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Abstract. In order to improve signal-to-noise ratio �SNR� and contrast-
to-noise ratio, we introduces a novel tunable forward-and-backward
�TFAB� diffusion approach for image restoration and edge enhancement.
In the TFAB algorithm, an alternative forward-and-backward �FAB� diffu-
sion process is presented, where it is possible to better modulate all
aspects of the diffusion behavior and it shows better algorithm behavior
compared to the existing FAB diffusion approaches. In addition, there is
no necessity to laboriously determine the value of the gradient threshold.
We believe the TFAB diffusion to be an adaptive mechanism for image
restoration and enhancement. Qualitative experiments, based on various
general digital images and a magnetic resonance image, show signifi-
cant improvements when the TFAB diffusion algorithm is used versus the
existing anisotropic diffusion and the previous FAB diffusion algorithms
for enhancing edge features and improving image contrast. Quantitative
analyses, based on peak SNR and the universal image quality index,
confirm the superiority of the proposed algorithm. © 2010 Society of Photo-
Optical Instrumentation Engineers. �DOI: 10.1117/1.3431657�

Subject terms: anisotropic diffusion; forward and backward; tunable; image
enhancement; image restoration.
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Introduction

igital images often suffer from a blurring effect and noise
rom various sources, such as different illumination condi-
ions, image quantization, compression, transmission, etc.
hese sources of image degradation normally arise during

mage acquisition and processing and have a direct bearing
n the visual quality of the image.1 Undoing these imper-
ections to remove the image degradation is crucial for
any image-processing tasks. Of particular interest to this

tudy is the work related to image denoising and sharpen-
ng that aims to improve signal-to-noise ratio �SNR� and
ontrast-to-noise ratio �CNR�.2–7

The scale-space concept was first presented by Iijima8,9

nd Weickert et al.10 and became popular later on by the
orks of Witkin11 and Koenderink.12 The theory of linear

cale-space supports edge detection and localization, while
uppressing noise by tracking features across multiple
cales.11–16 In fact, the linear scale space can be expressed
y a linear heat diffusion equation.12,13 However, this equa-
ion was found to be problematic in that all edge features
re smeared and distorted after a few iterations of linear
iffusion. In order to remedy the difficulties encountered in
he linear scale-space theory, Perona and Malik17 developed

091-3286/2010/$25.00 © 2010 SPIE
ptical Engineering 057004-
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an adaptive smoothing and edge-detectionscheme in which
they replaced the linear heat diffusion equation by a selec-
tive diffusion that preserves edges. This development led
some research to focus on the development of various an-
isotropic diffusion models and diverse numerical schemes
to obtain steady-state solutions.18–39 Among them, one spe-
cific anisotropic diffusion algorithm inspires us, the
forward-and-backward �FAB� diffusion algorithm.32

In Perona and Malik’s scheme,17 the nonlinear diffusion
process should be restricted by the “minimum-maximum”
principle. This principle, to avoid creating any new minima
or maxima, was obeyed by most nonlinear diffusion pro-
cesses and guaranteed stability in partial differential equa-
tions �PDEs� and thus avoided the explosion of the nonlin-
ear diffusion process. Instead of restricting the global
extremes for the initial signal, Gilboa et al.32 pointed out
that inverse diffusion with a negative diffusion coefficient
should be incorporated into image-sharpening and enhance-
ment processes to deblur and enhance the extremes of the
initial signal �if the extremes are indeed singularities and
not generated by noise�. However, linear inverse diffusion
is a highly unstable process and results in noise amplifica-
tion. Thus, nonlinear diffusion methods are further ex-
tended and combined with the FAB diffusion process to
show that sharpening and denoising can be reconciled in
image enhancement. Besides this pioneer work, some inter-
esting work has been published on theoretical foundations
and the application of FAB diffusion to gray and color
images.40–42
May 2010/Vol. 49�5�1
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In our earlier work,39 we proposed a local varianced-
ontrolled forward-and-backward �LVCFAB� diffusion pro-
ess in the context of image restoration and enhancement.
n essence, this diffusion scheme is based on a better be-
aved diffusion coefficient, in which the transition length
etween the maximum and minimum values of diffusion
oefficient does not increase with the gradient threshold.
lthough the scheme turns out to be effective for miscella-
eous images, the location of the transition cannot be ad-
usted, which leads to difficulty in better controlling the
iffusion behavior. Furthermore, it is yet uncovered about
he optimal strategy for estimating the two gradient thresh-
lds in the FAB diffusion scheme.

In this paper, we further develop our previous heuristic
dea from an alternative perspective in order to come up
ith a systematic and tunable FAB diffusion algorithm. Un-

ike our earlier work, we explore an alternative FAB diffu-
ion process based on a suitable sigmoid function, in which

ig. 1 The GSZ FAB diffusion coefficient Eq. �6� and the corre-
ponding flux, plotted as a function of the gradient magnitude �kf
30, kb=80, w=10, �=0.25�.
ptical Engineering 057004-
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both the location of the transition from isotropic to oriented
flux and the transition length can be easily tuned. As a
result, our tunable FAB �TFAB� algorithm is more effective
at controlling the behavior of the diffusion function when
compared to the existing FAB diffusion approaches. In ad-
dition, it is not necessary to determine the value of the
gradient because since there is no such parameter in the
diffusion coefficient. We believe the alternative FAB diffu-
sion algorithm to be a novel mechanism for image restora-
tion and enhancement.

The remainder of this paper is organized as follows:
Section 2 presents the proposed TFAB diffusion algorithm;
Section 3 describes simulations including comparative re-
sults between several existing anisotropic diffusion
schemes and our proposed algorithm; and Section 4 states
our concluding remarks.

(a)

(b)

Fig. 2 The LVCFAB diffusion coefficient Eq. �7� and the correspond-
ing flux, plotted as a function of the gradient magnitude �kf=30, kb
=80, �1=0.2, �2=0.05, �=0.25�.
May 2010/Vol. 49�5�2
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TFAB Diffusion Algorithm

.1 FAB Diffusion

n image restoration, the problem of finding the true image
s modeled as follows:43

0 = Î + n , �1�

here I0 is the noisy output result of this linear model that

s given to us. Î=LI is a blurred version of the original
mage I, L is a linear operator representing the blur, usually

convolution. The additive noise is given by n with the
ssumed known mean and variance �2. This, in general, is
n ill-posed problem. Edge-preserving regularization meth-
ds are proposed to restore the image,43,44 by minimizing
he following energy functional:

(a)

(b)

ig. 3 Diffusion coefficient Eq. �8� and the corresponding flux, plot-
ed as a function of the gradient magnitude ��=5�10−4, �=10, 	
2�.
ptical Engineering 057004-
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E�I� = �
�

�Î − I0�2dx + � · �
�

����I��dx , �2�

where � is the image domain and Î=LI. The first term on
the right-hand side of Eq. �2� is the quadratic data fidelity
term, and the second term represents a prior assumption
about the true image I. Selecting a suitable regularizer � is
paramount in restoring/enhancing the edges and is an open
problem. Nonconvex regularizing functions have also been
used in the past17,43–45 in spite of the absence of existence
results. The equivalence of these methods to the anisotropic
PDE-based models can be seen via the Euler–Lagrange
equation. Starting with the pioneering work of

Fig. 4 Tunable diffusion coefficients with the different parameter �
��=10, 	=2�.

Fig. 5 Tunable diffusion coefficients with the different parameter �
��=5�10−4, 	=2�.
May 2010/Vol. 49�5�3
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Perona–Malik,17 the following class of second-order PDEs
are used extensively used in image restoration and in other
early vision problems:

�I�x,y,t�
�t

= div�c��I�x,y,t�� � I�x,y,t�� , �3�

where � is the gradient operator and div is the divergence
operator. c� · � is a non-negative monotonically decreasing
function of local spatial gradient. If c� · � is constant, then
isotropic diffusion is enacted. In this case, all locations in
the image, including the edges, are equally smoothed. This

(b)

(d)

(g)

al image with 8-bit gray levels; �b� Gaussianly
Gaussian noise with 50; �c� CLMC anisotropic

.05�; �e� GSZ FAB diffusion �kf=0.2�MAG, kb
200, �1=0.2, �2=0.02, 
=0.2, �=0.2�; and �g�
ig. 6 Tunable diffusion coefficients with the different parameter 	
�=5�10−4, �=10�.
(a)

(c)

(e) (f)

Fig. 7 Enhanced images for Parrots image: �a� Origin
blurred Lena image ��=1�, contaminated by zero-mean
diffusion �
=0.05�; �d� MB anisotropic diffusion �
=0
=0.4�MAG, �=0.2�; �f� LVCFAB diffusion �kf=50, kb=
TFAB diffusion ��=0.006, �=3, 	=2� �15 iterations�.
May 2010/Vol. 49�5�4
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s an undesirable effect because the process cannot main-
ain the natural boundaries of objects. One common form of
� · � is

��I�x,y,t�� =
1

1 + �	�I�x,y,t�	/k�1+� , where � � 0, �4�

here the parameter k serves as a gradient threshold: a
maller gradient is diffused and positions of a larger gradi-
nt are treated as edges.

The diffusion coefficient �4� is chosen to be nonincreas-
ng functions of the image gradient. This scheme selec-
ively smoothes regions without large gradients. However,
n the FAB diffusion process, the points of extremes are
mphasized in signal enhancement, image sharpening, and
estoration. The emphasized extremes occur if these points

(a)

(c)

(e)

Fig. 8 A regional enlarged portion of homogen
noisy image, and results corresponding to Fig.
ptical Engineering 057004-
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are indeed represented by singularities and do not emerge
as the result of noise. It was observed by Gilboa et al. that
if we want to emphasize large gradients we should like to
move “mass” from the lower part of a “slope” upwards.32

This process can be viewed as “moving back in time” along
the scale space, or reversing the diffusion process. Math-
ematically, this can be accomplished simply by changing
the sign of the diffusion coefficient

�I�x,y,t�
�t

= div�− c��I�x,y,t�� � I�x,y,t�� . �5�

However, we cannot simply use an inverse anisotropic dif-
fusion process for image enhancement because it is highly
unstable. There is a major problem associated with the
backward diffusion: noise amplification. To remedy this

(b)

(d)

(g)

ones of original noise-free image, blurred and
g�.
(f)

eous z
7�c�–7�
May 2010/Vol. 49�5�5
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rawback of the linear inverse diffusion process, Gilboa et
l.32 proposed that two forces of diffusion working simul-
aneously on the signal are needed. First, a backward force
s used at medium gradients, where singularities are ex-
ected, and the second, a forward force, is implemented for
uppressing oscillations and reducing noise. The forward
nd backward forces are combined into one coupled FAB
iffusion process with a diffusion coefficient that possesses
oth positive and negative values. Thus, a diffusion coeffi-
ient �see Fig. 1� that controls the Gilboa–Sochen–Zeevi
GSZ� FAB diffusion process was proposed32

��I�x,y,t�� =
1

1 + �	�I�x,y,t�	/k �n

(a)

(c)

(e)

Fig. 9 Regional enlarged portion of edge fea
image, and results corresponding to Fig. 7�c�–7
f

ptical Engineering 057004-
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−
�

1 + ��	�I�x,y,t�	 − kb�/w�2m , �6�

where kf is similar to the role of the parameter k in the PM
diffusion equation; kb and w define the range of backward
diffusion, and are determined by the value of the gradient
that is emphasized; � controls the ratio between the for-
ward and backward diffusion; and the exponent parameters
�n ,m� are chosen as �n=4, m=1�. Equation �6� is locally
adjusted according to image features, such as edges, tex-
tures, and moments. The GSZ FAB diffusion process can
therefore enhance features while locally denoising the
smoother segments of images.

However, the transition length between the maximum
and minimum coefficient values varies with the gradient
threshold, which makes controlling the evolution procedure

(b)

(d)

(g)

f original noise-free image, blurred and noisy
(f)

tures o
�g�.
May 2010/Vol. 49�5�6
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ifficult.39 Thus, we proposed the LVCFAB diffusion coef-

(a)

(c)

(e)

Fig. 10 Enhanced images for Couple image: �a
blurred image ��=1�, contaminated by zero-m
diffusion �
=0.05�; �d� MB anisotropic diffusion
=0.4�MAG, �=0.2�; �f� LVCFAB diffusion �kf=5
TFAB diffusion ��=0.006, �=8, 	=2� �15 iterati
ptical Engineering 057004-

Downloaded from SPIE Digital Library on 26 Sep 2010 to 
ficient �see Fig. 2� as follows:39

(b)

(d)

(g)

nal image with 8-bit gray levels; �b� Gaussianly
aussian noise with 50; �c� CLMC anisotropic
.05�; �e� GSZ FAB diffusion �kf=0.2�MAG, kb
200, �1=0.2, �2=0.02, 
=0.2, �=0.2�; and �g�
��I�x,y,t�� =
1 − tanh��1 · �	�I�x,y,t�	 − kf�� − � · �1 − tanh2��2 · �kb − 	�I�x,y,t�	���

2
, �7�
here �1 and �2 control the steepness for the min-max
ransition region of forward diffusion and backward diffu-
sion, respectively. These two parameters are vital to the
FAB diffusion behavior, and the transition width from iso-
(f)

� Origi
ean G
�
=0

0, kb=
ons�.
May 2010/Vol. 49�5�7
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ropic to oriented flux can be altered by modulating them.
n addition, the LVCFAB diffusion process can preserve the
ransition length from isotropic to oriented flux and, thus, it
s better at controlling the diffusion behavior than that of
he GSZ FAB diffusion.

.2 Alternative FAB (AFAB) Diffusion

n this section, an AFAB diffusion is presented to be able to
odulate everything: the location of the transition from iso-

ropic to oriented diffusion and the corresponding transition
ength. In this paper, we define an AFAB diffusion coeffi-

(a)

(c)

(e)

Fig. 11 Regional enlarged portion of interest o
and results corresponding to Fig. 10�c�–10�g�.
ptical Engineering 057004-

Downloaded from SPIE Digital Library on 26 Sep 2010 to 
cient �see Fig. 3� that is based on a suitable sigmoid func-
tion as follows:

c��I�x,y,t��

=
e−��2

+ e−��	�I�x,y, t�	�2
+ 	 · �e−��	�I�x,y, t�	�2

− 1�

e−��2
+ e��	�I�x,y, t�	�2 ,

�8�

where � denotes the length of transition from isotropic to
oriented flux, � governs the transition location of FAB dif-
fusion, and 	 dominates the transition coefficient. Figs. 1–3
show plots of the diffusion coefficients and respective

(b)

(d)

(g)

al noise-free image, blurred and noisy image,
(f)

f origin
May 2010/Vol. 49�5�8
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uxes of the threeFAB diffusion coefficients. It is apparent
hat the proposed diffusion coefficient has a different for-
ulation to that of the GSZ FAB and LVCFAB diffusion

oefficients. However, they all combine two opposing
orces into the diffusion process: one backward force at
edium gradients for sharpening, and a second, a forward

orce at low gradients for smoothing and restoration. Fur-
hermore, they have the same property: negative diffusion
oefficients are explicitly employed in a certain gradient
ange. Meanwhile, there is no gradient threshold k in Eq.
8�, are used which is helpful in reducing the complexity of
he parameter selection procedure.

(a)

(c)

(e)

Fig. 12 Enhanced images for Lena image: �a�
blurred Lena image ��=1�, contaminated by zer
diffusion �
=0.05�; �d� MB anisotropic diffusion
=0.4�MAG, �=0.2�; �f� LVCFAB diffusion �kf=5
TFAB diffusion ��=0.006, �=8, 	=2� �15 iterati
ptical Engineering 057004-

Downloaded from SPIE Digital Library on 26 Sep 2010 to 
2.3 Parameter Analysis

To better control the diffusion coefficient, we analyze the
effect of varying the different parameters and show how the
tunability is related to diffusion behavior. From Figs. 1–3,
we observe remarkably that the plot of the FAB diffusion
coefficient will always drop and rise to zero, so that
smoothing is performed when the diffusivity function is
positive and sharpening occurs for negative diffusion coef-
ficient values. In Eq. �8�, � determines the location of this
drop and rise occurs. As � increases, the drop part of the
location will descend, while the rise part will ascend

(b)

(d)

(g)

al image with 8-bit gray levels. �b� Gaussianly
Gaussian noise with 50; �c� CLMC anisotropic

.05�; �e� GSZ FAB diffusion �kf=0.2�MAG, kb
200, �1=0.2, �2=0.04, 
=0.2, �=0.2�; and �g�
(f)

Origin
o-mean

�
=0
0, kb=

ons�.
May 2010/Vol. 49�5�9
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see Fig. 4�. This rule is helpful for setting the proper value
f � to control the location of the transition from isotropic
o oriented flux. Meanwhile, both the GSZ FAB and LVC-
AB diffusion coefficients have a given transition location
nd, therefore are not adjustable. The function curves of the
roposed FAB diffusion coefficient with different � values
re depicted in Fig. 5. It is noted that � is closely related to
ow fast the drop happens. Moreover, the plot of the diffu-
ion coefficient in Fig. 5 declines faster as � increases.
bviously, � is a crucial parameter that can offer much
exibility to achieve specific FAB diffusion characteristics.
n our previous work, we employed the two similar param-
ters to the LVCFAB diffusion process to control the shape
f the diffusion function where the diffusion coefficient is
ositive and negative. However, the GSZ FAB scheme has
o such variables.39 	 can be used to control the ratio be-

(a)

(c)

(e)

Fig. 13 Intensity values of row 138: �a� in the o
and in the results given by �c� CLMC anisotrop
diffusion, �f� LVCFAB diffusion, and �g� TFAB di
ptical Engineering 057004-1

Downloaded from SPIE Digital Library on 26 Sep 2010 to 
tween the FAB diffusion. It can be observed from Fig. 6
that if 	�1, then the diffusion scheme with the diffusion
coefficient �8� serves as a tunable FAB diffusion process.
On the contrary, if 	�1, then the proposed diffusion
scheme transforms to the traditional anisotropic diffusion
process, where the diffusion coefficient is always positive.

2.4 TFAB Diffusion Algorithm

In this section, we summarize the idea of the TFAB diffu-
sion coefficient mentioned above into a complete and adap-
tive image-restoration and -enhancement algorithm. To
achieve this goal, we propose to filter the data by the fol-
lowing algorithm of FAB diffusion.

(b)

(d)

(g)

ena image, �b� in the blurred and noisy image,
ion, �d� MB anisotropic diffusion, �e� GSZ FAB

.

(f)

riginal L
ic diffus
ffusion
May 2010/Vol. 49�5�0
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1. Initialization

a. Input a given image I. I�x ,y ,0� denotes the
original intensity of pixel �x ,y�.

b. Set parameters �, �, and 	 for the proposed
FAB diffusion; and T for the maximal num-
ber of iterations.

2. Iterate until t=T.

a. For each pixel �x ,y�, the diffusion coeffi-
cient c��I�x ,y , t�� is computed by Eq. �8�.

b. The four-nearest-neighbor diffusion dis-
cretization equation is performed to update
I�x ,y , t�. Our FAB diffusion algorithm is a
discretization on a 3�3 lattice. In order to
accomplish the assumptions mentioned
above, we propose the following anisotropic
diffusion equation:

I�x,y,t + 1� = I�x,y,t� + � · �cN · �NI

+ cS · �SI + cE · �EI

+ cW · �WI� ,

where N, S, E, and W are the mnemonic
subscripts for four directions �i.e., North,
South, East, and West�. The subscripts on
the parenthesis are applied to all the terms
enclosed. � is the time step: 0���1 /4 for
the numerical scheme to be stable. As de-
fined in the original paper,46 the spatial gra-
dient at pixel �x ,y� is the first derivative of
its image intensity function.

Experiments
n this section, we first describe the methodology used in
ur simulations and then reveal comparative filtering re-
ults for blurred and noisy images. Moreover, we provided
etail discussion on the impact of parameters and the per-
ormance of the proposed algorithm at different noise lev-
ls. Finally, we demonstrate that as a useful tool for early
ision, the proposed algorithm effectively extracts fine edge
tructures from medical images.

In order to demonstrate the effectiveness, we compare
ur algorithm to two traditional anisotropic diffusion algo-
ithms: Catte-Lions-Morel-Coll �CLMC� anisotropic
iffusion18 and Monteil-Beghdadi �MB� anisotropic
iffusion.47 We also apply two existing FAB diffusion al-
orithms: GSZ FAB diffusion32 and LVCFAB diffusion.39

he ultimate goal of image filtering is to facilitate the sub-
equent processing for computer vision. To demonstrate the
alidity of the proposed algorithm in an early vision task,
e apply the above diffusion algorithms to enhance a medi-

al image for an application-based evaluation. As a defining
haracteristic, iterative operations are inevitably involved
n anisotropic diffusion. Therefore, implementation of an
terative algorithm depends greatly on the termination time,
hich causes what we often refer to as the termination
roblem. Although there still does not exist a widely ac-
epted analytical method, several heuristic methods have
ptical Engineering 057004-1
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been proposed to determine the stopping time to overcome
instability in anisotropic diffusion.26,40,48,49 As far as sim-
plicity is concerned, the nonlinear cooling method is most
suitable for applications as a general denoising scheme.
Gilboa et al.48 proposed a threshold-freezing nonlinear
cooling method, using the cooling rate we refer to as 
, and
applied it to the anisotropic diffusion scheme. In our simu-
lations, we adopted this strategy in the CLMC and MB
anisotropic diffusion and GSZ FAB diffusion. Meanwhile,
the gradient threshold of the GSZ FAB diffusion is deter-
mined by calculating the mean absolute gradient �MAG�
from the original paper.32

Table 1 PSNR and quality value for images of Parrots, Lena, Cam-
eraman, and Couple.

Scheme Image PSNR �dB� UIQI

Blurred and
noisy

Parrots 27.07 0.5351

Lena 34.98 0.6910

Cameraman 25.29 0.4066

Couple 26.97 0.6866

CLMC Parrots 28.17 0.7313

Lena 35.70 0.7646

Cameraman 25.66 0.4690

Couple 27.55 0.6934

MB Parrots 28.27 0.7303

Lena 35.88 0.7638

Cameraman 25.77 0.4763

Couple 27.62 0.6955

GSZ FAB Parrots 28.37 0.7348

Lena 36.43 0.8174

Cameraman 25.89 0.5100

Couple 27.81 0.7391

LVCFAB Parrots 28.35 0.7462

Lena 36.42 0.8142

Cameraman 25.93 0.5017

Couple 27.90 0.7239

TFAB Parrots 28.42 0.7514

Lena 36.72 0.8214

Cameraman 25.97 0.5224

Couple 27.97 0.7556
May 2010/Vol. 49�5�1
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(a) 0.002β =
(b) The histogram of the original Lena
image and diffusivity ( 0.002β = )

(c) The histogram of the filtered Lena
image and diffusivity ( 0.002β = )

(d) 0.004β =
(e) The histogram of the original Lena
image and diffusivity ( 0.004β = )

(f) The histogram of the filtered Lena
image and diffusivity ( 0.004β = )

(g) 0.006β =
(h) The histogram of the original Lena
image and diffusivity ( 0.006β = )

(i) The histogram of the filtered Lena
image and diffusivity ( 0.006β = )

(j) 0.008β =
(k) The histogram of the original Lena
image and diffusivity ( 0.008β = )

(l) The histogram of the filtered Lena
image and diffusivity ( 0.008β = )

(m) 0.01β =
(n) The histogram of the original Lena
image and diffusivity ( 0.01β = )

(o) The histogram of the filtered Lena
image and diffusivity ( 0.01β = )

Fig. 14 Impact of � on the TFAB diffusion method’s performance ��=8, 	=2�.
ptical Engineering May 2010/Vol. 49�5�057004-12
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.1 General Images
he performance of the proposed algorithm is evaluated
sing four 256�256 standard images with 256 gray-scale
alues. The image of Parrots is used as an example of the
iecewise-constant image. Lena and Cameraman are two
xamples with both textures and smooth regions. Couple is
n example with different edge features. Figure 7�a� shows
he original noise-free Parrots image. For the test, we gen-
rate a blurred and noisy version of the image, as shown in
ig. 7�b�. The results yielded by CLMC and MB aniso-

ropic diffusion are depicted in Figs. 7�c� and 7�d�, respec-
ively. We can observe that the two algorithms result in the
oss of important information from the original image,
hough the noise is entirely removed. A better combination
f smoothing and sharpening is given by the GSZ FAB and
VCFAB diffusion processes. Figs. 7�e� and 7�f� show the
orresponding results. Finally, the image yielded by our
lgorithm is represented in Fig. 7�g�. The noise is readily
emoved, and this is due to tunable forward diffusion.

eanwhile, edge features, including most of the fine de-
ails, are sharply reproduced with the TFAB diffusion algo-
ithm. From the perspective of vision quality, the results
iven by the GSZ FAB, the LVCFAB, and the TFAB dif-
usion are comparable because the three processes simulta-
eously enhance, sharpen, and denoise images. Neverthe-
ess, the degree of enhancement of the TFAB diffusion
ould be tuned more appropriately to account for improving
he SNR and CNR.

In order to obtain a better evaluation of the visual qual-
ty of the enhanced images, two regional enlarged portions
f interest in Fig. 7 �see Fig. 7�a��, and the corresponding
nhanced results are zoomed in Figs. 8 and 9. From these
etails, we can easily observe that all the diffusion algo-
ithms mentioned above could reduce noise. Nevertheless,
he CLMC and MB anisotropic diffusion algorithms blur
ignificant edge features. The homogeneous zones and edge
eatures processed by the GSZ FAB, LVCFAB, and TFAB
iffusion algorithms are depicted in Figs. 8�e�–8�g� and
�e�–9�g�, respectively. It is quite obvious that the GSZ
AB and LVCFAB diffusion algorithms achieve a good
ompromise between sharpening and denoising, while the
roposed algorithm exhibits the best edge-enhanced diffu-
ion behavior �for a comparison, see the original portions in
igs. 8�a� and 9�a�, respectively�.

Figure 10�a� shows the image of Couple. Figure 10�b� is
he blurred and noisy version of Fig. 10�a�, generated by
dding Gaussian blur and noise. We apply five diffusion

Table 2 PSNR and quality value for Lena image with different �.

Parameter PSNR �dB� UIQI

�=1 36.73 0.8174

�=4 36.79 0.8192

�=9 36.72 0.8203

�=16 36.05 0.7967

�=25 35.18 0.7507
ptical Engineering 057004-1
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algorithms to the blurred and noisy image and illustrate
resulting images in Figs. 10�c�–10�g�. In order to have a
clearer view, one region of interest in Fig. 10 is displayed
in Fig. 11 for the five algorithms. It can be seen that noise
is thoroughly removed in the enhanced images; however,
many important features are missing or blurred with the
CLMC and MB anisotropic diffusion algorithms used for
comparison. In contrast, our algorithm delivers the best vi-
sual quality among the three FAB diffusion algorithms;
most fine details are enhanced well during the evolutionary
process.

We also present in Fig. 12 the image of Lena to show the
effects of the five diffusion algorithms applied in this study.
The resulting images are presented in Figs. 12�c�–12�g�. It
is observed that the TFAB diffusion produces the best im-
age, judged by subjective image quality, compared to the
other four algorithms. In order to appraise the nonlinear
behavior of the five anisotropic diffusion algorithms, the
intensity values of a row are graphically depicted in Fig.
13. The original noise-free row number 138 �from top to
bottom� is shown in Fig. 13�a�. The corresponding row in
the blurred and noisy image is represented in Fig. 13�b�.
According to the previous observation, the CLMC and MB
anisotropic diffusion algorithms blur significant edge fea-
tures and the results are shown in Figs. 13�c� and 13�d�.
The data processed by the GSZ FAB, LVCFAB, and TFAB
diffusion algorithms are depicted in Figs. 13�e�–13�g�, re-
spectively. It is obvious that the GSZ FAB and LVCFAB
diffusion algorithms can reconcile the balance between
sharpening and denoising, while the proposed algorithm ex-
hibits the best edge-enhanced diffusion behavior �for a
comparison, see the original image in Fig. 13�a��. It is evi-
dent from the comparative results that our algorithm out-
performs the others in terms of sharpening and restoration
of the blurred and noisy image.

In order to objectively evaluate the performance of the
different diffusion algorithms, we adopt the peak SNR
�PSNR� and universal image quality index �UIQI�. The
PSNR is used to estimate the effectiveness of noise reduc-
tion:

PSNR = 10 log10
 �
i,j

2552

�
i,j

�I�i, j,0� − I�i, j,T��2�dB, �9�

where I�0� is the original image and I�T� denotes the recov-
ered image. Recently, UIQI has been widely used to better
evaluate image quality50

Table 3 PSNR and quality value for Lena image with different �.

Parameter PSNR �dB� UIQI

�=0.002 35.89 0.7809

�=0.004 36.57 0.8076

�=0.006 36.72 0.8214

�=0.008 36.70 0.8126

�=0.01 36.38 0.7955
May 2010/Vol. 49�5�3
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(a) 1γ =
(b) The histogram of the original Lena

image and diffusivity ( 1γ = )
(c) The histogram of the filtered Lena

image and diffusivity ( 1γ = )

(d) 4γ =
(e) The histogram of the original Lena

image and diffusivity ( 4γ = )
(f) The histogram of the filtered Lena
image and diffusivity ( 4γ = )

(g) 9γ =
(h) The histogram of the original Lena

image and diffusivity ( 9γ = )
(i) The histogram of the filtered Lena
image and diffusivity ( 9γ = )

(j) 16γ =
(k) The histogram of the original Lena
image and diffusivity ( 16γ = )

(l) The histogram of the filtered Lena
image and diffusivity ( 16γ = )

(m) 25γ =
(n) The histogram of the original Lena
image and diffusivity ( 25γ = )

(o) The histogram of the filtered Lena
image and diffusivity ( 25γ = )

Fig. 15 Impact of � on the TFAB diffusion method’s performance ��=0.006, 	=2�.
ptical Engineering May 2010/Vol. 49�5�057004-14
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=
1

M
�
M=1

j

Qj , �10�

here M is the total step number and Qj denotes the local
uality index computed within the moving window. In this
aper, a sliding window of size 8�8 is applied to estimate
n entire image. The list of PSNR and UIQI values that are

(a) 1ξ = (b) The histogram
image and dif

(d) 2ξ = (e) The histogram
image and diff

(g) 3ξ = (h) The histogram
image and diff

Fig. 16 Impact of 	 on the TFAB diffu
ptical Engineering 057004-1
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reported by the different algorithms, which were performed
on four blurred ��=1� and noisy ��2=50� versions of test
images used in our experiments, are found in Table 1. Re-
markably, the statistical results shown in Table 1 definitely
indicate that all three FAB diffusion algorithms are better
than the existing anisotropic diffusion algorithms. Also, the

original Lena
y ( 1ξ = )

(c) The histogram of the filtered Lena
image and diffusivity ( 1ξ = )

original Lena
y ( 2ξ = )

(f) The histogram of the filtered Lena
image and diffusivity ( 2ξ = )

original Lena
y ( 3ξ = )

(i) The histogram of the filtered Lena
image and diffusivity ( 3ξ = )

ethod’s performance ��=0.006, �=8�.
of the
fusivit

of the
usivit

of the
usivit

sion m
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etter performance of the proposed TFAB diffusion is ap-
arent.

.2 Impact of Parameters
n Section 2.3, we provided detailed explanations on how
he parameters in Eq. �8� can be used to tune the diffusion.
n this section, we perform the three-dimensional analysis
o evaluate the parameters’ impact on the method’s perfor-
ance using the image of Lena. To this end, we apply the

roposed algorithm to Fig. 12�b� using different settings of
for evaluation. The resultant images filtered by our

ethod are shown in Figs. 14�a�, 14�d�, 14�g�, 14�j�, and
4�m�, respectively. In Fig. 14, we believe that if � is too
mall, then the diffusion evolution results in deblurring fine
etails, such as the hat, its decoration and the hair �see Fig.
4�a��. On the other hand, if � is too large, there are some
scillations in the face �see Figs. 14�j� and 14�m��. In ad-
ition, we demonstrate the plots of original and enhanced
mage histograms and diffusivity in Figs. 14�b�, 14�c�,
4�e�, 14�f�, 14�h�, 14�i�, 14�k�, 14�l�, 14�n�, and 14�o�,
espectively. From these plots, we can easily observe that �
overns the range of gradient magnitudes to be enhanced
uring the evolution procedure �see the position of diffu-
ivity as c�s�
0�. The list of PSNR and UIQI values by

Table 4 PSNR and quality value for Lena image with different 	.

Parameter PSNR �dB� UIQI

	=1 36.60 0.8081

	=2 36.72 0.8214

	=3 35.93 0.7954

able 5 Performance �PSNR �dB� & UIQI� of the proposed TFAB
espect to different noise variances.

Scheme Image

25 50

PSNR
�dB� UIQI

PSNR
�dB� U

Blurred
and

noisy

Parrots 28.04 0.6188 27.07 0.5

Lena 36.65 0.7661 34.98 0.6

Cameraman 25.89 0.4506 25.29 0.4

Couple 27.88 0.7427 26.97 0.6

TFAB Parrots 28.63 0.7834 28.42 0.7

Lena 37.46 0.8506 36.72 0.8

Cameraman 26.21 0.5579 25.97 0.5

Couple 28.29 0.7778 27.97 0.7
ptical Engineering 057004-1
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our algorithm with different settings of � are demonstrated
in Table 2. We note from Table 3 that it is optimal for � to
be in the range of 0.004–0.006. The more edge features the
image contains, the larger � should be. On the contrary, the
more smooth regions the image contains, the smaller �
should be. Meanwhile, it is evident from image histograms
that the gradient magnitudes become lower and lower dur-
ing the diffusing process. As time advances, only smoother
and smoother regions are being filtered, whereas large gra-
dient magnitudes can be enhanced due to backward diffu-
sion. It can be also concluded that we can perform empiri-
cal analysis to select the optimal set of parameters by
comparing the original and resultant image histograms. We
exhibit the impact of � on our algorithm in Fig. 15 by
enhancing the Lena image. It is obvious that � controls the
degree of inverse diffusion �see the degree of bending of
diffusivity as c�s�
0�. The list of PSNR and UIQI values
by our algorithm with different settings of � are given in
Table 3. Because inverse diffusion can easily cause noise
amplification, which decreases the image quality, � should

hm for the images of Parrot, Lena, Cameraman, and Couple with

noise variance

100 225 400

PSNR
�dB� UIQI

PSNR
�dB� UIQI

PSNR
�dB� UIQI

25.64 0.4458 23.36 0.3483 21.41 0.2794

32.93 0.6024 30.10 0.4952 27.80 0.4092

24.34 0.3646 22.62 0.3143 20.97 0.2764

25.58 0.6165 23.30 0.5104 21.33 0.4289

28.14 0.7009 27.42 0.6534 27.08 0.6102

35.96 0.7835 34.23 0.7100 33.20 0.6576

25.73 0.4714 25.08 0.4118 24.82 0.3832

27.56 0.7308 26.34 0.6491 25.90 0.6019

Table 6 Parameter settings of the proposed TFAB algorithm with
respect to different noise variances.

Noise variance Parameters

25 �=0.01, �=6, 	=2

50 �=0.006, �=8, 	=2

100 �=0.004, �=6, 	=2

225 �=0.002, �=8, 	=2

400 �=0.001, �=6, 	=2
algorit

IQI

351

910

066

866

514

214

224

556
May 2010/Vol. 49�5�6
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ot be fixed too large. In our experiments, we suggest that
be selected within the bound: ��15. As mentioned in

ection 2.3, 	 determines the ratio between forward diffu-
ion and backward diffusion. Thus, it is significant to ex-

(a) Blurred and noisy image ( 252 =σ ) (b) Enhanced image ( 252 =σ )

(c) Blurred and noisy image ( 502 =σ ) (d) Enhanced image ( 502 =σ )

(e) Blurred and noisy image ( 1002 =σ ) (f) Enhanced image ( 1002 =σ )

(g) Blurred and noisy image ( 2252 =σ ) (h) Enhanced image ( 2252 =σ )

(i) Blurred and noisy image ( 4002 =σ ) (j) Enhanced image ( 4002 =σ )

ig. 17 Enhanced Gaussianly blurred Lena image ��=1� using our
lgorithm with respect to different noise variances �10 iterations�.
ptical Engineering 057004-1
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plore the impact of 	 on our method. The resultant images
are illustrated in Fig. 16 by modulating 	 while fixing � and
� in the proposed algorithm. It is clear that if 	 is too small,
then our method evolves as a traditional anisotropic diffu-
sion process and results in an imperceptible enhancement
effect �see Fig. 16�a��. On the contrary, if 	 is too large, our
method is highly unstable and often leads to noise amplifi-
cation �see Fig. 16�g��. The statistical results in Table 4
confirm that 	 should be carefully selected. Our simulations
on various images including those not reported here, con-
firm that the parameter should be in the range of 1–3, so
that it can guarantee the realization of the tunable FAB
diffusion instead of the classic anisotropic diffusion or in-
verse diffusion.

The aim of this paper is to present a TFAB diffusion
algorithm and to apply it in image enhancement as well as
image sharpening. We focus on enhancing and sharpening
blurry signals, while still allowing some additive noise to

(a) (b)

(c) (d)

(e) (f)

Fig. 18 Comparison of the five diffusion methods using a MR im-
age: �a� Brain MR image; �b–f� filtered images corresponding to the
image in �a� resulting from CLMC anisotropic diffusion �
=0.05�, MB
anisotropic diffusion �
=0.05�, GSZ FAB diffusion �kf=0.25�MAG,
kb=2�MAG, �=0.25�, LVCFAB diffusion �kf=50, kb=200, �1=0.1,
�2=0.02, 
=0.25, �=0.5�, and the proposed TFAB diffusion ��
=0.006, �=8, 	=4� �10 iterations�.
May 2010/Vol. 49�5�7
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nterfere with the process. To demonstrate the effectiveness
f the proposed TFAB algorithm in noise reduction, the
SNR and UIQI values of the original and enhanced im-
ges for our algorithm with respect to different noise vari-
nces are listed in Table 5. In addition, the parameter set-
ings of the proposed algorithm at different noise levels are
isted in Table 6. From the PSNR and UIQI values, we can
ee that the proposed TFAB algorithm can effectively
chieve noise reduction and greatly improve image quality.
o compare the visual quality of the result from our algo-
ithm, its enhanced images with respect to different noise
ariances are shown in Fig. 17. By comparing the noisy
mage and enhanced image at different noise levels, we can
ee that sharpening and denoising can be reconciled by the
roposed tunable mechanism that controls the orientation,
ype, and extent of the diffusion process. Meanwhile, it is
bvious from Table 6 that � is sensitive to noise levels and
hould be lower as noise variance increases.

.3 Medical Images
n medical images, low SNR and CNR often degrade the
nformation and affect several image-processing tasks, such

(a) (b)

(c) (d)

(e) (f)

ig. 19 A regional enlarged portion of interest of original image and
esults corresponding to Fig. 18�c�–18�g�.
ptical Engineering 057004-1
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as segmentation, classification, and registration. Therefore,
it is of considerable interest to improve SNR and CNR to
reduce the deterioration of image information. In this sec-
tion, we present an example from magnetic resonance
�MR� patient studies.

We present in Fig. 18 an example of the performance of
the different diffusion algorithms for MR image enhancing.
The original MR image is depicted in Fig. 18�a� with the
size of 256�256. The results for the five algorithms are
shown in Figs. 18�b�–18�f�. As seen from all five enhanced
images, the smoothness in homogeneous regions, such as
white matter, seems to be visually the same in all images,
while the TFAB diffusion algorithm achieves greater con-
trast and produces more reliable edges, which is especially
useful for segmentation and classification purposes neces-
sary in medical image applications.

Figure 19 shows a regional enlarged portion of interest
from Fig. 18�a� and the diffusive filtered results of this
portion using the five diffusion algorithms. As expected, the
five algorithms remove noise present in Fig. 19�a� and si-
multaneously smooth the homogeneous regions. According
to the visual analyses of the image quality, the results gen-
erated by the three FAB diffusion processes are compa-
rable. However, the boundary contrast appears to be higher
using the proposed TFAB algorithm when compared to
other algorithms. In addition, the TFAB diffusion enhances
boundary sharpness and fine structures better than other
diffusion methods.

4 Conclusion
Digital image acquisition techniques often suffer from low
SNR and CNR, which degrade the information contained in
the digital image and thus reduce its potential utility for
industry use. We have presented a novel TFAB diffusion
algorithm for image restoration and enhancement to im-
prove on the SNR and CNR that preclude the current utility
of digital images for industry. The primary advantage of the
proposed diffusion algorithm is that tenability of the im-
proved diffusion coefficient offers user flexibility to adjust
edge-enhancing performance. At the same time, it is not
necessary to consider the rational time-consuming strategy
for estimating the gradient threshold. The proposed algo-
rithm was tested on various digital images, including four
general images and a medical image. The results from our
simulations show an improvement in visual effect and
quantitative analyses over the preexisting algorithms.
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