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A Blind Restoration Method for
Remote Sensing Images

Huanfeng Shen, Lijun Du, Liangpei Zhang, and Wei Gong

Abstract—This letter proposes a blind image restoration
method for the deblurring of remote sensing images. A simple
but robust identification method of point spread function (PSF)
support is proposed, and a joint estimation method is presented to
simultaneously solve the PSF coefficients and restoration image.
To narrow the solution space for the best possible definition,
the Huber—Markov (Huber—Markov random field) prior model is
employed to regularize the two series of unknowns. Experiments
were performed to demonstrate the effectiveness of the proposed
approach.

Index Terms—Blind restoration, joint estimation, support
identification.

I. INTRODUCTION

N MANY cases, the blurring of remote sensing images is

unavoidable. It can be the result of atmospheric turbulence,
scattering, spacecraft motion, aberrations, the lens being out of
focus, and other properties of the sensor and atmosphere. It
is, therefore, necessary for remote sensing users to deblur the
degraded images using image restoration methods. Generally,
the fuzziness of the imaging system can be described as

g=Hf+n (1)

where f and g represent the original image and degraded
image, respectively, lexicographically ordered by stacking the
rows of each image into a vector. H is a block—circulant-
circulant-block matrix constructed from the point spread func-
tion (PSF), and n represents the noise vector.

A nonblind image restoration technique estimates the desired
image f, given the degraded image g and the PSF h. The
Richardson-Lucy method [1], [2] was widely adopted in the
early applications of image restoration. The Wiener filter is
another classical method, which is still frequently used to re-
store remote sensing images, because of its high efficiency [3].
Furthermore, the regularization method [4], maximum
a posteriori (MAP) approach [5], and projections onto convex
sets method [6] have also been popular restoration frameworks.
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Recently, some new signal processing techniques, such as
sparse representation [7] and nonlocal means [8], have also
been applied to the image restoration problem.

Blind restoration techniques estimate both the PSF h and
the desired image f, given the observed image g. They can
be classified into two categories, according to the stage at
which the blur is identified: a priori or jointly with the image.
In the former class of method, the PSF is identified prior to
the restoration. An early research project [9] used the phase
information of the image to estimate the PSF in the frequency
domain. Remote sensing researchers often characterize the PSF
using special features (point source, edges, etc.) of the blurred
image, and the commonly used methods include the knife-edge
method [10], the tarp-based target method [10], and the pulse
method [11]. A more recent study used a marginal likelihood
optimization (MLO) method to estimate the PSF prior to the
image and validated that it is more robust than some joint
methods [12]. The majority of existing methods fall into the
latter class of joint method, where the image and blur are
identified simultaneously. Ayers and Dainty [13] proposed an
iterative blind deconvolution (IBD) algorithm to estimate the
image and blur in the frequency domain. Fish er al. extended
the classical Richardson-Lucy method to a blind approach
[14]. The maximum likelihood deconvolution (MLD) restora-
tion method is presented in [15]. You and Kaveh proposed
a regularization method [4], and Chen et al. [16] proposed
a MAP method in the wavelet domain. It is noted that most
blind restoration methods to date have set the PSF support at an
assumed size.

This letter proposes a new blind image restoration method
for the deblurring of remote sensing images. First, we propose
a simple but robust PSF support estimation method. Second,
a joint estimation method based on a MAP framework is pro-
posed to simultaneously solve the PSF coefficients and restora-
tion image. For the first time, the Huber—Markov prior model is
used to regularize both the image and the blur parameters.

II. PSF SUPPORT IDENTIFICATION

The shape of the PSF is often considered to be rectangular,
and the horizontal and vertical measurements, respectively,
should be estimated. Chen and Yap [17] developed a technique
that minimizes the autocorrelation of a filtered image to identify
the PSF support. The filtered image is obtained by convoluting
the degraded image with a filter constructed from autoregres-
sive (AR) model coefficients. This technique involves the in-
tractable problem of obtaining the solution for AR coefficients
and is not reliable for images with nonhomogeneous textures.

Inspired by [17], we have designed a simplified support
estimation method. The main difference between this method
and that of [17] is the design of the two fixed filters to replace
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Fig. 1. Schema of the PSF support identification.

the filter produced by the AR model. Fig. 1 is the schema of the
proposed estimation process.

In Fig. 1, Image b(4) denotes the shifted version of the image
by shifting 7 pixels in horizontal or vertical directions. The filter
s and the filter ¢ are assigned to
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respectively. The former has a characteristic of high-pass fil-
tering, removing much low-frequency information so that the
main object of the operations is focused on the edge areas, while
the latter highlights the characteristics of the image edge areas,
to cause more obvious peaks in the autocorrelation curve. The
determination of the PSF support is given as follows:

v_size = arg,, min (J(m,0)) (2)
h_size = arg, min (J(0,n)) (3)

where v_size and h_size are the estimated blur support in the
vertical and horizontal directions, respectively, and J(m,n) is
the autocorrelation of the image, defined by

1 N-1M-1

WZZJCIZJ*JC@ n,y—m)

r=n y=m
“)
where N and M are the horizontal and vertical dimensions of
the image. f(x — n,y —m) is obtained by circularly shifting
the image matrix n pixels in the horizontal direction and m
pixels in the vertical direction.

J(m,n)=

III. ESTIMATION OF PSF COEFFICIENTS
AND THE RESTORED IMAGE

We present a joint estimation method to simultaneously
solve the PSF coefficients and the restored image. This method
is based on a MAP framework, and the Huber—Markov
[Huber—Markov random field (HMRF)] prior model is used to
regularize both the series of unknowns.

A. Construction of the Objective Function

The motivation for MAP image restoration is that it allows
the posterior probability of the image and the blur to achieve
the maximum, given a certain degraded image [18], [19].
That is

f.h = argmaxp(f,h|g). (5)
f.h

Here, the “hat” notations of f and h are used to denote the

solutions of the image and the PSF in the optimization problem.

Applying Bayes’ formula, (5) can alternatively be expressed as
. h h

f h= argmaxw' (6)

Fh p(g)

Since the denominator on the right side has nothing to do

with the solution of f and h, it can be omitted. We further
assume that f and h are statistically independent and impose
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a logarithmic function. The maximization problem is converted
to minimization through the negative operation

1 ﬁzarir’rllin{—logp(glf, h)—logp(f)—logp(h)}. (7)

The most common assumption related to noise is that it
can be represented by an additive independent identically dis-
tributed Gaussian model, so the conditional density p(g|f, h)
has the form

1 g — H £II12
POl R) = G exp( lo ! f||2> ©

g

2 is the variance of the noise and || e || denotes the

where o
L2-norm.

The density function p(f) models the image prior. In this
letter, a Huber—-Markov image model [5], [20], [21] is em-
ployed. This model belongs to the Markov random field family
and performs well in preserving edge and detailed information.

Thus, p(f) has the form of the Gibbs density function, given by

p(f) = i L P { = pa(dif } ©)
CEC
where Z; is a normalization constant, T is the temperature
parameter, ¢ is the clique of image pixels, C' is an assembly of
¢, and p(e) is the Huber function, which is defined as
_ [zl <a
palT) = {2a|x| —a? x| >a

where a is the threshold that defines the separation for the
quadratic and linear regions. It controls the scale and probabil-
ity of the discontinuous area of the prior image. d’, f denotes the
measures of the differences between pixels in neighborhoods
of the image field. A description of their various forms can be
found in [21].

In view of the belief that piecewise smoothness is not a
stringent condition, we assume that the PSF also has piecewise
smoothness, and we model it with the HMRF model. Thus,
p(h) can be given by

1 1
p(h) = 7 -exp {Th > pa (dih)} (11)

where the parameters in (11) have the same functions as
those in (9).

Substituting (8), (9), and (11) in (7) and eliminating the irrel-
evant constant items, the following minimization cost function
is obtained:

(10)

4

}ﬁ—argmln{”g Hf||2+/\zzzpa mnz

mlnlzl

+ Z ZZpa A1y i) } (12)
m=1n=1i=1

where A\ = 202%/T¢ and ~ = 202 /T},. The first term on the
right-hand side of (12) represents the fidelity of the restored
image f with respect to the observation data g. Direct mini-
mization of only this term would lead to excessive noise mag-
nification due to the ill conditioning of the blur operator [22].
The second term narrows the solution space of f to a well-
defined solution, and the \ controls the tradeoff between fidelity
of the observation and smoothness of the restored image. The
third term ensures that h is solved steadily.
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B. Optimization Procedure

There are two sets of unknowns (image and PSF) in (12).
To recover the image and identify the PSF simultaneously,
an alternating minimization iterative scheme combined with a
gradient descent algorithm is employed. Similar to the method
described in [4], the minimum problem of (12) is decomposed
into two cycling steps: estimating f, assuming h is fixed, and
estimating h, assuming f is fixed. Before the iteration, the
desired image is first initiated as f = g. Similarly, an initiated
value should also be given to the PSF h.

We use L(f,h) to denote the cost function of (12). For
notational convenience, the subscript a of p(e) for the threshold
is removed. Let s be the gradient of the cost function with
respect to f and g be the corresponding conjugate vector. The
detailed optimization process in relation to f with fixed h is
described as follows.

1) Let n = 0, and initialize the conjugate vector

S0 :VfL(-f>h)

M N 3

=—2H"(g-H)+AY_ > > po(dnif) (13

m=0n=0i=0
qo = — So- (14)
2) Calculate the step size for updating the image f
T
o = — dn 5n . (15)
af (V3 L(f0i b)) 4,

3) Update f

4) Update the gradient of the cost function with respect to f
Sn+1l = va(fn+17hn) (17)

5) Calculate the step size for updating the conjugate vector
al (V3  E(faer o)) suss

Tn = . (18)
qz (V.2fn+1L(-fn+1v hn)) qn
6) Update the conjugate vector
dp+1 = —Sn+1 + Tnqp- (19)
7) n =n + 1. The iteration is terminated when
2
If01 = Fally __ 0
where ¢ is a predetermined value. Otherwise, go to

step 2).

The conjugate-gradient optimization method is also em-
ployed to solve the PSF h. The solution steps are similar to
that of (13)—(20), replacing H and f with F' and h. Here,
F' is a sparse matrix which satisfies F'h = H f. In order
to relieve the effects derived by the ill-posed problem, the
following constraints on f and h are respectively imposed in
each iteration:

min < f(m,n) <max

> " h(i,j)=1,h(i, ) >0,

(2D

IV. EXPERIMENTAL RESULTS

In this section, the proposed support estimation method and
restoration method are tested using both simulated and real
images. To quantitatively evaluate the restored images, the three
metrics of the peak signal-to-noise ratio (PSNR), the universal
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TABLE 1
RESULTS OF DIFFERENT METHODS WITH ACTUAL SUPPORT 5 X 5

Tmage 9 1.6 18 20 25 30 50
MCSC 4x5 4x5 5x5 5x5 5x5  5%5

cameraman
Proposed 5x3  5x5  5x5  5x5  5x5  5%5
MCSC 4x5  5x4  5x5  5x5 5x5 55

peppers
Proposed 4x4  Sx4  5x5  5x5  3x5  35x5
MCSC 4x5  4x5  5x3  5x6  3x6 5x6

Lena

Proposed 5x4  5x4 5x35  5x5 5x5  5%5

(®)
QuickBird test image. (a) Original image and (b) blurred image.

Fig. 2.

image quality index (UIQI) [23], and the metric @ [24] are
employed. Among these three metrics, the PSNR and UIQI,
whose ideal values are +oo and 1, respectively, require the
existence of a reference image. Therefore, they can only be
used in simulated experiments. The metric (), which is a no-
reference measure of image content, can also be used in the
experiments performed on real images. It has been verified that
metric () can reflect the amount of both blur and noise, without
any prior knowledge [24]. The larger the value of @, the higher
the image quality.

A. Performance Validation of Support Estimation

The simulations on the standard test images of “cameraman,”
“peppers,” and “Lena” are first presented to demonstrate the
effectiveness of the PSF support estimation method. A series
of experiments with different standard deviations o and support
5 x 5 was performed. The proposed method is compared to
the MCSC method in [17]. The estimation results are shown
in Table I. It is seen that the proposed method has a similar
performance to minimum cyclic-shift correlation (MCSC). In
some cases, it provides better results with lower computational
complexity. For a 256 x 256 image, the computational times of
the proposed method and MCSC are 0.12 and 0.17 s, respec-
tively, on a common portable computer. For both methods, the
time spent is proportional to image size.

The performance of the PSF support estimation method was
also tested using a preprocessed high-quality QuickBird remote
sensing image, as shown in Fig. 2(a). The images used in the
restoration process are cropped subimages of 300 x 300 pixels.
Fig. 2(b) is a low-pass-filtered (5 x 5 Gaussian blur, standard
deviation of o = 2.1) image. The correlation curves of .J(m, 0)
and J(0,n) are shown in Fig. 3. It is clearly observed that the
curves attain their minimum at shift distance 5 in both directions.

B. Performance Validation of the Restoration Method

The proposed iterative restoration method was tested on both
noise-free images and noisy images. In the noise-free case, the
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Fig. 3. Correlation curves. (a) Result of Fig. 2(b) in the vertical direction and

(b) result of Fig. 2(b) in the horizontal direction.

Fig. 4. Restored results in the noise-free case. (a) Degraded image by 5 x 5
Gaussian blur, (b) restored image of the IBD method, (c) restored image of the
MLO method, and (d) restored image of the proposed method.

Fig. 5. Restored results in the noisy case. (a) Degraded image by 5 x 5
Gaussian blur and Gaussian noise, with SNR being 20 dB, (b) restored image
of the IBD method, (c) restored image of the MLO method, and (d) restored
image of the proposed method.

input image [Fig. 4(a)] was obtained by degrading the original
image by a 5 x 5 Gaussian blur, with the standard deviation
o being 2.1. In the noisy case, the input image [Fig. 5(a)]
was obtained by adding Gaussian noise (SNR = 20 dB) to
the blurred image. In order to demonstrate the performance of
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TABLE 1I
EVALUATION RESULTS OF DIFFERENT ALGORITHMS

Tmage Noise-free case Noisy case
PSNR UIQI Q PSNR UIQI Q
Degraded 22,719 0.943 41.76 21.465 0.926 18.81
1BD 27.712 0.984 45.90 22.559 0.944 30.86
MLD 26.742 0.980 45.33 22.194 0.940 27.47
MLO 31.147 0.993 46.81 23.342 0.955 39.32
Proposed 32.544 0.995 48.07 23.782 0.959 46.14
TABLE III
ACTUAL PSF COEFFICIENTS
0.0245 0.0345 0.0386 0.0345 0.0245
0.0345 0.0484 0.0543 0.0484 0.0345
0.0386 0.0543 0.0608 0.0543 0.0386
0.0345 0.0484 0.0543 0.0484 0.0345
0.0245 0.0345 0.0386 0.0345 0.0245
TABLE 1V
ESTIMATED PSF COEFFICIENTS OF FIG.4(a)
0.0276 0.0335 0.0393 0.0336 0.0278
0.0347 0.0446 0.0537 0.0446 0.0348
0.0412 0.0537 0.0618 0.0537 0.0412
0.0348 0.0446 0.0537 0.0446 0.0347
0.0278 0.0336 0.0393 0.0335 0.0276
TABLE V
ESTIMATED PSF COEFFICIENTS OF F1G.5(a)
0.0259 0.0287 0.0321 0.0297 0.0272
0.0399 0.0470 0.0506 0.0475 0.0406
0.0467 0.0549 0.0586 0.0549 0.0467
0.0406 0.0475 0.0506 0.0470 0.0399
0.0272 0.0297 0.0321 0.0287 0.0259

the proposed restoration method, it was compared to the IBD
method [13], the MLD method [15], and the MLO method [12].
All the four restoration methods are given the same initial PSF
coefficients, which correspond to a Gaussian blur with o = 1.6.

The restored results are shown in Figs. 4 and 5, respectively.
Since the results of the MLD and IBD methods are visually
similar, we only display the IBD images and do not display
the MLD images. From Fig. 4, we can see that the proposed
method produces much sharper images than the other methods.
Fig. 5 shows that the proposed method is less sensitive to noise.
The evaluation results are shown in Table II. It is seen that,
regardless of the presence or absence of noise, the values of
the PSNR and UIQI indices of the proposed method are higher
than those of the other methods. It can also be seen that the )
index has a similar trend to the PSNR and UIQI indices, which
validates the good performance of this no-reference metric.
Therefore, it is used to evaluate the restored results of the real
images in the next section. The actual PSF coefficients are
shown in Table III.

Tables IV and V are the estimated PSF coefficients of the
proposed method. It is shown that the estimated coefficients
have very small errors.

C. Application to CBERS-02B Panchromatic Images

Finally, the proposed algorithm was applied to real remote
sensing images. Ten subimages were cropped from three origi-
nal panchromatic images of the The 2B satellite of the China—
Brazil Earth Resources Satellite Program (CBERS-2B) high-
resolution camera. In order to save space, only two of them are
illustrated. Fig. 6 shows the estimated PSFs, and the original
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(a)

Fig. 6. Estimated PSF functions of the
Fig. 7(a) and (b) PSF of Fig. 7(c).

CBERS-2B images. (a) PSF of

(©)

Fig. 7. Restored results of the CBERS-2B panchromatic images. (a) and
(c) Original images. (b) and (d) Restored images of the proposed method.

TABLE VI
QUANTITATIVE COMPARISON OF THE ORIGINAL AND RESTORED
CBERS-2B IMAGES, USING THE @ METRIC

(d)

Original IBD MLD MLO Proposed
Image 1 12.42 20.71 21.48 22.63 24.15
Image 2 13.61 14.62 14.67 18.26 18.22
Image 3 21.48 35.81 41.51 43.56 46.56
Image 4 15.16 22.32 27.64 28.97 30.61
Image 5 17.30 24.62 36.07 36.70 42.22
Image 6 14.11 18.31 27.77 29.71 30.67
Image 7 10.28 15.24 22.90 24.33 25.83
Image 8 6.950 10.40 15.09 16.21 16.72
Image 9 26.59 36.94 52.53 56.31 59.30
mage 10 12.91 20.73 27.53 29.75 31.26

images and restored results are shown in Fig. 7. It is obvious,
by visual inspection, that the original CBERS-2B panchromatic
images are blurred to a considerable extent, and the proposed
method produces much clearer images. Table VI shows the )
values of all the ten subimages. It is seen that all the blind
restoration methods raise the () index, but the proposed method
obtains the highest values for nine of the ten images.

V. CONCLUSION

This letter has presented a new restoration method for the
deblurring of remote sensing images. We have proposed a
PSF support estimation method and a blind restoration method.
Experimental results showed that these methods perform quite
well in terms of both visual inspection and quantitative eval-
uation. Because of the employment of a complicated prior
model, however, the proposed iterative restoration method has
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considerable computational complexity. For example, the pro-
posed method is up to ten times slower than the IBD and MLD
methods. Therefore, further work could potentially improve the
processing efficiency of the proposed method.
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