.2. Image block size
Different image block sizes can directly affect the effect of local RN.

Since the feature richness of images with different spatial resolutions
tends to be different, different image block sizes are often required for
images with different spatial resolutions. In this experiment, datasets
#1, #3, and #4 with spatial resolutions of 30 m, 16 m, and 1 m were
used to quantitatively evaluate the influence of this parameter. The re-
sults for dataset #3 are provided for visual evaluation in Fig. 9 and
Fig. 10. Note that a square block was used in the experiments.

From Fig. 9, it can be observed that, for datasets with different spatial
resolutions, the RDOA value becomes larger as the image block size
increases, while the GL is consistent with the previous experimental

(a) Input images (b) λ = 0.5 (c) λ = 0.7 (d) λ = 1

(e) λ = 3 (f) λ = 5 (g) λ = 7 (h) λ = 10

Fig. 8. Visual illustration of the influence of regulation parameter λ.
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results, and is not affected by the change in the image block size and
maintains a lower value. Time is less affected by the image block size and
tends to decrease slightly as the image block size becomes larger.
Considering the effect of the local RN and processing efficiency, we
consider that spatial resolutions of 30 m, 16 m, and 1 m with image
block sizes of [200, 400], [400, 600], and [600, 1200], respectively, are
appropriate.

In Fig. 10, we show the visual effect of the change in the radiomet-
rically normalized images as the image block size increases for dataset
#3. When λ is set to 0.5, from the full map, all the results have overall
radiometric tonal consistency. From the local zoomed-in map, when the
image block size is between [200, 600], there are basically no visible
local radiometric differences. However, when the image block size is
larger than 600 and keeps increasing, the local radiometric differences
between images have a slight tendency to become larger in some tran-
sition regions, which is consistent with the trend of the RDOA values
observed in Fig. 10. In summary, this parameter is insensitive. In the
experiments, we set the image block size to 200 for datasets #1 (30 m)
and #2 (30 m), 400 for dataset #3 (16 m), and 600 for datasets #4 (1
m) and #5 (1 m).

3.4. Ablation study

The most important aspect of the proposed approach is the VOLRN
model in the second stage. To verify the effectiveness of this model, the
results of the BAGRN model and the BAGRN-VOLRN approach are
shown in Fig. 4–Fig. 6(d) and (f), respectively. As can be observed from
both the full maps and local zoomed-in maps, the results processed by
the BAGRN model all have local feature tone discontinuities and edge
artifacts, whereas for the results processed by the BAGRN-VOLRN
approach, all these local radiometric discrepancies are eliminated
well, and very good local RN results are obtained.

Meanwhile, the quantitative evaluation results of the BAGRN model
and the BAGRN-VOLRN approach are also listed in Table 3. For ADM,
ADSD, and CD, the evaluation metrics become smaller after application
of the VOLRNmodel, which means that better RN results are obtained in
the image intersection areas. The VOLRN model effectively eliminates
the local radiometric differences, and the transitions are smoother and
more natural. For GL, only a slight increase occurs, and the values
remain low. While it can be observed that the gradient loss of the pro-
posed approach is mainly due to the BAGRN model in the first stage, the
VOLRN model causes only a very small gradient loss. In terms of Time,
the time difference between the BAGRN model and the BAGRN-VOLRN
approach is not significant. This is because, in the specific programming

Fig. 9. Illustration of the influence of the image block size. Note that SR represents spatial resolution.
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implementation, some of the image reading and writing tasks of the
BAGRN-VOLRN approach can be merged when performing global and
local RN, while the model solving is less time-consuming, so the overall
processing time difference is smaller, and thus a higher processing ef-
ficiency can be achieved.

In addition, the differences between the RN results for datasets #2
processed by the BAGRN model and the BAGRN-VOLRN approach are
shown in Fig. 11. It can be observed that the VOLRN model mainly
performs further fine RN on the overlapping areas and the intersections
of overlapping and non-overlapping areas, while less RN is performed on
non-overlapping areas, with a consistent performance in the red, green,
and blue bands. This is consistent with the modeling rationale described
in Section 2.3.2, in that the model can perform well and maintain
sparsity by allowing RN of only certain image blocks. Therefore, if only
the BAGRNmodel is used, it is difficult to eliminate the local radiometric
differences and obtain smooth and natural transitions at the image in-
tersections. If only the VOLRN model is used, it is difficult to effectively
normalize the overall radiometric differences between images, and it is
not possible to achieve a better overall radiometric tonal consistency.

In summary, both stages of the proposed approach are essential. The
first-stage model effectively normalizes the overall radiometric tonal
differences between images, while the second-stage model effectively
eliminates the remaining local radiometric discontinuities and edge
artifacts. As a result, the RN results with overall radiometric tonal
consistency and smooth and natural local radiometric transitions can be
obtained.

4. Conclusion

In this paper, we have proposed a two-stage approach for global and
local RN to generate mosaicked images with overall radiometric tonal
consistency, natural local radiometric transitions, and invisible seam-
lines. The key advantages of the proposed approach are that it can
eliminate the global and local radiometric differences between multiple
images, preserve the image gradients well, and has high computational
efficiency. The main contributions of this paper can be summarized as
follows:

• A novel RN framework that integrates joint block adjustment and
variational optimization has been introduced, which effectively ad-
dresses global and local radiometric differences. The proposed
approach initially balances the overall radiometric tones and sub-
sequently eliminates the residual local radiometric differences,
achieving both global and local radiometric consistency and natural
transitions in images.

• The VOLRN model utilizes a variational optimization framework
with l 1 norm constraint within a unified energy function, allowing
flexible adjustment of the local radiometric differences, thereby
effectively normalizing the intersection and transition areas in the
images.

The comparative experimental results obtained on three challenging
datasets of cross-sensor and multi-temporal remote sensing images

Fig. 10. Visual illustration of the influence of the image block size for dataset #4.
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demonstrate that the proposed approach significantly improves both the
visual quality and quantitative metrics, outperforming the state-of-the-
art RN approaches. Ablation experiments confirmed the indispens-
ability of the two-stage model in the proposed approach, which can
synergistically eliminate both the global and local radiometric differ-
ences in multiple remote sensing images.

In our future work, more satellite images from different sensors,
aerial images and UAV images will be used for further evaluation to
improve the reliability and stability of the approach. In addition, since
high-resolution remote sensing data often have huge data volume, and
the reading and writing of data take up more time in the process of RN,
so it is necessary to make sufficient improvements in terms of algorithm
optimization and program parallelism to enhance the overall processing
performance.
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