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A B S T R A C T

Soil moisture (SM) is one of the key land surface parameters, but the coarse spatial resolution of the passive
microwave SM products constrains the precise monitoring of surface changes. The existing SM downscaling
methods typically either utilize spatio-temporal information or leverage auxiliary parameters, without fully
mining the complementary information between them. In this paper, a generalized spatio-temporal-spectral
integrated fusion-based downscaling method is proposed to fully utilize the complementary features between
multi-source auxiliary parameters and multi-temporal SM data. Specifically, we define the spectral characteristic
of geographic objects as an assemblage of diverse attribute characteristics at specific spatio-temporal locations
and scales. Based on this, the SM-related auxiliary parameter data can be treated as the generalized spectral
characteristics of SM, and a generalized spatio-temporal-spectral integrated fusion framework is proposed to
integrate the spatio-temporal features of the SM products and the generalized spectral features from the auxiliary
parameters to generate fine spatial resolution SM data with high quality. In addition, considering the high
heterogeneity of multi-source data, the proposed framework is based on a spatio-temporal constrained cycle
generative adversarial network (STC-CycleGAN). The proposed STC-CycleGAN network comprises a forward
integrated fusion stage and a backward spatio-temporal constraint stage, between which spatio-temporal cycle-
consistent constraints are formed. Numerous experiments were conducted on Soil Moisture Active Passive
(SMAP) SM products. The qualitative, quantitative, and in-situ site verification results demonstrate the capability
of the proposed method to mine the complementary information of multi-source data and achieve high-accuracy
downscaling of global daily SM data from 36 km to 9 km.

1. Introduction

Soil moisture (SM) is a crucial variable in the Earth’s surface layer
that plays a significant role in diverse processes such as the energy
budget and water cycle of land ecosystems (Petropoulos et al., 2015),
drought monitoring (Hirschi et al., 2011), agricultural irrigation
(Martínez-Fernández et al., 2016), and water resource management
(Renzullo et al., 2014). Rapid and accurate monitoring of SM is of great
significance in the management of climate, hydrology, ecology, and
other systems (Jiang et al., 2019; Xiao et al., 2021; Huang et al., 2023).

The traditional in-situ measurements provide precise estimation of
point-wise SM but have limited spatial coverage. Furthermore, it is
costly to deploy and maintain monitoring networks, making it difficult
to comprehensively reflect the spatial distribution of large-scale SM

(Dorigo et al., 2015; Srivastava, 2017; Yang et al., 2024). Modern sat-
ellite remote sensing technology, characterized by its continuity, peri-
odicity, cost-effectiveness, and global coverage, is extensively employed
in SM retrieval (Petropoulos et al., 2015). Microwave remote sensing,
due to its longer wavelength, is less susceptible to bad weather condi-
tions and is a promising approach for accurate SM retrieval at a global
scale (Engman and Chauhan, 1995; Shangguan et al., 2023). As a result,
numerous active and passive microwave systems have been successively
deployed to capture surface SM, such as the MetOp A/B Advanced
Scatterometer (ASCAT) (Bartalis et al., 2007), the Soil Moisture and
Ocean Salinity (SMOS) mission (Kerr et al., 2010), and the Soil Moisture
Active Passive mission (SMAP) (Entekhabi et al., 2010a). However,
active microwave sensors are sensitive to vegetation structure and sur-
face roughness, leading to less accurate SM products (Sabaghy et al.,
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2018; Xu et al., 2022). In contrast, passive microwave sensors are
generally more reliable, due to their reduced sensitivity to local surface
features; however, the spatial resolution of the acquired SM data often
extends to several tens of kilometers, thus limiting their practical
application (Fang et al., 2019; Shangguan et al., 2023).

To estimate SM data at finer spatial resolutions with reliable accu-
racy, numerous downscaling methods have been developed for the
coarse-resolution passive microwave SM products. All these down-
scaling methods require the integration of new information to achieve
resolution enhancement (Jing et al., 2024). Therefore, they can be
viewed from the perspective of data fusion and can be broadly classified
into three main categories: 1) remote sensing-dynamic model fusion-
based methods (also known as data assimilation-based methods); 2)
multi-parameter fusion-based methods; and 3) spatio-temporal fusion-
based methods. Remote sensing-dynamic model fusion-based down-
scaling refers to inputting the low spatial resolution (LR) remote sensing
observations into a dynamic model to adjust the model trajectories,
thereby generating the high spatial resolution (HR) target parameters.
Representative methods include the four-dimensional variational data
assimilation method (Reichle et al., 2001) and the ensemble Kalman
filter assimilation methods (Sahoo et al., 2013; Draper and Reichle,
2015; Mahfouf et al., 2009). However, due to the complex physical
processes involved, these kinds of approaches are computationally
intensive and difficult to apply at fine scales (Peng et al., 2017).

Due to the simplicity and efficiency, the current dominant approach
is statistical downscaling, also known as multi-parameter fusion-based
downscaling (Jing et al., 2022; Jing et al., 2024), which introduces HR
auxiliary parameters to fuse with the LR SM data to obtain the HR SM
data. This type of method typically constructs a statistical relationship
model between SM and auxiliary parameters at a low resolution and
applies it to a high resolution under the scale-invariance assumption of
the relationship. From the perspective of auxiliary data, on the one
hand, researchers have leveraged active microwave auxiliary data and
proposed a series of change detection methods to retrieve SM from radar
backscatter data (Narayan et al., 2006; Piles et al., 2009; Das et al.,
2010). On the other hand, researchers have employed optical/thermal
infrared auxiliary data and proposed downscaling methods to estimate
SM from surface parameters such as land surface temperature (LST) and
vegetation indices (Chauhan et al., 2003; Sánchez-Ruiz, et al., 2014;
Peng et al., 2016; Kim et al., 2017). In addition, geoinformation data,
such as terrain and elevation data, have frequently been used as an
additional ancillary data source (Ranney et al., 2015; Hoehn et al.,
2017). However, most of the above-mentioned traditional statistical
methods suffer from the limitation of a linear assumption. Recently, due
to the powerful nonlinear feature extraction capability of machine
learning algorithms, researchers have utilized machine learning ap-
proaches such as random forest (RF), artificial neural networks (ANN),
and residual networks (ResNets) to retrieve SM data from multi-source
auxiliary data, and have achieved notable results (Wei et al., 2019;
Liu et al., 2020; Jiang et al., 2022a; Zhang et al., 2022; Zhao et al.,
2022). Overall, the performance of multi-parameter fusion-based
downscaling is heavily reliant on the quality of the auxiliary parameters,

which can suffer from spatial and temporal instability (Sabaghy et al.,
2018).

The other universal category is spatio-temporal fusion-based down-
scaling, which exploits the complementarity in the spatial and temporal
resolutions among multiple sensors (Gao et al., 2006; Tang et al., 2021).
These methods establish spatio-temporal transformation relationships
based on HR and LR surface parameter pairs from reference dates and
the LR surface parameter from the target date to achieve surface
parameter downscaling of the target date. The spatio-temporal fusion-
based methods have been widely employed in the downscaling of
remote sensing parameters such as surface reflectance, LST, and vege-
tation indices (Tewes et al., 2015; Shen et al., 2016; Cheng et al., 2017).
Regarding SM, Jiang et al. (2019) first proposed a spatio-temporal fusion
model (STFM) to extend the 9-km SMAP SM product. They created an
HR-LR baseline SM pair from the historical 9-km and 36-km SMAP SM
products and applied non-local filtering to fuse the baseline pair with
daily 36-km SM data, ultimately obtaining a 9-km product from 2015 to
2017. Building upon this foundation, Yang et al. (2022) proposed an
STFM based on virtual image pairs (VIPSTF) for simulating the 9-km
SMAP SM product after a malfunction in the active radar sensor. They
synthesized 10 sets of virtual HR-LR baseline SM pairs using the his-
torical 9-km and 36-km SM products and coupled a spatial weighting
scheme to generate 8-day synthesized 9-km SMAP SM data from 2015 to
2020. The spatio-temporal fusion-based approaches, which require no
additional heterogeneous auxiliary data, exhibit high feasibility and
potential for the downscaling of surface parameters. However, they have
difficulty creating high-quality HR-LR baseline pairs and addressing the
dramatic changes in surface parameters where there is a long interval
between the target date and the baseline date (i.e., reference date).

As mentioned above, multi-parameter fusion-based downscaling and
spatio-temporal fusion-based downscaling have their respective pros
and cons, exhibiting pronounced complementarity but lacking a unified
framework. To address this issue, this paper presents a broad definition
of the spectral characteristics of geographic objects and treats auxiliary
parameters as the generalized spectral features of SM. Building upon
this, multi-parameter fusion-based downscaling that fuses the HR
auxiliary parameters and the LR SM can be considered as generalized
spatial-spectral fusion-based downscaling, and a generalized spatio-
temporal-spectral fusion-based downscaling model is proposed to
unify the spatio-temporal fusion-based downscaling and multi-
parameter fusion-based downscaling. The main innovations of this
paper can be summarized as follows:

(1) This paper presents a broad definition of the spectral character-
istics of geographic objects as a collection of diverse attributes at
specific spatio-temporal locations and scales. Furthermore, a
generalized spatio-temporal-spectral integrated fusion frame-
work that merges the generalized spectral features from auxiliary
parameters and the spatio-temporal features from the target
surface parameter is proposed to obtain downscaled surface
parameter data with high resolution and high quality.

(2) A spatio-temporal constrained cycle generative adversarial
network (STC-CycleGAN) is proposed to fuse the complementary
spatial, temporal, and generalized spectral features from multi-
source data. The proposed network consists of a GAN-based for-
ward fusion stage to generate the downscaling results, a GAN-
based backward constraint stage to implement spatio-temporal
cycle-consistent constraints on the downscaling results, and loss
functions with cycle-consistency and gradient penalty terms to
ensure stable training.

(3) The SM parameter was taken as a research example in this study,
and qualitative, quantitative, and in-situ site validations were
conducted to verify the effectiveness of the proposed model and
framework.

The rest of this paper is structured as follows. In Section II, we

Table 1
Datasets used in this study.

Dataset Variables Spatialresolution Temporalresolution Usage

SMAP AP9 9 km Daily Label
P36, TB, 36 km Daily Input
Longitude,
Latitude

9 km − Input

MODIS NDVI 1 km 16 days Input
LST 1 km 8 days Input
Reflectance 500 m 8 days Input

NOAA DEM 1 km − Input
In-situ
SM

ISMN, ARS
Micronet

point 1 h, 5 min Validation
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introduce the datasets, while Section III describes the adopted method.
Section IV presents the qualitative and quantitative global experimental
results and the in-situ site validation analysis. Following this, Section V
discusses aspects such as auxiliary parameters and fusion strategies.
Finally, we present our conclusions in Section VI.

2. Datasets

This study focused on the SMAP products and utilized auxiliary
parameter data mainly from the Moderate Resolution Imaging Spec-
troradiometer (MODIS) for model training, validation, and testing. In-
situ measurements from the International Soil Moisture Network
(ISMN) and the USDA Agricultural Research Service’s Micronet (ARS
Micronet) were employed for verification. Table 1 lists the datasets
utilized in this study.

2.1. SMAP soil moisture datasets

The SMAP satellite, launched by NASA on January 31, 2015, carries
two sensors: an L-band radar system and an L-band radiometer. The L-
band active radar system provides 3-km resolution SM (A3) data with
lower accuracy, while the L-band passive radiometer offers 36-km res-
olution SM (P36) data with higher accuracy. Based on this, the SMAP
team combined the data from the active and passive microwave sensors
to produce a 9-km SM (AP9) product with a balance between spatial
resolution and accuracy. Unfortunately, due to damage to the active
radar system on July 7, 2015, SMAP can only provide usable A3 and AP9
products from April 13, 2015, to July 7, 2015. In this context, in this
study, we maximized the use of historically available AP9 data as input
and label data to train the downscaling network model, aiming to ach-
ieve its daily continuity beyond the historical data period.

The SMAP satellite collects data at 6:00 AM and 6:00 PM local time

during its descending and ascending passes, respectively. Data from the
6:00 AM descending pass were utilized in this study, due to their higher
reliability. In addition, the SMAP satellite can achieve global coverage
approximately every two to three days, with an accurate revisit period of
eight days. However, this results in large strip gaps in the daily SM
products, as shown in Fig. 1(a)–(b). In this study, to construct a stable
HR-LR SM pair at the reference date for spatio-temporal fusion, we
referred to Jiang et al. (2019) and composed a baseline HR-LR SM pair
with the widest coverage using the historically available data mainly
from June 30, 2015, to July 7, 2015, denoted as (AP9base, P36base).

2.2. MODIS auxiliary datasets

MODIS data, as a crucial component of the NASA Earth Observing
System, have been extensively utilized in atmospheric, terrestrial, and
oceanic researches (Justice et al., 2002). In this study, various SM-
related MODIS surface parameter products, including normalized dif-
ference vegetation index (NDVI), LST, and surface reflectance, were
utilized as auxiliary parameters (Chen et al., 2017; Hu et al., 2020; Xu
et al., 2022). To mitigate the missing data caused by adverse weather
conditions and ensure the data quality, we employed the 8-day or 16-
day composite MODIS products. Specifically, we utilized the 16-day
composite NDVI product from MOD13A2 at a 1-km spatial resolution,
the 8-day composite LST product from MOD11A2 at a 1-km spatial
resolution, and the 8-day composite surface reflectance product from
MOD09A1 at a 500-m spatial resolution. All these products were ac-
quired from the Terra satellite, with an overpass time of around 10:30
AM, which is close to the SMAP descending overpass time (6:00 AM) and
is less affected by solar radiation.

2.3. Other auxiliary datasets

In addition, some other auxiliary data were also considered in this
study, including a brightness temperature product and geoinformation
data, such as terrain, longitude, and latitude. Specifically, the vertical
polarization brightness temperature data (TB) obtained from the level-3
36-km passive microwave product of SMAP and the latitude and longi-
tude obtained from the level-3 9-km microwave product of SMAP were
utilized in this study. The global digital elevation model (DEM) product
of a 30-arc-second resolution (approximately 1 km) released by NOAA
(https://www.ngdc.noaa.gov/) was utilized as the terrain factor.

2.4. In-situ soil moisture datasets

The ISMN database is a global in-situ measurement SM database
created by the Vienna University of Technology, which is maintained
through international cooperation (Dorigo et al., 2013). The database
provides SM data measured by multiple sensors at different depths

Table 2
Details of the in-situ site networks.

Network Country Sensor Depth
(m)

Number

USCRN USA Stevens Hydraprobe II
Sdi-12

0.05–0.05 63

SCAN USA Hydraprobe Analog,
Hydraprobe Digital Sdi-
12

0.05–0.05 88

TXSON USA CS655 0.05–0.05 39
HOBE Denmark Decagon 5TE 0.00–0.05 12
TWENTE Netherlands 5TM, EC-TM 0.05–0.05 6
RSMN Romania 5TM 0.00–0.05 9
SMOSMANIA France ThetaProbe ML2X 0.05–0.05 8
ARS
Micronet

USA Stevens Hydra Probe 0.05–0.05 35

Fig. 1. SMAP SM products.
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(2–100 cm) in various regions worldwide, and represents a reliable
verification data source for remote sensing satellite SM retrieval. In
order to match the measurement depth of the SMAP SM products, we
selected hundreds of high-quality sites from seven ISMN networks for
verification, each with a measurement depth of 0–5 cm. Moreover, 35

SM sites from ARS Micronet, which is jointly operated by the USDA
Agricultural Research Service, Oklahoma State University, and the
Oklahoma Climatological Survey, were also utilized in this study, due to
their consistent quality.

f f t t

f t t

Fig. 2. The formulation of generalized spatio-temporal-spectral integrated fusion for SM downscaling.
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Fig. 3. The flowchart of the proposed STC-CycleGAN-based generalized spatio-temporal-spectral integrated fusion framework.
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3. Method

3.1. Generalized spatio-temporal-spectral integrated fusion formulation

To estimate the HR SM data (X) from the LR SM data (Y), two cat-
egories of commonly used downscaling methods have been developed.
One is multi-parameter fusion-based downscaling, which involves fusing
the HR auxiliary parameters (Z) and the LR SM to obtain the HR SM,
represented as X = f(Y,Z), with f(⋅) denoting a mapping function. The
other category is spatio-temporal fusion-based downscaling, which aims
to fuse the LR SM of the target date and the HR-LR SM pair (Xt, Yt) at the
reference date to obtain the HR SM of the target date, expressed as: X =

f(Y,Yt ,Xt). Multi-parameter fusion-based downscaling utilizes auxiliary

parameters to reflect the real-time surface states and estimate the HR SM
data, but is constrained by the quality of these auxiliary parameters, and
thus suffers from spatial and temporal instability. Spatio-temporal
fusion-based downscaling is based on the spatio-temporal information
of SM, and requires no auxiliary parameters. However, this approach
struggles with drastic SM changes between the target and the reference
dates. There is strong complementarity between these two categories,
but a lack of unification.

In this study, we aimed to conduct generalized spatio-temporal-
spectral fusion to integrate the complementary features between
multi-source auxiliary parameters and multi-temporal SM products to
generate HR SM data with high stability and high quality. To this end,
we broadly defined the spectral characteristics of geographic objects as a
collection of diverse attributes arranged according to certain rules at
specific spatio-temporal locations and scales. Thus, the auxiliary
parameter data (Z) can be regarded as the generalized spectral charac-

Fig. 4. The network structure.

Fig. 5. Combined plots of R values and ubRMSE values for the various com-
parison methods on the T1 test set.

Table 3
Training, validation, and test sets and in-situ datasets.

Dataset size Time range Missing data rate

AP9 P36 MODIS products

Training 40 × 40 × 27920 2015/05/01–2015/06/29 ≤40 % ≤40 % ≤2%
Validation 40 × 40 × 1095 2015/04/15–2015/04/30 ≤40 % ≤40 % ≤2%
Test 1496 × 3856 × 16 2015/04/15–2015/04/30 (T1) − − −

1496 × 3856 × 115 2015/07/08–2015/10/31 (T2)
In-situ 260 points 2015/04/15–2015/07/07 (T1)2015/07/08–2015/10/31 (T2) − − −

Product comparison 1496 × 3856 × 667 2016, 2022 − − −

Table 4
Average quantitative evaluation on the T1 test set.

Method R bias RMSE ubRMSE

Ideal data 1 0 0 0
P36 0.7576 − 0.0021 0.1098 0.1092
Generalized spatial-spectral fusion
(GSSF)

0.8297 0.0089 0.0933 0.0928

Spatio-temporal fusion (STF) 0.9065 − 0.0020 0.0714 0.0713
Generalized spatio-temporal-
spectral fusion (Proposed)

0.9368 − 0.0014 0.0583 0.0582
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teristics of SM, and the multi-parameter fusion-based downscaling can
be regarded as a generalized spatial-spectral fusion-based approach, as
shown in Fig. 2. Generalized spatio-temporal-spectral integrated fusion
is proposed to merge the generalized spectral characteristics from
auxiliary parameters (Z) and the spatio-temporal features from multi-
temporal SM data (Y,Yt ,Xt) for precise SM downscaling, which can be
formulated as: X = f(Y,Yt ,Xt ,Z).

The significant differences in scale and modality among the multi-
source auxiliary parameters and SM products pose a challenge to the
collaborative expression of their complementary information. Owing to
the strong feature extraction and representation capabilities, machine
learning excels in characterizing complex nonlinear relationships within
data, while the GAN and its variant models have demonstrated
outstanding performances in fusing multi-modal data (Aggarwal et al.,
2021; Wu and Biljecki, 2023). Therefore, in this paper, based on a ma-
chine learning framework, we propose a spatio-temporal constrained

cycle generative adversarial network (STC-CycleGAN) to mine the
complementary spatio-temporal-spectral features from multi-source
auxiliary parameters and SM products to achieve high-precision global
daily SM downscaling.

3.2. Spatio-temporal constrained cycle generative adversarial network
(STC-CycleGAN)

In this section, X represents the ideal HR SM data of the target date,
namely AP9; Y represents the LR SM data of the target date to be
downscaled, namely P36; Xt and Yt represent the composed baseline SM
pair of the reference date, namely AP9base and P36base, respectively; and Z
represents the various auxiliary parameters, including NDVI, LST,
reflectance (Ref), longitude (Lon), latitude (Lat), DEM, and TB.

The flowchart of the proposed framework is depicted in Fig. 3. The
inputs undergo necessary preprocessing steps, including resampling and

Fig. 6. The composed downscaling results on the T1 test set.
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reprojection, before being fed into the proposed STC-CycleGAN
network. The STC-CycleGAN network is made up of a forward inte-
grated fusion stage for generating downscaling results and a backward

spatio-temporal constraint stage to implement spatio-temporal cycle
constraints.

3.2.1. The forward integrated fusion stage
As shown in Fig. 3, the forward integrated fusion stage comprises a

forward fusion generator network and a forward discriminator network,
which optimize their parameters through a minimax game. Specifically,
the forward fusion generator aims to produce a downscaled result by
integrating the multi-source inputs, as described in Eq. (1):

Xd = GF((Y,Yt ,Xt ,Z);ΘGF) (1)

Fig. 7. Bias between the downscaling results and the reference in Fig. 6. Bias > 0 indicates SM overestimation (red), bias < 0 indicates SM underestimation (blue),
bias ≈ 0 indicates accurate SM estimation (green).

Fig. 8. Detailed spatial information of the downscaled SM (Fig. 6(a), black box areas).

Table 5
Average quantitative evaluation on the T2 test set.

Method R bias RMSE ubRMSE mean SF

Ideal data 1 0 0 0 0.2125 (P36) +∞
GSSF 0.9622 0.0106 0.0366 0.0349 0.1988 0.0321
STF 0.9419 0.0211 0.0494 0.0447 0.1950 0.0396
Proposed 0.9424 0.0049 0.0460 0.0457 0.2061 0.0421
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where GF(⋅) represents the forward fusion generator network function,
andΘGF denotes its trainable parameters. (Y,Yt ,Xt ,Z) is the multi-source
input, and Xd is the output downscaled result.

The forward discriminator network aims to differentiate between the

downscaled result and the label data (i.e., Xd and X, respectively) to
drive the forward integrated fusion generator to produce downscaling
results that are closer to the label data. The network optimizes its pa-
rameters using the following loss function:

Fig. 9. The composed downscaling results for the last 16 days of the T2 period.

Fig. 10. Detailed spatial information of the downscaled SM (Fig. 9(a), black box areas).
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LDF =
1
N

∑N

i=1
DF(Xd,ΘDF) −

1
N

∑N

i=1
DF(X,ΘDF)

+ λ
1
N

∑N

i=1

(
‖∇X̂DF(X̂,ΘDF) ‖2 − 1

)2
(2)

where DF(⋅) represents the forward discriminator network function, and
ΘDF denotes its trainable parameters. In this study, given the instability
of GAN training and the high heterogeneity of the input data, we
adopted techniques from WGAN and WGAN-GP (Arjovsky et al., 2017;
Gulrajani et al., 2017), utilizing the Wasserstein distance and a gradient
penalty term in the loss function to enhance the stability and accuracy.
Specifically, the first two terms in Eq. (2) represent the critic losses on
the generated (fake) data and the label (real) data to measure the dis-
criminator’s performance. The third term is the gradient penalty, where
X̂ = εX+(1 − ε)Xd is the interpolation between Xd and X using a random
number ε in the range [0,1]. λ is the penalty coefficient, which is
empirically set to 10.

3.2.2. The backward spatio-temporal constraint stage
The ideal downscaled SM should maintain an overall value distri-

bution consistent with the LR SM at the target date (i.e., Y) and preserve
the detail richness consistent with the HR SM at the reference date (i.e.,
Xt). To this end, the backward spatio-temporal constraint stage is
introduced following the forward integrated fusion stage, which gen-
erates partial input observations in reverse from the downscaling result,
forming a spatio-temporal cycle-consistent constraint with the forward
input. Specifically, the backward stage utilizes a spatial degradation
branch to regenerate P36 backward from the downscaling result and
utilizes a temporal generator network to regenerate AP9 backward from
the downscaling result. These two processes can be written as:
{

Y∗ = AXd +N
X*t = GB(Xd;ΘGB)

(3)

where the upper term represents the spatial degradation branch of the
downscaling result, which is typically formulated by the downsampling
matrix A and the noise N, and is achieved through spatial resampling

operations in the proposed network. Y∗ is the reverse-generated P36 (i.e.,
P36* in Fig. 3).GB(⋅) in the lower term represents the backward temporal
generator network function used to implement temporal transformation
on the downscaling result, with ΘGB denoting the corresponding train-
able parameters. X∗

t denotes the reverse-generated AP9
base (i.e., AP9base* in

Fig. 3). Thus, a cycle forms between the forward inputs (Y, Xt) and the
backward outputs (Y∗,X∗

t ).
The backward discriminator network engages in an adversarial game

with the backward temporal generator and the spatial degradation
branch. It aims to differentiate between (Y, Xt) and (Y∗,X∗

t ) to indirectly
guide the forward integrated fusion stage to generate downscaling re-
sults that maintain the valid spatio-temporal information of the forward
inputs (Y, Xt). The loss function of the backward discriminator network
can be formulated as:

LDB =
1
N

∑N

i=1
DB

( (
Y*,X*t

)
,ΘDB

)
−
1
N

∑N

i=1
DB((Y, Xt),ΘDB )

+ λ
1
N

∑N

i=1

( ⃦
⃦∇(Ŷ,X̂t )DB((Ŷ, X̂t),ΘDB )

⃦
⃦
2 − 1

)2 (4)

where DB(⋅) and ΘDB represent the backward discriminator network
function and its respective trainable parameters, respectively. Similar to
Eq. (2), the first two terms are the normal critic losses, and the third term
is the gradient penalty.

3.2.3. Network structure
The proposed model is made up of two generator networks with

identical structures and two discriminator networks with the same ar-
chitectures. Fig. 4 depicts the network structure, using the forward
generator and discriminator as examples. As shown in Fig. 4(a), the
generator network begins with a convolutional (Conv) layer to trans-
form the multi-source inputs (size of m × n) into the feature domain.
Subsequently, two convolutional layers with a stride of 2 (S2) are
employed for the feature encoding, reducing the feature scale to 1/4
while increasing the feature number by four times. Six residual blocks
(He et al., 2016) are then utilized to extract deep features while simul-
taneously preserving shallow information and facilitating multi-

Table 6
The average accuracy of the downscaled SM against in-situ measurements.

Networks Method T1 T2

R bias RMSE ubRMSE R bias RMSE ubRMSE

​ Ideal data 1 0 0 0 1 0 0 0
USCRN P36 0.6576 − 0.0062 0.0802 0.0418 0.5998 − 0.0245 0.0734 0.0437

AP9 0.5437 0.0310 0.0998 0.0578 − − − −

GSSF 0.5952 0.0169 0.0823 0.0451 0.5880 − 0.0232 0.0735 0.0443
STF 0.5927 0.0190 0.0879 0.0450 0.5764 ¡0.0202 0.0785 0.0449
Proposed 0.6396 0.0061 0.0860 0.0442 0.5918 − 0.0227 0.0798 0.0449

SCAN P36 0.5882 − 0.0153 0.0784 0.0458 0.5748 − 0.0232 0.0754 0.0487
AP9 0.4807 0.0415 0.1035 0.0648 − − − −

GSSF 0.5305 0.0119 0.0784 0.0489 0.5631 − 0.0192 0.0748 0.0496
STF 0.5236 0.0241 0.0864 0.0483 0.5519 − 0.0079 0.0828 0.0491
Proposed 0.5536 0.0172 0.0816 0.0493 0.5659 ¡0.0071 0.0799 0.0495

Others of ISMN P36 0.6670 − 0.0047 0.0708 0.0409 0.7532 − 0.0218 0.0704 0.0414
AP9 0.5528 0.0256 0.0968 0.0638 − − − −

GSSF 0.5759 0.0166 0.0788 0.0479 0.7382 ¡0.0199 0.0707 0.0428
STF 0.6114 0.0150 0.0744 0.0451 0.7271 − 0.0235 0.0721 0.0439
Proposed 0.6565 0.0001 0.0693 0.0406 0.7403 − 0.0236 0.0726 0.0425

ARS Micronet P36 0.8169 − 0.0145 0.0690 0.0432 0.7619 0.0070 0.0648 0.0405
AP9 0.7567 0.0233 0.0804 0.0576 − − − −

GSSF 0.8048 0.0038 0.0718 0.0481 0.7364 0.0245 0.0691 0.0436
STF 0.8189 ¡0.0017 0.0714 0.0401 0.7543 0.0314 0.0690 0.0412
Proposed 0.8279 − 0.0103 0.0691 0.0420 0.7574 0.0034 0.0666 0.0415

Average P36 0.6456 − 0.0105 0.0766 0.0434 0.6338 − 0.0204 0.0728 0.0450
AP9 0.5393 0.0336 0.0989 0.0618 − − − −

GSSF 0.5844 0.0135 0.0790 0.0475 0.6202 − 0.0164 0.0731 0.0462
STF 0.5889 0.0184 0.0832 0.0459 0.6116 ¡0.0108 0.0782 0.0461
Proposed 0.6248 0.0080 0.0794 0.0454 0.6248 − 0.0139 0.0772 0.0460
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Fig. 11. Downscaling results for 2016 and 2022.

Fig. 12. Diurnal SM variation curves for 2016 and 2022.
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dimensional information interaction. Subsequently, to revert the fea-
tures to the initial image scale, two deconvolutional (DeConv) layers
with a stride of 2 are employed for the feature decoding. Finally, a
convolutional layer is utilized to transform the features back to the
image domain, outputting the downscaling result.

Similar to Pan et al. (2021) and Jiang et al. (2022b), the generator
network employs 7 × 7 convolutional kernels for transformation be-
tween the image and feature domains, 3 × 3 convolutional kernels for
feature encoding and extraction, and 4 × 4 convolutional kernels for
feature decoding. It incorporates batch normalization (Batch-norm) for
feature normalization, and utilizes a rectified linear unit (ReLU) acti-
vation function in the preceding layers, followed by tanh activation
function in the final layer.

As illustrated in Fig. 4(b), the discriminator network primarily relies
on 4 × 4 convolutions with a stride of 2 for the feature encoding (Isola
et al., 2017, Pan et al., 2021). The final layer employs a sigmoid acti-
vation function to transform the outputs into the value range of 0 to 1,
thus facilitating the discrimination between real and fake samples. To

ensure thorough optimization of the network parameters, no normali-
zation layers are used in the discriminator network, to preserve the
gradient of each input in a batch independently (Gulrajani et al., 2017).

3.2.4. Loss function of the generator networks
Deep learning networks calculate errors through loss functions and

propagate these errors backward to update the trainable parameters. In
the proposed network, the two discriminator networks optimize their
parameters using the adversarial loss functions specified in Eq. (2) and
Eq. (4). The two generator networks are trained together using a com-
bined loss function. This combined loss function includes the regular
adversarial loss between the generators and discriminators to steer the
data distribution of the outputs (Gulrajani et al., 2017), as well as the
content loss to ensure the pixel-level accuracy in the output results
(Jiang et al., 2022b). The combined loss function can be formulated as
follows:

LG = Ladv+αLnum+ βLcyc (5)

where LG represents the total loss function for the generator networks.
Ladv denotes the adversarial loss between each generator and discrimi-
nator pair, which can be written as:

Ladv = −
1
N

∑N

i=1
DF(Xd) −

1
N

∑N

i=1
DB

(
Y∗,X∗

t
)

(6)

Lnum and Lcyc in Eq. (5) are the content loss functions, which can be
formulated as follows:

Table 7
Quantitative evaluation of auxiliary parameter selection on the validation set.

Strategy Idea
data

ST
(benchmark)

ST + TB ST + NDVI ST + LST ST + Ref ST + DEM ST + LonLat ST + TB + NDVI + Ref

R 1 0.7919 0.7947 0.7960 0.7912 0.7940 0.2916 0.7536 0.8008
bias 0 0.0029 0.0026 0.0005 0.0044 0.0027 0.0569 0.0082 0.0023
RMSE 0 0.0418 0.0409 0.0408 0.0415 0.0408 0.1073 0.0458 0.0399
ubRMSE 0 0.0405 0.0397 0.0396 0.0402 0.0395 0.0815 0.0431 0.0386

Fig. 13. Boxplots of the average quantitative evaluation results listed in Table 7.

Table 8
Quantitative evaluation of the different fusion strategies on the T1 test set.

Fusion
strategy

Inputs R bias RMSE ubRMSE

I P36 + TB + NDVI +
Ref

0.8646 0.0033 0.0840 0.0839

II P36 + AP9base + P36base 0.9307 0.0029 0.0610 0.0609
III P36 + AP9base + P36base

+ TB + NDVI + Ref
0.9368 ¡0.0014 0.0583 0.0582
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Lnum =
1
N

∑N

i=1
‖Xd − X‖1 (7)

Lcyc =
1
N

∑N

i=1

⃦
⃦(Y∗,X∗

t )− (Y,Xt)
⃦
⃦
1 (8)

Eq. (7) denotes the numerical consistency loss term between the
downscaling result and the HR SM label data, ensuring pixel-level con-
sistency between them. Eq. (8) represents the spatio-temporal cycle-

consistency loss between the outputs of the backward stage and the
inputs of the forward stage, thus ensuring that the crucial spatio-
temporal information from the input data is preserved in the down-
scaling result. α and β are two adjustable parameters that balance these
terms, which are set as α = 500 and β = 10.

The overall training process of the STC-CycleGAN network is sum-
marized in Algorithm 1. After training the network, the global SM
products and the corresponding auxiliary parameters are fed into the
trained forward fusion generator to produce the global daily down-
scaling results.

Fig. 14. The local composed SM downscaling results and the corresponding absolute residual images from 2015/04/15 to 2015/04/22.

Table 9
Effectiveness analysis of the proposed model components and loss functions on the validation set.

Ideal data w/o (7) w/o (8) w/o (7)＆ (8) w/o discriminators w/o backward stage Proposed

R 1 0.4325 0.7985 0.1717 0.7987 0.7983 0.8008
ubRMSE 0 0.0698 0.0390 0.0910 0.0388 0.0389 0.0386

Table 10
Sensitivity analysis of weight parameters α and β on the validation set.

Effect of weight parameter α on the validation set with β = 10

α Ideal data 100 200 300 400 500 600 700 800 900 1000

R 1 0.7881 0.7976 0.7989 0.7994 0.8008 0.7992 0.7992 0.7974 0.8004 0.7988
ubRMSE 0 0.0399 0.0392 0.0388 0.0388 0.0386 0.0389 0.0389 0.0392 0.0388 0.0388
Effect of weight parameter β on the validation set with α = 500
β Ideal data 5 10 15 20 25 30 35 40 45 50
R 1 0.8007 0.8008 0.7984 0.7995 0.7980 0.7951 0.7976 0.7947 0.7948 0.7894
ubRMSE 0 0.0388 0.0386 0.0388 0.0388 0.0390 0.0391 0.0391 0.0391 0.0392 0.0394

Table 11
Effect of the kernel size on the validation set.

Kernel size k1 = 3 k1 = 5 k1 = 9 k2 = 5 k2 = 7 k3 = 5 k3 = 7 k4 = 3 k5 = 3 k5 = 5 Proposed
(k1,2,3,4,5 = 7,3,3,4,4)

R 0.7967 0.8005 0.7999 0.7987 0.7971 0.8001 0.7953 0.7983 0.8002 0.7973 0.8008
ubRMSE 0.0392 0.0389 0.0390 0.0389 0.0389 0.0389 0.0390 0.0389 0.0388 0.0390 0.0386

*Note: k1 represents the kernel size in the domain transformation layers, k2 represents the kernel size in the feature encoding layers, k3 represents the kernel size in the
residual blocks, k4 represents the kernel size in the deconvolutional layers, and k5 represents the kernel size in the discriminator network.
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4. Experiments

For the hyperparameters of the network training, we initialized the
learning rate at 0.0005, keeping this constant for the initial 75 epochs
and then decaying to 0 over the final 75 epochs linearly. The Adam
optimizer (Kingma and Ba, 2015) was employed to optimize the train-
able parameters. In the following, the experimental datasets are first
introduced. The qualitative and quantitative experimental results for the
different periods and the in-situ site validations are then provided.
Finally, a comparison with the SMAP enhanced 9-km SM (EP9) product
is presented.

4.1. Training, validation, and test sets and in-situ datasets

Table 3 details the experimental datasets used for training, valida-
tion, testing, and in-situ site verification. Given that the synthesis of the
baseline HR-LR SM pair mainly relied on the AP9 and P36 products from
June 30, 2015, to July 7, 2015, and the prevalent issue of missing data in
the daily SMAP SM products, we generated 27,920 blocks for the
network training from May 1, 2015, to June 29, 2015. We then gener-
ated 1095 blocks for the validation from April 15, 2015, to April 30,
2015. As listed in Table 3, each training block was 40 × 40 in size and
had a certain limit on the data missing rate. In the testing, to compre-
hensively verify the performance of the proposed approach at a global
scale, we referred to Jiang et al. (2019) and divided the dates into T1
with AP9 available (2015/04/15 to 2015/07/07) and T2 with AP9 un-
available (2015/07/08 to 2015/10/31). Correspondingly, the in-situ SM
validation was performed on the in-situ measurements from the various
site networks during T1 and T2. Moreover, to thoroughly validate the
robustness and long-temporal transferability, the results of the proposed
approach were compared to the EP9 product for the years 2016 and
2022.

4.2. Experiments on the T1 test set with AP9 available

For the T1 test set with available AP9 data from 2015/04/15 to
2015/07/07, four representative metrics are utilized here for the
quantitative assessment: the correlation coefficient (R, unitless), bias

(m3/m3), the root-mean-square error (RMSE, m3/m3), and the unbiased
RMSE (ubRMSE, m3/m3) (Entekhabi et al., 2010b). To evaluate the
performance of the proposed method, we compared the ANN (Liu et al.,
2020), RF, ResNet (Zhao et al., 2022), and light gradient boosting ma-
chine (LGBM) (Luo et al., 2023) models from the generalized spatial-
spectral fusion category and the STFM (Jiang et al., 2019), extended
super-resolution convolutional neural network (ESRCNN) (Shao et al.,
2019), VIPSTF (Yang et al., 2022), and GAN-based STFM (GANSTFM)
(Tan et al., 2022) methods from the spatio-temporal fusion category.
Fig. 5 presents the R and ubRMSE values for these methods. As shown in
the figure, LGBM achieved a relatively high R value and lower ubRMSE
value within the generalized spatial-spectral fusion category, while
ESRCNN performed well in the spatio-temporal fusion category.
Therefore, for brevity, LGBM and ESRCNN were selected as represen-
tative methods from each category for a more detailed comparison and
analysis with the proposed method.

Table 4 presents the average quantitative evaluation values across 16
sets of test data for T1 with AP9 as the reference, with the best perfor-
mance marked in bold. As can be observed in Table 4, the generalized
spatial-spectral fusion (GSSF)-based downscaling method achieves
slightly higher accuracy than the P36 product, while the spatio-temporal
fusion (STF)-based downscaling method outperforms the GSSF method
across all metrics. The proposed generalized spatio-temporal-spectral
integrated fusion-based downscaling method combines the respective
advantages of these two methods and yields the best results across all
metrics.

Fig. 6 shows the composed SM downscaling results on the T1 test set.
Visually, the GSSF method produces a downscaling result that is
spatially similar to the P36 product but with less detail than the AP9
product. It also exhibits local underestimation of high SM values, as
depicted by the rectangle in Fig. 6(c). The STF method produces richer
spatial structures. However, it results in obvious local overestimation of
the SM values, as shown in the red rectangle in Fig. 6(d). The proposed
method mines the complementary information between the multiple
auxiliary parameters and the multi-temporal SM products, yielding re-
sults that are closest to the reference, as shown in Fig. 6(e). Regarding
the R and ubRMSE metrics, the 16-day composite operation during the
T1 period enhances the correlation between the downscaling results and

M. Jiang et al. ISPRS Journal of Photogrammetry and Remote Sensing 218 (2024) 70–86 

82 



the reference data, and reduces the performance gaps among the various
downscaling methods. However, the proposed method still achieves the
best performance in both the R and ubRMSE metrics by a significant
margin, which is consistent with its visual performance. Fig. 7 shows the
bias between the various downscaling results and the reference in Fig. 6.
As in Fig. 7, both GSSF and STF result in notable local overestimation
and underestimation of SM, especially in South America and Central
Africa. In contrast, the proposed method exhibits minimal bias both
globally and locally, demonstrating its superiority.

Three representative sub-regions in Fig. 6(a) are zoomed in on in
Fig. 8. In these patches, the GSSF method exhibits pronounced under-
estimation of the high SM values. In addition, because of the absence of
SM spatio-temporal information and the common pixel-wise learning
mode in the generalized spatial-spectral fusion approaches, the GSSF
result shows grainy spatial details. These details are only slightly richer
than those in the P36 product, highlighting a notable disparity when
compared to the AP9 product. The STF method, which relies solely on
the spatio-temporal information of SM, effectively preserves the spatial
characteristics of SM. However, it is susceptible to potential changes in
SM values between the target and baseline dates, leading to localized
distortion, as shown in Patch 3. The proposed method incorporates both
the spatio-temporal features of SM and the generalized spectral features
from auxiliary parameters, allowing it to obtain SM data with rich de-
tails and stable quality.

4.3. Experiments on the T2 test set with AP9 unavailable

To compare the temporal extrapolation capabilities of the different
methods, experiments were conducted on the T2 test set. This time, due
to the unavailability of AP9 data, we downsampled the fusion results to
36 km and used P36 as a reference to quantitatively evaluate the per-
formance at the low resolution. In addition, we included two metrics:
mean (m3/m3) and spatial frequency (SF, cycles/km), which do not
require a reference, to assess the numerical distribution and spatial
structure of the downscaling results at the 9-km resolution.

Table 5 lists the average quantitative evaluation results for 115 test
data pairs for the T2 period, with the best-performing values highlighted
in bold for each metric. It can be observed that, when using P36 as a
reference for the quantitative evaluation, the performance gaps among
the three methods are smaller than those in Table 4, with GSSF showing
the best performance. The lower quantitative results of the proposed
method when compared to the GSSF method may be due to the inherent
accuracy differences between the AP9 and P36 products. Nevertheless,
the proposed results maintain a high correlation with both AP9 and P36.
For the mean and SF metrics, all three methods produce mean values
that are lower than that of the P36 product, while the proposed method
has a mean that is closest to P36, and the highest SF value.

Fig. 9 displays the composed downscaling results for the last 16 days
of the T2 period (2015/10/16 to 2015/10/31). As depicted in the figure,
the GSSF downscaling result is generally consistent with the P36 product
visually, but the mean and SF values are lower than those of P36, indi-
cating some underestimation of SM values and a significant deficiency in
spatial resolution enhancement. The STF method inputs multi-temporal
SM data and produces downscaling results that are rich in spatial details.
However, it tends to overestimate SM values in regions such as South
America and underestimate them in areas such as North America,
resulting in an overall low mean SM value. The proposed method fully
mines the spatio-temporal characteristics from the SM products and the
real-time surface state characteristics from the auxiliary parameter data,
and produces visually superior results, as shown in Fig. 9(d).

Fig. 10 further analyzes three representative patches selected from
Fig. 9. Consistent with the global result, the results of the GSSF method
lack spatial details and underestimate high SM values, resulting in low
mean and SF values. Although the STF method achieves the highest SF
values in some patches, it shows significant overestimation in Patch 1
and considerable underestimation in Patch 3. In the results of the

proposed method, the SM distribution aligns with that of the P36 prod-
uct, and the proposed method generates rich and reliable spatial details,
demonstrating its favorable temporal extrapolation capability.

4.4. In-situ site validation for the T1 and T2 periods

Considering the limited availability of the AP9 product, and to
comprehensively evaluate the performance of the proposed method,
quantitative assessments were conducted for both the T1 and T2 periods
using the in-situ SM datasets listed in Table 2. Due to the disparities in
the sensing devices and measurement depths between the satellite and
in-situ SM data, as well as the spatial limitation of the in-situ station
coverage not completely matching the corresponding satellite SM pixels,
we focus on the temporal variations in SM that are less impacted by
these factors. Furthermore, since a satellite SM pixel may encompass
multiple in-situ sites, the arithmetic mean of these sites was calculated to
assess the satellite pixels.

In Table 6, the left side presents the in-situ site validation results for
the T1 period, while the right side is the T2 period. The best-performing
results are indicated in bold, with the second-best results underlined. To
simplify the tables and highlight the performance of the proposed
method across different site networks, we grouped the ISMN networks
with fewer sites, except for USCRN and SCAN, into the ‘Others’ category.
As listed in Table 6, P36 performs the best in most metrics, while AP9 is
inferior to P36 in all the metrics during the T1 period. The accuracy gap
between AP9 and P36 stems from the inherent differences in their esti-
mations (Entekhabi et al., 2010a). Due to the lower accuracy of AP9
compared to P36, and as the proposed network was trained using the AP9
product as label data, the in-situ validation metrics of the proposed
method are slightly inferior to those of P36 but significantly better than
those of AP9. This indicates that the proposed method not only improves
the spatial resolution of P36 but also effectively maintains its high
accuracy.

Since the R and ubRMSE metrics are less affected by the SM value on
individual dates, they can better reflect the correlation between the
temporal series of downscaling results and the in-situ measurements. As
shown in Table 6, for most site networks, the R values of the proposed
method are slightly lower than those of the P36 product (0.021 lower on
average during the T1 period and 0.009 lower on average during the T2
period), but higher than those of the other methods. The ubRMSE values
of the proposed method are only about 0.001 to 0.002 higher than those
of the P36 product across the different site networks during both T1 and
T2 periods, demonstrating the reliability of the proposed method.

4.5. Comparison with the EP9 product

To validate the capability of the proposed approach in generating
long-term products, the result of the proposed method was compared
with the EP9 product in 2016 and 2022. The EP9 product was developed
by the SMAP team to address the absence of the AP9 product. It was
generated using the Backus-Gilbert interpolation algorithm based on the
36-km passive microwave products (Chan et al., 2018). During the
proposed product production, residual correction (Jiang et al., 2019)
was performed to alleviate the influence of the long intervals between
the target and the baseline dates and maintain the high accuracy of the
P36 product.

Fig. 11 presents a representative patch of the P36 product, the EP9
product, and the downscaling results of the proposed method, composed
at three-month intervals for the years 2016 and 2022. As shown in the
figure, the EP9 product appears close to the P36 product, without a
discernible increase in spatial details. The proposed method can effec-
tively maintain the overall SM distribution of the P36 product while
increasing its spatial detail information. Moreover, the SM in Patch 1
increases from spring to autumn in 2016, with a slight decrease in
winter, whereas the SM in Patch 2 undergoes a transition from high
values to low values and back to high values in 2022. These SM changes
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are clearly presented in the results of the proposed method, showcasing
the reliable temporal transferability of the proposed method. Fig. 12
presents the daily global average SM curves for the proposed method,
the EP9 product, and the P36 product. It is clear that the curves of the
proposed method align more closely with the P36 curve than the EP9
curves do, demonstrating the high accuracy of the proposed method.

5. Discussions

In this section, we further analyze the performance of the proposed
method through auxiliary parameter selection, fusion strategy compar-
ison, and sensitivity analysis.

5.1. Auxiliary parameter selection

Unlike the multi-parameter fusion (i.e., generalized spatial-spectral
fusion)-based downscaling methods that rely on a certain number of
auxiliary parameters to guarantee a good performance, the proposed
method additionally inputs the spatio-temporal SM information and
mitigates the requirement for auxiliary parameters. Consequently, it is
essential to screen the auxiliary parameters to identify the positive ones.
To this end, we conducted ablation experiments on the validation set
using the spatio-temporal fusion input (P36, P36base, AP9base) as the
benchmark. Table 7 lists the quantitative results for each auxiliary
parameter, highlighting the best performance in bold for each metric. It
can be seen that, except for DEM, the auxiliary parameters considered in
this study do not significantly reduce the experimental performance.
Fig. 13 presents boxplots of the quantitative evaluation results, except
for (ST + DEM). It is evident that TB, NDVI, and Ref exhibit positive
effects across all metrics, and their combination (ST+ TB+NDVI+ Ref)
outperforms any single auxiliary parameter in the R, RMSE, and
ubRMSE metrics. Therefore, this combination was adopted in the pro-
posed method, while all the auxiliary parameters were utilized in the
GSSF comparison method.

5.2. Comparison of different fusion strategies

In order to explore the performance of the proposed STC-CycleGAN
network under different input combinations, we considered the
following fusion strategies: (I) generalized spatial-spectral fusion with
the input of the LR SM and HR auxiliary parameters (i.e., P36 + TB +

NDVI + Ref); (II) spatio-temporal fusion with only the SM products as
input (i.e., P36 + AP9base + P36base); and (III) generalized spatio-temporal-
spectral fusion with both the auxiliary parameters and SM products as
input (i.e., P36 + AP9base + P36base + TB + NDVI + Ref).

Table 8 lists the quantitative evaluation results on the T1 test set
under the various inputs. As listed in the table, both Inputs I and II yield
acceptable results, and their combination (i.e., III) exhibits the best
performance across all the metrics. This indicates the complementarity
between the auxiliary parameters and the spatio-temporal information
of SM and demonstrates the superiority of the proposed generalized
spatio-temporal-spectral integrated fusion strategy.

Fig. 14 shows the composed SM downscaling results and the absolute
residual images between the reference and the downscaling results from
2015/04/15 to 2015/04/22. As depicted in Fig. 14, Input I produces
downscaling results that are consistent with P36, but with limited details,
as in the black rectangle. Input II generates downscaling results with rich
spatial details but some localized distortions, as shown in the black oval.
This phenomenon is likely due to the SM changes between the target and
baseline date, and would be more significant with an increased date
interval. Input III combines the respective advantages of the above
strategies and produces downscaling results that are closest to the
reference.

5.3. Effectiveness and sensitivity analysis

The proposed model comprises multiple generator and discriminator
networks, along with various loss functions. To verify their contribu-
tions, ablation experiments were conducted on the validation set using
the R and ubRMSE metrics. Table 9 presents the average quantitative
evaluation results, indicating that the content loss, which is made up of
the numerical consistency loss (Eq. (7) and the spatio-temporal cycle-
consistency loss (Eq. (8), significantly impacts the model performance,
with the numerical consistency loss (Eq. (7) being the most important.
Removing either the discriminator networks or the backward spatio-
temporal constraint stage reduces the quantitative accuracy, while
using both in the proposed method yields the best performance.

In addition, the loss function includes three adjustable weight pa-
rameters: α, β, and λ, which are crucial for the proposed downscaling
task. Since the gradient penalty weight λ is typically empirically set to 10
for stable training performance (Gulrajani et al., 2017), a sensitivity
analysis of α and β was conducted on the validation set. Specifically,
following Pan et al. (2021), we fixed β at 10 and varied α within the
range [100, 1000] in increments of 100. Table 10 shows that the model
performs best with α = 500. Similarly, β = 10 is found to achieve the best
performance. Therefore, α was set to 500 and β to 10 in this study.
Furthermore, Table 11 illustrates the effect of the kernel size on the
validation set. This shows that, except for k1, which is used for domain
transformation in the first and last layers of the generator network,
smaller kernel sizes (3 or 4) for the other kernels (k2, k3, k4, k5)
generally lead to a better performance. The proposed settings achieve
the best results.

6. Conclusions

In this paper, by broadly defining the spectral characteristics of
geographic objects, we have proposed a generalized spatio-temporal-
spectral integrated fusion framework to integrate the generalized spec-
tral features of auxiliary parameters with the spatio-temporal features of
the target parameter to achieve high-precision downscaling of the target
surface parameter. Specifically, we used the SM parameter as a case
study and developed the STC-CycleGAN network to downscale SM using
this integrated fusion strategy. The developed STC-CycleGAN network is
made up of a forward integrated fusion stage and a backward spatio-
temporal constraint stage, combined with a spatio-temporal cycle-con-
sistency loss function. Qualitative, quantitative, and in-situ site evalu-
ations showed that the proposed method can integrate the
complementary characteristics from the multi-source auxiliary param-
eters and SM data to obtain downscaling results that are consistent with
the LR SM data and rich in spatial details.

In the future, the proposed method could be further improved and
developed from the following aspects. From the perspective of data, it
will be of great significance to import more data sources. For example,
on the one hand, active microwave SM data with a higher resolution,
such as Sentinel synthetic aperture radar (SAR) data, could be intro-
duced to achieve higher-resolution downscaling for fine regional
monitoring. On the other hand, the assimilated SM data of dynamic
models with higher continuity could be incorporated to achieve seam-
less downscaling of SM for spatio-temporally continuous monitoring.
From the perspective of the network, it would be feasible to add real-
time P36 products to the network training through unsupervised or
fine-tuning strategies, to further enhance the stability and accuracy of
the downscaling model. From an application perspective, there is huge
potential to extend the proposed generalized spatio-temporal-spectral
integrated fusion framework to other surface parameters, such as LST
and precipitation.
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