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Abstract. A novel region-based adaptive anisotropic diffusion (RAAD)
is presented for image enhancement and denoising. The main idea of
this algorithm is to perform the region-based adaptive segmentation. To
this end, we use the eigenvalue difference of the structure tensor of each
pixel to classify an image into homogeneous detail, and edge regions. Ac-
cording to the different types of regions, a variable weight is incorporated
into the anisotropic diffusion partial differential equation for compromising
the forward and backward diffusion, so that our algorithm can adaptively
encourage strong smoothing in homogeneous regions and suitable sharp-
ening in detail and edge regions. Furthermore, we present an adaptive
gradient threshold selection strategy. We suggest that the optimal gradient
threshold should be estimated as the mean of local intensity differences
on the homogeneous regions. In addition, we modify the anisotropic diffu-
sion discrete scheme by taking into account edge orientations. We believe
our algorithm to be a novel mechanism for image enhancement and de-
noising. Qualitative experiments, based on various general digital images
and several T1- and T2-weighted magnetic resonance simulated images,
show significant improvements when the RAAD algorithm is used versus
the existing anisotropic diffusion and the previous forward and backward
diffusion algorithms for enhancing edge features and improving image
contrast. Quantitative analyses, based on peak signal-to-noise ratio, the
universal image quality index, and the structural similarity confirm the su-
periority of the proposed algorithm. © 2010 Society of Photo-Optical Instrumentation
Engineers. [DOI: 10.1117/1.3517741]
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1 Introduction

Images taken with both digital cameras and conventional
film cameras will pick up noise from a variety of sources,
such as different illumination conditions, image quantiza-
tion, compression, transmission, etc. These sources of image
degradation normally arise during image acquisition and pro-
cessing and have a direct bearing on the visual quality of the
image.! Undoing these imperfections to remove the image
degradation is crucial for aesthetic purposes as in artistic
work or marketing, or for practical purposes, such as com-
puter vision. Of particular interest to this study is the work
related to image enhancement and denoising that aims to im-
prove signal-to-noise ratio (SNR) and contrast-to-noise ratio
(CNR).>”

The scale-space concept was first presented by Iijima
and Weickert et al.'? and became popular later on by the
works of Witkin'! and Koenderink.'? The theory of lin-
ear scale-space supports edge detection and localization,
while suppressing noise by tracking features across mul-
tiple scales.!'~'® In fact, the linear scale space is equiva-
lent to a linear heat diffusion equation.lz’13 However, this
equation was found to be problematic in that all edge fea-
tures are smeared and distorted after a few iterations of lin-
ear diffusion. In order to remedy the difficulties encoun-
tered in the linear scale-space theory, Perona and Malik '’
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developed an adaptive smoothing and edge-detection scheme
in which they replaced the linear heat diffusion equation
by a selective diffusion that preserves edges. Since its first
formulation developed by Perona and Malik,!” anisotropic
diffusion has received a great deal of attention and experi-
enced significant advances, with promising results and appli-
cations in many specific domains.'®# The main motivation
for anisotropic diffusion is to reduce noise while minimiz-
ing image blurring across boundaries, but this process does
have several drawbacks, including the fact that fine struc-
tures in low SNR or CNR regions often disappear and in-
creased blurring occurs in fuzzy boundaries. In our earlier
work,** we proposed a local variance-controlled forward-
and-backward (LVCFAB) diffusion scheme in context of
image enhancement and noise reduction. In this scheme,
spatial gradient and contextual discontinuity of a pixel are
jointly employed for controlling during the evolution. How-
ever, a solution to estimating the contextual discontinuity
leads to an exhaustive search procedure, which causes al-
gorithm complexity to be too costly. Furthermore, an opti-
mal strategy for evaluating the two gradient thresholds in
the forward-and-backward (FAB) diffusion scheme is un-
known and, hence, it is often necessary to select the thresh-
olds by guesswork. However, the thresholds vary from image
to image and even from region to region within an image.
Recently, we presented a tunable FAB (TFAB) diffusion ap-
proach for image restoration and enhancement to improve on
the SNR and CNR that preclude the current utility of digital
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Fig. 1 Eigenvectors at an edge pixel Pegge and a smooth pixel
Psmooth-

images for industry.*¢ In the TFAB algorithm, it is possible
to modulate all aspects of the diffusion behavior. Although
the algorithm turns out to be effective for miscellaneous im-
ages, there are still several open problems. First, the spatial
gradient makes it difficult to distinguish significant disconti-
nuities from noise due to overlocalization, making the diffu-
sion coefficient unreliable. Next, several parameters have to
be tuned for a desirable diffusivity. If any proper parameters
fail to be achieved, it is easy to lead to unsatisfactory results.
Finally, edge orientations are not taken into account in the
anisotropic diffusion discrete scheme, which is inefficient
for edge-preserving smoothing. Apart from these efforts, we
introduced a hyperspectral anisotropic diffusion scheme that
takes into account the recent advances and the specificities
of hyperspectral remote sensing.*

In this paper, we further develop our previous heuristic
idea from an alternative perspective in order to come up
with a region-based adaptive anisotropic diffusion (RAAD)
algorithm. Unlike our earlier work, we first explore a region-
segmentation approach to obtain a map contains different
regions. Previously, Harris and Stephens*’ proposed a com-
bined corner and edge detector for detecting feature points. In
the Harris detector, the corner response function is used as a
measure of corner and edge quality for region classification.
Instead of the corner response function, we use the eigen-
value difference of the multiscale structure tensor of each
pixel to classify an image into three regions representing the
region’s complexity. On the basis of the different types of re-
gions, a variable weight is incorporated into the anisotropic
diffusion partial differential equation (PDE) for compromis-
ing the FAB diffusion, so that our algorithm can adaptively
encourage strong smoothing in homogeneous regions and
suitable sharpening in detail and edge regions. Furthermore,
we present an adaptive gradient threshold selection strategy.
The threshold in a diffusion process determines to what ex-
tent edge features should be enhanced during smoothing.
Selecting the threshold is a process of analyzing local con-
trast. Some papers have proposed automatic selection of the
parameter.'7-2%48.49 We think that such an automatic strategy
can be applied only to some specific applications, because
the amount of desired smoothing is a user’s choice. In this
paper, the optimal gradient threshold is estimated as the mean
of local intensity differences on the homogeneous regions.
Also, we modify the anisotropic diffusion discrete scheme by
taking into account edge orientations. Filter action should be
stronger along the edge and weaker across the edge. Instead
of the same weight in the directions of four nearest neigh-
bors, we assign different weights in the directions of the eight
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nearest neighbors according to oriented patterns. As a result,
important features are better enhanced, simultaneously, with
noise removal. To sum up, we believe the RAAD algorithm to
be a novel mechanism for image enhancement and denoising.

The remainder of this paper is organized as follows:
Section 2 gives an overview of the state of the art
in anisotropic diffusion filtering; Section 3 presents the
proposed RAAD algorithm; Section 4 describes simula-
tions including comparative results between several existing
anisotropic diffusion schemes and our proposed algorithm;
and Section 6 states our concluding remarks.

2 Recent Work on Anisotropic Diffusion

Perona and Malik!” formulated an anisotropic diffusion filter
as a process that encourages intraregional smoothing, while
inhibiting interregional denoising. The Perona—Malik (P-M)
nonlinear diffusion equation is of the following form:

al(x,y,t)

o =div{c[VI(x,y,t)]VI(x, y, 1)}, (1)

where V is the gradient operator, div is the divergence op-
erator, and c(-) is the diffusion coefficient, which is a non-
negative monotonically decreasing function of local spatial
gradient. If c(-) is constant, then isotropic diffusion is en-
acted. In this case, all locations in the image, including the
edges, are equally smoothed. This is an undesirable effect
because the process cannot maintain the natural boundaries
of objects. In terms of the anisotropic diffusion, the image
denoising is defined as follows:!”

I, y, 0+ 1) = I(x, y, 1) + div[e(VDVI]. 2)

Perona and Malik'” discretized their anisotropic diffusion
equation as follows:

I(x,y,t+1)=1I(x,y,t)+ ———
In(x, y)I

(x,y) (x,)
x Y VIGHIVIGY, )
(p.q)en(x,y)

where I(x, y, t) is a discretely sampled image, (x, y) denotes
a pixel to be smoothed in the 2-D image domain, and ¢ de-
notes the discrete time steps (iterations). The constant A is a
scalar that determines the rate of diffusion, n(x, y) represents

the spatial neighborhood of the pixel (x, y), and |n(x, y)| is
the spatial the number of neighbors of pixel (x, y). VI((;_‘,’;))
indicates the image intensity difference between two pixels

at (x, y) and (p, q) to approximate the image gradient. For
the four nearest neighbors of the pixel, the gradients in four
directions can be calculated in the following way:

ViING, y)=1(x,y = 1,0) = I (x,y,1),
Visx,y)=1(x,y+1,t)—=1(x,y,1),
VIx,y)=1x+1,y,t)—1(x,y,1),
ViNGx,y)=1(x—1,y,t)— I (x,y,t).

“

The choice of the diffusion coefficient plays a signifi-
cant role in edge preserving. Generally, as proposed in
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Fig.2 Region map for Lenaimage: (a) Original Lenaimage, (b) region map correspondingto (a) (c = 0.05, p = 0.1), (c) region map corresponding
to (a) processed by majority filtering (¢ = 0.05, p = 0.1), (d) noisy lena image, (e) region map corresponding to (d) (c = 0.3, p = 0.8), and (f)
region map corresponding to (d) processed by majority filtering (c = 0.3, p = 0.8).
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Perona—Malik’s work,!” it takes
1

(VT = TGy, il

where o >0

or

c[VIGx,y, 0] = exp{=k[IVI(x, y, DI}, &)

where | V| is the gradient magnitude and parameter k serves
as a gradient threshold: a smaller gradient is diffused, posi-
tions of a larger gradient are treated as edges. However, the
P-M equation has several serious practical and theoretical
difficulties. As Alvarez et al.!° mentioned, the continuous
P-M equation is ill posed with the diffusion coefficients in
Eq. (5); very similar images can produce divergent solutions
and therefore very different edges. This is caused by the fact
that the diffusion coefficient c used in'” leads to flux decreas-
ing for some gradient magnitudes and the scheme may work
locally as the inverse diffusion that is known to be ill posed,
and can develop singularities of any order in arbitrarily small
time. As aresult, a large gradient magnitude no longer surely
represents true edges and the diffusion coefficients are not re-
liable, resulting in the unsatisfactory denoising performance.

So far, much research has been devoted to improving the
Perona-Malik’s anisotropic diffusion method. For example,
Catte et al.'® showed that the P-M equation can be made well
posed by smoothing isotropically the image with a scaling
parameter o, before computing the image gradient used by
the diffusion coefficient:

al(x,y,t)
ot

Equation (6) corresponds to the regularized version of the
P-MPDE, and I, = G,(I) * I is a smoothed version of 7 ob-
tained by convolving the image with a zero-mean Gaussian
kernel G, of variance o 2. Similarly, Torkamani—Azar et al.>0
replaced the Gaussian filter with a symmetric exponential
filter and the diffusion coefficient is calculated from the con-
volved image. Although these improvements can convert the
ill-posed problem’! in the Perona-Malik’s anisotropic diffu-
sion method into a well-posed one, their reported enhance-
ment and denoising performance can be further improved.
Weickert proposed later a nonlinear diffusion coefficient that
produces segmentation-like results®” given by:

=div{c[VI,(x,y,)]VI(x, y, t)}. (6)

c(x,y,1)
1, VI, (x,y, )| =0
1 - _# VI(T 9 9
exp( (W(x’y‘l)/k)zm> o (x,y,0)| >0
(7

where segmentation-like results are obtained using m = 4
and C; = 3.31488.

Meanwhile, anisotropic diffusion can be considered as
a robust estimation procedure that estimates a piecewise
smooth image from a noisy version. A different mono-
tonically decreasing function is chosen to determine the
anisotropic diffusion coefficient through robust statistics.
Compared to the P-M method,'” the robust anisotropic dif-
fusion demonstrates improved automatic stopping of the
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Fig. 3 Relating edge direction to direction in an image.

diffusion process with preservation of sharp boundaries
and better continuity of edges.”® Black et al. proposed a
more robust “edge-stopping” function derived from Tukey’s
biweight?®

c(x,y,t)

1
S = (VIG,y, Dlfo) 1 IVI(x, y, 1) < o,

0, otherwise.
3

where o, is a robust scale threshold about the gradient mag-
nitude. The robust anisotropic diffusion method can preserve
sharper boundaries than previous schemes and improve the
automatic stopping of the diffusion evolution. However, the
method cannot minimize the effect of large oscillations of
the gradient. Not long after this, a better behaved diffusion
coefficient based on sigmoid function was proposed??

c(x,y, 1) =05 (1 —tanh{y - [[VI(x,y, O] —k1}), (9

where y controls the steepness of the min-max transition
region of anisotropic diffusion and k controls the extent of
the diffusion region in terms of gradient gray level.

Note that all of anisotropic diffusion filters that we have
investigated thus far utilize a scalar-valued diffusion co-
efficient ¢ that is adapted to the underlying image struc-
ture, Weickert>»2%33 defined this “pseudoanisotropy” as
“isotropic nonlinear,” and pointed out that the consequence
of isotropic nonlinear diffusion is that only the magnitude,
not the direction of the diffusion flux, can be controlled at
each image location. The noise close to edge features re-
mains unfiltered due to the small flux in the vicinity of edges.
To enable smoothing parallel to edges, Weickert proposed
edge-enhancing diffusion by constructing the diffusion ten-
sor based on an orientation estimate obtained from observing
the image at a larger scale®

al(x,y,t)
ot
where D is a 2x2 diffusion tensor and is specially designed
from the spectral elements of the structure tensor in order to
anisotropically smooth the image, while taking into account

its intrinsic local geometry, preserving its global discontinu-
ities.

= div{D[VI,(x,y,t)] - VI(x, y, 1)}, (10)
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Fig. 4 Regional enlarged portion of the original and noisy image of Lena: (a) Standard image and (b) noisy image of Lena with a noise variance

of 225.

On the other hand, we review the developments of
anisotropic diffusion from another direction. Instead of
restricting the “minimum-maximum” principle, obeyed by
most anisotropic diffusion processes, Gilboa et al.>’ proposed
a diffusion coefficient that administrates the Gilboa—Sochen—
Zeevi (GSZ) FAB diffusion process, where a negative diffu-
sion coefficient is incorporated into image-sharpening and
enhancement processes to deblur and enhance the extremes

of the initial signal

1

L+ VI (x,y, 0) 1/ kel
o
LIV G,y 0 | — kel /wpn

c[VI(x,y,t)] =

Y

(a)

(b)

Fig. 5 Regional enlarged portion of the original and noisy image of Boat: (a) Standard image and (b) noisy image of Boat with a noise variance

of 225.
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where k; is similar to the role of the k parameter in the P-M
diffusion equation; k, and w define the range of backward
diffusion and are determined by the value of the gradient
that is emphasized; « controls the ratio between the FAB
diffusion; and the exponent parameters (n, m) are chosen as
(n =4, m = 1). Equation (11) is locally adjusted according
to image features, such as edges, textures, and moments.

The Gilboa’s FAB diffusion process can therefore enhance
features while locally denoising the smoother segments of
images.

However, the transition length between the maximum and
minimum coefficient values varies with the gradient thresh-
old, which makes controlling diffusion difficult.** Thus, we
propose the LVCFB diffusion coefficient as follows:*

c[VI(x,y, )] = 5

where 8, and B, control the steepness for the min-max tran-
sition region of forward diffusion and backward diffusion,
respectively. These two parameters are vital to the FAB dif-
fusion behavior and the transition width from isotropic to
oriented flux can be altered by modulating them. In addi-
tion, our diffusion process can preserve the transition length
from isotropic to oriented flux, and thus, it is better at con-
trolling the diffusion behavior than that of the Gilboa’s FAB
diffusion.

3 RAAD Algorithm

In this section, we propose a RAAD algorithm. We first
demonstrate a region-based segmentation, and then present
the RAAD algorithm and an adaptive estimation of the gra-
dient threshold in the corresponding diffusion coefficient.
Finally, we implement anisotropic diffusion discrete scheme
taking into account edge orientations.

3.1 Region-Based Adaptive Segmentation

It is well documented that discontinuities in an image are
likely to correspond to important features. However, noise
corruption can generate discontinuities as well.** Therefore,
how to measure discontinuities is very significant. As a com-
mon local measure in image processing, spatial gradient is
used to detect variable local discontinuities and is sensitive to
any local intensity change. Nevertheless, it is difficult for this
measure to distinguish significant discontinuities from noise.
One possibility how to describe the local image information
is to employ the structure tensor.

Harris and Stephens*’ describes the Plessey feature point
detector and points out that the variation of the autocorrela-
tion over different orientations can be found by calculating
functions related to the principle curvatures of the local au-
tocorrection. However, location accuracy in noisy images is
poor. Furthermore, the region-classification strategy of the
Harris detector is mainly used for detecting corner points in-
stead of improving the performance of anisotropic diffusion.
Finally, the region-classification results are often accompa-
nied by small-size segments and isolated points. In this paper,
the eigenvalue difference of the structure tensor is served as
a measure of the region’s complexity. The complexity mea-
sure is not only easy to calculate but can also be theoretically
justified. In addition, instead of the structure matrix, we use
a multiscale structure tensor, which is obtained by a com-
ponentwise Gaussian convolution of the structure matrix, to
reduce the noise effect on the eigenvalues. Lastly, a majority
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filter is performed to eliminate the undesirable segments. For
the sake of clarity, the region-based adaptive segmentation is
briefly described.

In order to identify gradients with the same orientation
but of opposite directions, the gradient can be reconsidered
in a matrix framework. A structure matrix Sy can be formed
by a tensor product of the gradient vectors,

0= (S“ s“) =VI,®VIl, =VI,VI. (13)
8§21 8§22

The matrix Sy processes an orthonormal basis of eigenvectors
Vi, Vo withv{| V1, and v, L VI, (see Fig. 1). The information
contained in the matrix Sy is already sufficient to control a
combined diffusion (of different amounts) in the directions
parallel and perpendicular to the gradient, so as to remove
the small-scale noise both in homogeneous regions and at the
edges without blurring the discontinuities in image intensity.
However, the local information cannot provide enough clues
if we were after coherence enhancement (e.g., the restoration
of interrupted linelike structures as in Ref. 46). Also, noise
always affects the eigenvalues. In such cases, information
from some neighborhood has to be assembled. This can be
attained by a componentwise convolution of the matrix Sy
with a Gaussian G,, where the integration scale p(p > 0)
should reflect the characteristic window size over which the
orientation is to be analyzed. Thus, a 2-D structure tensor is
introduced by

Sy (VI;)=G,+(VI, ®VI;). (14)

Weickert” named the matrix S, structure tensor. The matrix
is symmetric, positive semidefinite, possesses orthonormal
eigenvectors V1, v, with

- T oL
Vill[2s12, 511 — 522 + \/(Su —sn)l +4sh,] . Ly (15)

and the corresponding eigenvalues A, A_ are defined as
follows:

1
Ay = E[Su +sn =+ \/(Sn — s;m)? + 457, . (16)

The eigenvalues describe the average, integrated contrast
in the eigendirections; because Ay > A_ > 0, V; is the ori-
entation of the highest gray-value fluctuations, whereas v,
gives the prevailing local orientation, or coherence direction.
Furthermore, the eigenvalues can be used to analyze the local
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(a) (b)

Fig. 6 Enhanced images for Lena image: (a) Enhanced Lena
with CAD, (b) WAD, (c) RAD, (d) MAD (y =0.1), () EED, and
(f) RAAD (0 =0.5, p =1, Ssmooth = 0. ddetail = 0.2, Sedge = 0.3)
(10 iterations).

structure: Ay = A_ = 0 in constant areas, straight edges lead
to Ay > A_ = 0, corners can be identifiedby A, > A_ > 0,
and thus, the expression |A; — A_| may serve as a measure
of the local variance of the pixel. These properties can be
exploited to control the amount of diffusion in the specific
direction.
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For region segmentation using eigenvalues of the structure
tensor, we propose the following strategy:

I(x,y)

homogeneous region if |Ay — A_| < Tymooth
if Ay —Ao| = Tege  (17)
otherwise,

€ { edge region
detail region

where I(x, y) denotes the region type of pixel (x, y). For
robust region segmentation, the proper modulation of the
threshold values Timooth and Teqge is required. Note from the
above discussion that [A; — A_]| is closely related to the local
variance of the pixel, we can set the threshold values as>?

2 A2

Tsmooth = tsmooth + (o (18)
2

Tedge = ﬂaedgea

where anz denotes the estimated noise variance of I and #ymooth
is a tolerant parameter of intensity variation in a smooth re-
gion. Meanwhile, the optimal value of the edge variance crezdge
is always around the mean of local variances of the pixels
having a local variance larger than Tsyoom. B 1S @ constant
controlling the ratio between detail and edge regions.

The region-classification map generated using Eq. (17)
may result in undesired small-size segments due to the pix-
elwise segmentation and noise. One way to eliminate these
segments is using a particular type of spatial filter called a
majority filter. In this case, as the kernel passes over the im-
age, the central pixel is set to the majority value within the
kernel. This means that if there is a dark pixel surrounded by
mostly white pixels, the output pixel will be set to white. This
tends to remove small regions surrounded by much larger ar-
eas of a fixed value. As a demonstration, the region maps
for Lena image and its noisy version (0> = 100) are illus-
trated in Figs. 2(b), 2(c), 2(e), and 2(f), respectively. In the
region map, black regions are homogeneous, gray regions
represent detail regions, and white regions manifest the in-
homogeneities that indicate most of the important features
(e.g., the girl’s eyes and the hat decoration). It is evident that
the region map in Fig. 2 readily indicates locations of highly
homogeneous, detail, and edge regions.

3.2 RAAD

In this section, we present a RAAD algorithm based on FAB
diffusion. In Egs. (11) and (12), « is the weight for balancing
the forward and backward diffusion. However, it is fixed as
a constant for all pixels in the image, which is not sufficient
for edge-enhancing smoothing in noise circumstance. We be-
lieve that this parameter should be modulated with respect
to different regions: a very small value for homogeneous re-
gions to guarantee the dominance of the forward diffusion,
and a relative large value for edge and detail regions to en-
hance edge features and fine detail. Thus, we present a novel
region-based diffusion coefficient, as follows:

1
VIHIIVI(x, y, 0]/ k]2

B o(x,y)
L+ IV, y, D1/ ke l?

c[VI(x,y,t)] =

19
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with

Ssmooth I (x, y) € homogeneous regions
o (x,y) = {8cqee I(x,y) € edgeregions (20)
Sdeait 1 (x,y) € detail regions,

where Ssmooth, Jedge> and Sgerail are the variable region-based
weights and selected within the bound: Sgmooth > Jedge >
Ssmooth > 0. k¢ and ky, are the gradient thresholds of the pro-
posed diffusion coefficient, and we will return to modulating
them later on.

In an anisotropic diffusion network, the decision of the
gradient threshold that classifies an image into homogenous
and edge regions is very important. If the user wants to ob-
tain a coarse-scale image with only the key edges, a large k
should be specified, while if a fine-scale image with all the
detailed edges is required, a small k should be chosen. To
appropriately separate edges from noise, the optimal value
of k should be around the mean of local intensity differ-
ences in homogeneous regions. However, it is still neces-
sary to discover whether a pixel is in an edge feature re-
gion or a homogeneous region in all the above strategies for
estimating k.

Indeed, because the noise is assumed to be randomly dis-
tributed in the image space, a practical way of estimating its
variance is to consider homogeneous regions, where small
variations or texture are mainly due to noise. Thus, in order
to estimate the gradient threshold, we use the mean of local
intensity differences on the homogeneity map. However, in
contrast to previous work, only homogeneous regions gen-
erated by the region-based adaptive segmentation mentioned
in Section 3.1 are taken into account in this estimation. This
analysis is performed at each iteration, and a new threshold
k value is automatically determined. As time advances, only
smoother and smoother regions are being filtered. Therefore,
the gradient threshold can adaptively decrease with ¢. For
the proposed algorithm, our simulations on various images,
including those not reported here, uncover that the optimal
values of two gradient thresholds in Eq. (19) are modulated
by |_kf, ka = [], 2] * k.

3.3 Edge-Orientation—Driven Discretization Scheme

The filter behavior has to adapt to the regions of the im-
age where it is applied. Three different kinds of regions are
considered in this paper. The first are homogeneous regions,
where the filter action should be a maximum; because no
details are present, each intensity variation or texture can
be regarded as noise. The second are detail regions, where
the filter action should be very slight to preserve the fine
details. The edge features zones should also be taken into
account, where the filter action should be a slighter even in-
verse diffusion to enhance edges. Although all three regions
are considered in Perona and Malik’s anisotropic diffusion
scheme (3), not enough care is taken for edges. Actually, no
attention is given to the edge directions, as a result they are al-
ways considered to be displaced vertically or horizontally.>®
Moreover, one cannot recognize whether a slight intensity
variation is mainly due to a slow varying edge or to noise;
thus, it is unreasonable that both situations are treated in
the same way. In this paper, our work focuses on the com-
putation of the diffusion coefficients by taking into account
the gradient intensities across edges when the pixel I(x, y)
resides in edge regions. Specifically, filter action should be
stronger in the direction along the edge, and weaker in the
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perpendicular direction. Meanwhile, new terms can be in-
serted in the discretization of the diffusion equation for han-
dling edge directions. In order to accomplish the assumptions
mentioned above, we propose the following anisotropic dif-
fusion equation:

Ix,y,t+1) =1(x,y,1)
+A[Wy(@) - (en - NI +cs - VsI)
+ Wu(@)(ck - VEI + cw - VwI)]
+ A[Wp,(0) - (enE - VNEL + csw - Vswl)
+ Wp,(@)(enw - Vwl + ¢sk - Vsel)],
(21

where N, S, E, W, NE, SW, NW, and SE are the mnemonic
subscripts for eight directions (i.e., North, South, East, West,
Northeast, Southwest, Northwest, and Southeast). The sym-
bol V stands for nearest-neighbor differences. A is the time
step: 0 < A < 1/8 for the numerical scheme to be stable. 6
is the edge direction at pixel (x, y), Wy (8), Wu(9), Wp,(6),
and Wp, (0) are weights for different edge directions.

In order to find the edge direction at pixel (x, y), the four
neighborhoods are not sufficient; thus, a larger region is nec-
essary to estimate what its orientation is. The problem of
estimating the main orientation of a pixel pattern can be con-
sidered as the problem to find the direction, in each point of
the considered neighborhood, the maximum numbers of ori-
entations of the variation of the gradient magnitude. In this
paper, the image is subdivided into nonoverlapping blocks
of the same size, typically between 8 x 8 and 32 x 32 pix-
els. The gradient-based edge-orientation histogram is then
calculated in each block. If we let N be the total number of
observations and n be the total number of bins, the histogram
H; meets the following conditions:

N =Y H(x,y). (22)
i=1

In the histogram, 360 deg is grouped in 20 groups, each of
which is 18 deg, and we obtain n = 20. Thus, the main
orientation in each block is defined as follows:

0 =9+ % = arctan (index%) + % (23)

and

index = argmax {i|H;(x,y)} (G =1,2,...,20), 24)

where ¢+ is the main gradient direction by calculating the
histogram of the gradient direction for each pixel (x, y) in
the block and arctan is the inverse tangent function. We as-
sume that, if an intensity variation between two zones is
present, then the edge has to be located along the perpen-
dicular direction. The calculation of orientation histogram
can be performed in real time. Furthermore, the compar-
ison of orientation histograms can be performed using a
Euclidian distance that is very fast to compute for vectors
whose dimensions are 20.

After the estimation of the edge direction has been per-
formed, the functions W,(8), Wu(6), Wp,(6), and Wp,(6)
must be defined. These functions can be arbitrarily chosen.
The only constraint to be satisfied with the aim of maintaining
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()

Fig. 7 Enhanced images for Boat image: (a) Enhanced Boat with CAD, (b) WAD, (c) RAD, (d) MAD (y = 0.1), (e) EED, and (f) RAAD (¢ = 0.5,
p =1, 8smooth = 0.1, 8detail = 0.2, Sedge = 0.3) (10 iterations).
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Fig. 8 Gradient threshold evolution curves for the images of Peppers, Lena, Cameraman, and Boat with respect to noise variance 400.

the numerical stability of the process is

Wy (©) - (en + ¢s) + WH(O) - (cg - +cw) + Wp, (0)

1
-(enE + csw) + Wp,(0) - (enw + ¢csg) < %

In order to illustrate our presentation, we divide the x —y
coordinate plane into eight quadrants by the four axes. These
quadrants are identified by the Arabian numerals 0-3 in

(25) Fig. 3, where we define five domains as follows:

Q —-n8<60<nf8 or Tn/8<O<m or —m<0<-Tn/8

Q n8<0<3nrf8 or —Trn/8<60<-57/8

= Q 3n/8<60<57/8 or —57/8<60<-3m/8 (26)
Q3 S5n/8<60<Tn/8 or —-3n/8<6<-—m/8.

Taking into account the previous equation and the funda- 0 e or 0es

mental trigonometric relation, the most suitable choice in Wy @) = {cos?0 0 e 27

this paper for Wy (9), Wu(6), Wp,(8), and Wp,(0) is sin20 0eQ
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(b)

Fig. 9 Enhanced images for Lena image: (a) Enhanced Lena with GSZ FAB diffusion, (b) LVCFAB diffusion, and (c) RAAD (o = 0.5, p =1,
8smooth = 0, Sdetail = 0.2, Sedge = 0.3) (10 iterations).

to the following:
Wa 0) = {(1) W@ omerwise, (28) :
v ’ I, y, t+1)=1I(x,y,1)
Mcos® @ - (en - VNI +cs - Vs
cos2(0 — /4 6 e +_[2 (en: Wl es Vs D)
Wp, (0) = {sin®(0 + 7 /4) 6 € Qs (29) + sin” 0(cg - VeI + cw - VwI)]. (31
0 otherwise, In this case, it is easy to infer that the edge orientation should
approximate to the vertical direction according to the fact that
0 0 e, the edge direction is always perpendicular to the gradient
Wp, (6) = {1 — Wp (6) otherwise (30) direction. During the diffusion process, a relatively large-
P ’ weight cos? 6 is assigned in the vertical direction to guarantee
It is obvious that we can demonstrate the different forms that the diffusion should mainly occur in the direction parallel
of the discretization equation by taking into account oriented to the edge, while a relatively small-weight sin? 6 is assigned
patterns. For instance, if @ € €, then substituting these func- in the horizontal direction to ultimately avoid diffusion across
tions in the modified anisotropic diffusion equation (18) leads the edge.

(b)

Fig. 10 Enhanced images for boat image: (a) Enhanced boat with GSZ FAB diffusion, (b) LVCFAB diffusion, and (c) RAAD (o = 0.5, p =1,
8smooth = 0.1, Sdetail = 0.2, Sedge = 0.3) (10 iterations).
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3.4 RAAD Algorithm

In this section, we summarize the ideas of the region-
based adaptive segmentation and edge orientation-driven
discretization scheme into a complete and adaptive image
restoration and enhancement algorithm. To achieve this goal,
we propose to filter the data by the following RAAD scheme.

Algorithm 1. Region-Based Adaptive Anisotropic Diffu-
sion

1. Initialize the image data .1 (x, y, 0) denotes the orig-
inal intensity of pixel (x, y).

2. Initialize the diffusion parameters. Set parameters of
the noise scale o, the integration scale p, the maxi-
mum number of iterations 7, the region-based weights
Ssmooth, Sedgea and 8detail~

3. Examine the eigenvalue difference of each pixel and
determine its region type.

4. Iterate the diffusion filtering until = T.

a. The gradient thresholds k¢ and ky, are estimated by
the region map generated in step 3.

b. For each pixel (x, y), the diffusion coefficient
c[VI(x,y, t)] is computed by Eq. (19). In ho-
mogeneous and detail regions, the traditional four
nearest-neighbor diffusion discretization equation
is perform to update I (x, y, f); while in edge
regions, the eight nearest-neighbor diffusion dis-
cretization equation Eq. (21) is performed to up-
date I (x, y, f). Our FAB diffusion algorithm is a
discretization on a 3 x 3 lattice.

The step 3 of Algorithm 1 consists of following steps
(assuming the current data in /; see Section 3.1 for details on
the procedure).

Algorithm 2. Region Segmentation

1. Calculate the structure tensor S,
a. Obtain the regularized image s = I,,.
b. Compute the gradient of the smoothed image,
Vs = (dy, dy)" (using finite differences).
c. Form the zero-order structure tensor,

d> d, -d,
som (5 )

d. If the integration scale p is nonzero, calculate a
componentwise convolution S,(VI;) = G, * So.

2. Region segmentation

a. Get eigenvalues Ay, A_ of the matrix S,.

b. Determine the region type of each pixel by com-
paring its eigenvalue difference |A; — A_| with the
region-based weighted parameters Ssmooth, Oedges
and gegail-

4 Experiments

In this section, we first describe the methodology used in our
simulations and then show comparative filtering results for a
variety of blurred and noisy images. Finally, we demonstrate
that as a useful tool for early vision, the proposed algo-
rithm effectively enhances fine edge structures from medical
images.

Chen classified the existing performance evaluation
methods into three categories, i.e., subjective, objective,
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and application-based methodologies.’” By the subjective
methodology, a noisy image and its enhanced images are vi-
sually compared. Thus, the evaluation on the performance of
an algorithm is dependent on human’s common sense gained
from a very sophisticated visual perception experience. By
the objective methodology, an evaluation is performed by
comparing the enhanced image and its original uncorrupted
version to see how much noise has been removed from a
noisy image. By the application-based methodology, images
in a certain application field are used for tests and the enhanc-
ing results are assessed by a specialist who has expertise in
the field or a comparison to an anticipated result set up prior
to the test.

For demonstrating the effectiveness of the proposed
algorithm in noise reduction and edge preservation, the
RAAD is first compared to five counterparts of Catte’s
anisotropic diffusion by (CAD),'® robust anisotropic dif-
fusion (RAD),?® Monteil’s anisotropic diffusion (MAD),??
Weickert’s anisotropic ~diffusion (WAD)*> and edge-
enhancing diffusion (EED),” in detail from visual quality
and quantitative analyses of the denoised images. The crit-
ical value k should be chosen according to the noise level
and edge strength. In our experiments, we set k in differ-
ent diffusion schemes by referring to the original papers.
The ultimate goal of image enhancement is to facilitate the
subsequent processing for early vision. To demonstrate the
usefulness of our algorithm in an early vision task, we ap-
ply our algorithm to performing edge-enhancing filtering on
medical images for an application-based evaluation.

In order to objectively evaluate the performance of the
different diffusion algorithms, we adopt two noise-reduction
measures: peak SNR (PSNR) and universal image quality
index (UIQI). The measure of PSNR has been widely used
in evaluating performance of a smoothing algorithm in the
objective methodology. For a given noisy image I, I(i, j, T)
denotes the intensity of pixel (x, y) € [ atiteration 7 when an
anisotropic diffusion algorithm is applied to the noisy image.
(i, j, 0) is its uncorrupted ground truth. As a result, the PSNR
is defined as follows:

32552
i,J

iJ

PSNR = 10 log,, dB. (32)

Recently, the measure of UIQI has been used to better eval-
uate image quality due to its strong ability in measuring
structural distortion occurred during the image-degradation
processes,’®

1 J
0=-> 0 (33)
M=1
where M is the total step number and Q; denotes the local
quality index computed within the moving window. In this
paper, a sliding window of size 8 x 8 is applied to estimate
an entire image.

4.1 General Images

The performance of the proposed algorithm is evaluated
using four 512x512 standard images with 256 gray-scale
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(2 ()

(@ 0

Fig. 11 Enhanced images for the 3-D data volume of a T1-weighted MR simulated image: (a) Original MR image (slice 80), (b) corrupted MR
image, (c) enhanced MR image with CAD, (d) WAD, (e) RAD, (f) MAD (y = 0.1), (g) EED, (h) GFAB, (i) LVCFAB, and (j) RAAD (o = 0.5, p =1,

8smooth = 0.2, 8detail = 0.6, dedge = 1.2) (10 iterations).

values. The image of Peppers is employed as an example
of the piecewise-constant image. Lena and Cameraman are
two examples with both textures and smooth regions. Boat is
an example with different edge features. The additive Gaus-
sian white noise with different noise levels is added to these
images for performance evaluation. The PSNR and UIQI
values of the four noisy images with respect to different
noise variance are listed in Table 1. Two standard images and
their noisy versions with noise variance 225 are displayed in
Figs. 4 and 5, respectively. For clarity, only the regional en-
larged portion is displayed for each image.

For comparing the visual quality of the denoised
images for the six algorithms, their resultant images
with respect to noise variance 225 are depicted in
Figs. 6 and 7, respectively. The results yielded by CAD and
WAD are depicted in Figs. 6(a) and 6(b) and Figs. 7(a) and
7(b), respectively. It should be mentioned that the CAD and
WAD result in the loss of important information from the
original image, though the noise is entirely removed. For
RAD, a lot of noise still survives in the denoised images. In
Figs. 6(d) and 7(d), very large oscillations of gradient intro-

Optical Engineering

117007-13

duced by noise cannot be fully attenuated by MAD. A better
edge-preserving filtering is yielded by the EED process, and
the corresponding results are shown in Figs. 6(e) and 7(e).
Finally, the images produced by our algorithm are repre-
sented in Figs. 6(f) and 7(f). The noise is readily removed,
and this is due to forward diffusion. Meanwhile, edge fea-
tures, including most of the fine details, are sharply repro-
duced with the RAAD algorithm. By comparing the resultant
images of RAAD to the other five classical algorithms, we
note that the RAAD algorithm achieves better visual quality.
The list of PSNR and UIQI values that are reported by the
different algorithms, which were performed on four noisy
versions of test images at different noise levels used in our
experiments, are found in Table 2. Remarkably, the statistical
results shown in Table 2 definitely indicate that the proposed
RAAD algorithm achieves the best denoising performance
among the six diffusion algorithms.

In order to appraise the effectiveness of the adaptive gradi-
ent threshold, the gradient threshold k¢ curves for four noisy
images (0> = 400) are graphically depicted in Fig. 8. It can
be seen that both of the curves representing the evolution
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Fig. 12 Enhanced images for the 3-D data volume of a T2-weighted MR simulated image: (a) Original MR image (slice 80), (b) corrupted MR
image, (c) enhanced MR image with CAD, (d) WAD, (e) RAD, (f) MAD (y = 0.1), (g) EED, (h) GFAB, (i) LVCFAB, and (j) RAAD (o = 0.5, p =1,

8smooth = 0.2, detail = 0.6, dedge = 1.2) (10 iterations).

of this parameter share the same decreasing behavior as
found in existing work, allowing lower and lower gradients
to take part in the diffusing process. Moreover, after more
than 20 iterations, k¢ decreases slower and slower and the
scheme converges to a steady state where for t — oo, we
get ¢(|VI]) — 0, which means that almost no diffusion is
performed. The choice of an optimum threshold value has
been addressed by several authors;'7-2%4%49 however, they
do not explain how to determine the homogenous regions
during the process. Here, an appropriate solution for auto-
matically adapting the gradient threshold at each iteration is
presented.

Second, the proposed RAAD algorithm is compared to
two existing FAB diffusion algorithms: GSZ FAB diffusion’’
and LVCFAB diffusion*® from visual quality and the PSNR
and UIQI values. We present in Figs. 9 and 10 the resul-
tant images of Lena and Boat to show the effects of the
three FAB diffusion algorithms in this study. It is observed
that the GSZ FAB diffusion and LVCFAB diffusion are
sensitive to noise and result in developing singularities in
homogeneous regions. However, the RAAD algorithm can
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reconcile the balance between sharpening and denoising, and
exhibits the best edge-enhancing diffusion behavior. Also,
from Table 3, it is evident that the RAAD algorithm is much
more efficient than the GSZ FAB diffusion and LVCFAB
diffusion for the four images. Because the FAB diffusion is
intended for applications where the noise variance is not too
large, the statistical results of three algorithms with respect
to noise variance 100, 225, and 400 are shown in Table 3.
Thus, we can say that the RAAD outperforms the existing
FAB diffusion enhancement techniques.

4.2 Medical Images

In medical images, low SNR and CNR often degrade the in-
formation and affect several image-processing tasks, such as
segmentation, classification, and registration. Therefore, it is
of considerable interest to improve SNR and CNR to reduce
the deterioration of image information. In this section, the
proposed algorithm was implemented and tested on two 3-D
magnetic resonance (MR) images,> %’ both of which have
been simulated using two sequences (T1 and T2 weighted)
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Fig. 13 The PSNR and SSIM measures for the different diffusion algorithms at each slice of the T1- and T2-weighted MR images.

with 1 mm of slice thickness, 9% noise level, and 20% of brain, which can serve as the ground truth for any analysis
intensity nonuniformity (downloaded from Brainweb®!) us- procedure.

ing default acquisition parameters for each modality. These Figures 11 and 12 show a region of interest (ROI) from
simulations are based on an anatomical model of normal Figs. 11(a) and 12(a), and the diffusive filtered results of

Table 1 PSNR and UIQI of the noisy standard testing images of Peppers, Lena, Cameraman, and Boat with respect to different noise variances.

Noise Variance (02)

Image 100 225 400 625 900

PSNR(dB) UlQl  PSNR(dB) UlQl  PSNR(dB) UlQl  PSNR(dB) UlQl  PSNR(dB)  UlQl

Peppers 28.16 0.5411 24.71 0.4087 22.22 0.3232 20.31 0.2646 18.82 0.2237
Lena 28.14 0.5024 24.60 0.3891 22.15 0.3137 20.22 0.2617 18.70 0.2221
Cameraman 28.27 0.3806 24.86 0.3066 22.45 0.2585 20.56 0.2227 19.03 0.1945
Boat 28.13 0.6322 24.63 0.5031 22.17 0.4132 20.27 0.3467 18.73 0.2960
Optical Engineering 117007-15 November 2010/Vol. 49(11)
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Table 2 PSNR and UIQI of the six diffusion algorithms for the noisy standard testing Images of Peppers, Lena, Cameraman, and Boat with

respect to different noise variances.

Noise Variance (o)

Scheme Image 900
PSNR(B) UlQl PSNR(dB) UlQl PSNR(dB) UlQl PSNR(dB) UlQl PSNR(dB) UlQl
CAD Peppers 32.93 0.5917 31.90 0.5681 30.81 0.5367 29.81 0.504 28.93 0.4737
Lena 33.48 0.6518 31.16 0.6118 31.08 0.5733 30.06 0.5339 29.12 0.4961
Cameraman 34.55 0.5819 32.89 0.5138 31.43 0.4588 30.06 0.4156 28.81 0.3806
Boat 30.87 0.6252 30.03 0.6048 29.18 0.5816 28.31 0.5507 27.55 0.5252
WAD Peppers 32.57 0.5771 31.60 0.5553 30.61 0.5287 29.67 0.5001 28.87 0.4719
Lena 32.98 0.6345 31.84 0.6036 30.80 0.5667 29.87 0.5309 29.00 0.4959
Cameraman 33.96 0.5619 32.51 0.4984 31.13 0.4487 29.84 0.4072 28.67 0.3722
Boat 30.55 0.6022 29.73 0.5814 28.88 0.5579 28.09 0.5318 25.37 0.5078
RAD Peppers 31.44 0.6165 28.27 0.4995 25.82 0.4118 23.95 0.3496 22.50 0.3042
Lena 31.91 0.6174 28.36 0.4931 25.88 0.4095 23.98 0.3525 22.46 0.3085
Cameraman 32.60 0.4944 28.81 0.3868 26.21 0.3278 24.23 0.2854 22.61 0.2538
Boat 31.46 0.7036 28.33 0.6037 25.87 0.5164 23.98 0.446 22.42 0.3927
MAD Peppers 32.66 0.6025 30.84 0.5538 28.97 0.493 27.28 0.4373 25.95 0.3919
Lena 33.32 0.6583 31.19 0.5886 29.19 0.5137 27.54 0.4552 26.09 0.4046
Cameraman 34.15 0.5809 31.63 0.4773 29.24 0.399 27.33 0.3453 25.77 0.3071
Boat 31.25 0.6475 29.74 0.6103 28.14 0.5599 26.63 0.505 25.34 0.4578
EED Peppers 33.04 0.613 31.62 0.5754 30.15 0.5274 28.88 0.4832 27.76 0.4447
Lena 33.85 0.6702 32.11 0.6128 30.60 0.5608 29.23 0.5104 28.01 0.4656
Cameraman 34.77 0.5952 32.72 0.5088 30.87 0.4508 29.28 0.4045 27.90 0.369
Boat 31.28 0.6655 30.26 0.6348 29.14 0.6018 28.08 0.5613 27.07 0.5282
RAAD Peppers 33.29 0.6325 32.06 0.5764 30.94 0.5395 29.96 0.5064 29.10 0.4772
Lena 34.33 0.6810 32.53 0.6232 31.24 0.5749 30.19 0.5353 29.28 0.4991
Cameraman 34.97 0.5994 33.41 0.5199 31.77 0.4622 30.36 0.4195 29.03 0.3859
Boat 32.09 0.6886 30.65 0.6409 29.39 0.6014 28.39 0.5624 27.59 0.5314

this ROI using the eight diffusion algorithms. As expected,
the eight algorithms remove noise present in Figs. 11(b)
and 12(b), and simultaneously smooth the homogeneous re-
gions, such as white matter. However, for RAD, GSZ FAB,
and LVCFAB, noise is still remaining in the resulting im-
ages. Some structure details are not visible in the images
denoised by the CAD, WAD, and MAD algorithm, though
they can greatly attenuate the effect of noise. According to
the visual analyses of the image quality, the results given by
the EED diffusion and our algorithm are comparable be-
cause the two processes perform EED. Nevertheless, the
RAAD algorithm achieves greater contrast and produces
more reliable edges, which is especially useful for segmenta-
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tion and classification purposes necessary in medical image
applications.

In order to objectively evaluate the performances of the
different diffusion algorithms on medical images, we adopt
the PSNR and structural similarity (SSIM).®> SSIM is a qual-
ity metric that measures the presence of the image structure
details in the denoised images and the value of 1 is only
achieved if the compared images are identical. The low-
est value is zero if the images show no similarity at all.
Because both the MR simulated images are 3-D data vol-
ume, we compare the PSNR and SSIM values for each slice
for objective evaluation. As shown in Fig. 13, the PSNR
values of the restored images achieved by our algorithm
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Table 3 PSNR and UIQI of the three FAB diffusion algorithms for the noisy standard testing images of Peppers, Lena, Cameraman and Boat

with respect to different noise variances.

Noise Variance (02)

Scheme Image 100 225 400
PSNR (dB) uial PSNR (dB) vlal PSNR (dB) uiQl
GSZ FAB Peppers 31.93 0.592 29.65 0.5237 28.14 0.4682
Lena 32.49 0.6294 29.86 0.5391 28.29 0.4833
Cameraman 33.38 0.539 30.44 0.4333 28.56 0.3789
Boat 30.92 0.6436 29.02 0.5963 27.71 0.5516
LVCFAB Peppers 31.30 0.5883 27.98 0.4819 26.55 0.4236
Lena 31.90 0.6309 28.21 0.4955 26.67 0.4337
Cameraman 32.77 0.5441 28.68 0.3967 26.89 0.3413
Boat 30.46 0.6487 27.64 0.5665 26.28 0.5122
RAAD Peppers 33.29 0.6325 32.06 0.5764 30.94 0.5395
Lena 34.33 0.6819 32.53 0.6232 31.24 0.5749
Cameraman 35.58 0.5994 33.41 0.5199 31.77 0.4622
Boat 32.40 0.7039 30.65 0.6488 29.39 0.6014

are comparable or higher than the other diffusion algo-
rithms and the SSIM values of our algorithm are signifi-
cantly higher because the RAAD scheme enhances bound-
ary sharpness and fine structures better than other diffusion
methods.

4.3 Performance in Terms of Speed and Memory
Requirements

In this section, we perform comparative analysis to evaluate
the various diffusion algorithms in terms of speed and mem-
ory requirements. It is necessary to declare that our code is
not optimal in the sense that we made it as an intermedi-
ate step to a final code in C++. In addition, the LVCFAB
scheme contains an exhausted search procedure and its speed
is much slower than the other algorithms; thus, we do not re-
port its speed and memory requirements. All the tests above
were performed with a MATLAB program on MS Windows 7
running on a HP Z600 Workstation Mini Tower (Intel Xeon
Quad-core 2.00 GHz, 4-GB RAM).

factors, including the complexity of the problem, the num-
ber of pixels in a image, the discrete scheme for solving the
diffusion equation, and the stopping time. Anisotropic diffu-
sion in general is usually regarded as computationally heavy,
due to the complexity of the formulations involved. How-
ever, we should be aware of the extremely fast growth rate
of hardware power. Actually, a heavy computational burden
can be solved in a couple of seconds by a personal computer.
This is true for the proposed method. It can be seen from
Tables 4 and 5 that the speed of our algorithm is slower than
that of the other algorithms, except the EED scheme, because
our algorithm contains the time-consuming procedures of re-
gion segmentation and edge orientation estimation. However,
1 s for a complete iteration on general images and 14 s for

Table 4 Memory requirements and speed of the seven diffusion
algorithms for general images (10 iterations).

From Table 4, we can observe that all the diffusion al- Algorithm Memory Used (Kb) Time Used (s)
gorithms occupy between 45 aqd 66 MB of memory space CAD 47,452 45
for general images (512 x 512 pixels). Apparently, our algo-
rithm requires the largest memory space. This is mainly due WAD 46,144 8.2
to the fact that our algorithm needs more intermediate vari-
ables for estimating edge orientations and discretizing the RAD 46,004 73
diffusion quation. Meanwhile, for MR images (160 slices, MAD 45.992 6.0
612 x 612 pixels), the memory space consumed by our al-
gorithm is comparable to that of the other algorithms (see EED 64,424 4.3
Table 5) because the size of each slice of MR image is rather
small. GSZ FAB 45,880 11.3
'It is very difficult to.know which diffusion algorithm RAAD 66,428 10.9
will be the fastest for a given problem. It depends on many
Optical Engineering 117007-17 November 2010/Vol. 49(11)
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Table 5 Memory requirements and speed of the seven diffusion
algorithms for MR images (10 iterations).

Algorithm Memory Used (Kb) Time Used (s)
CAD 34,772 54.6
WAD 34,664 114.9
RAD 34,832 92.9
MAD 34,596 72.0
EED 34,664 37.2
GSZ FAB 34,472 199.5
RAAD 35,112 142.0

MR images with 160 slices may not be real time, but in-
deed it is not an extreme overhead in exchange of the offered
performance.

5 Conclusion

We have presented a novel RAAD algorithm for image en-
hancement and denoising. In the proposed algorithm, we first
perform region-based adaptive segmentation on an image to
obtain a region map that contains homogeneous, detail, and
edge regions. According to the different types of regions, a
variable weight is incorporated into the anisotropic diffusion
PDE to adaptively encourage strong smoothing in homo-
geneous regions and suitable sharpening in the detail and
edge regions. Then, we estimate the gradient threshold as
the mean of local intensity differences on the homogeneous
regions. Finally, edge-oriented patterns have been taken into
account in the anisotropic diffusion discrete scheme, which
allows our algorithm to smooth homogenous areas, while
it performs edge enhancement better. Experimental results
from our simulations show an improvement in visual effect
and quantitative analyses over the state-of-the-art anisotropic
diffusion schemes and demonstrate its potential for medical
image applications. In the future, efforts will be concentrated
on applying the algorithm to the enhancement of color im-
ages as well as establishing an adaptive stopping criterion
to replace the prefixed numbers of iteration for anisotropic
diffusion.
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