
A thin cloud blind correction method coupling a physical model with 
unsupervised deep learning for remote sensing imagery

Liying Xu a, Huifang Li a,*, Huanfeng Shen a, Chi Zhang b, Liangpei Zhang c

a School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
b Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou 510800, China
c The State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan 430079, China

A R T I C L E  I N F O

Keywords:
Thin cloud correction
Physical model
Unsupervised learning
Feature separation network
Remote sensing images

A B S T R A C T

Thin cloud disturbs the observation of optical sensors, thus reducing the quality of optical remote sensing images 
and limiting the subsequent applications. However, the reliance of the existing thin cloud correction methods on 
the assistance of in-situ parameters, prior assumptions, massive paired data, or special bands severely limits their 
generalization. Moreover, due to the inadequate consideration of cloud characteristics, these methods struggle to 
obtain accurate results with complex degradations. To address the above two problems, a thin cloud blind 
correction (TC-BC) method coupling a cloudy image imaging model and a feature separation network (FSNet) 
module is proposed in this paper, based on an unsupervised self-training framework. Specifically, the FSNet 
module takes the independence and obscure boundary characteristics of the cloud into account to improve the 
correction accuracy with complex degradations. The FSNet module consists of an information interaction 
structure for exchanging the complementary features between cloud and ground, and a spatially adaptive 
structure for promoting the learning of the thin cloud distribution. Thin cloud correction experiments were 
conducted on an unpaired blind correction dataset (UBCSet) and the proposed TC-BC method was compared with 
three traditional methods. The visual results suggest that the proposed method shows obvious advantages in 
information recovery for thin cloud cover regions, and shows a superior global consistency between cloudy 
regions and clear regions. The TC-BC method also achieves the highest peak signal-to-noise ratio (PSNR) and 
structural similarity index measure (SSIM). The FSNet module in the TC-BC method is also proven to be effective. 
The FSNet module can achieve a superior precision when compared with five other deep learning networks in 
cloud-ground separation performance. Finally, extra experimental results show that the TC-BC method can be 
applied to different cloud correction scenarios with varied cloud coverage, surface types, and image scales, 
demonstrating its generalizability. Code: https://github.com/Liying-Xu/TCBC.

1. Introduction

The atmosphere is the place where radiative transfer mainly occurs, 
and atmospheric conditions inevitably affect the observation of the 
Earth’s surface from satellite platforms. Thin clouds, as one of the most 
common atmospheric phenomena, feature a thin optical thickness and 
high transparency, which allows ground features to be seen through 
them. Thin cloud include, but are not limited to, cirrus, stratiform, and 
partial cumulus clouds. In optical remote sensing images, thin clouds 
appear flat and lack clear boundaries, and can seriously degrade the data 
quality and thus limit subsequent applications, such as object recogni
tion, target detection, and natural resource monitoring. This implies that 

thin cloud correction is a necessary preprocessing procedure. Over the 
past few decades, several thin cloud correction approaches have been 
proposed for use with optical remote sensing images, especially for the 
visible and near-infrared (VNIR) bands. The proposed thin cloud blind 
correction (TC-BC) method is aimed at thin cloud correction on coastal 
and VNIR bands. The existing thin cloud correction approaches can be 
grouped into three categories: 1) radiative transfer equation (RTE)- 
based methods; 2) data-based methods; and 3) hybrid methods, as 
shown in Fig. 1.

The classic RTE expresses the top-of-atmosphere (TOA) radiance for 
a flat, Lambertian surface under a horizontally homogeneous atmo
sphere (Gao et al., 1998), and involves many in-situ parameters about 
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the atmosphere and the radiance. However, it is not practical to solve 
the RTE numerically for operational atmospheric correction. Further
more, the basic RTE is not sufficient to solve spatially heterogeneous 
problems, such as aerosols and thin clouds. As a result, some researchers 
have tried to estimate the spatial distribution and optical depth of 
aerosols or thin clouds to retrieve the land reflectance by considering the 
spatial and spectral relationship between the clear and cloudy regions 
(Richter, 1996; Liang et al., 2001). MODTRAN (Guanter et al., 2009) is a 
commonly used model for building look-up tables (LUTs) to obtain the 
path radiance, transmittance, and other parameters in the RTE. 
Although this is an effective way to raise the calculation efficiency, the 
approximation can limit the accuracy. Furthermore, the inherent con
figurations of some specific atmospheric profiles and aerosol models can 
also interfere with the understanding of the true state of the atmosphere. 
As a result, the RTE-based methods usually fail to deal with the thin 
cloud problem in remote sensing images, as thin clouds are usually 
heterogeneous in both the horizontal and vertical dimensions.

The data-based methods are independent of in-situ parameters, but 
are usually reliant on statistical information derived from the images. 
According to the characteristics of thin clouds, several representative 
methods for correcting thin clouds have been developed. In the spatial 
domain, dark channel prior based methods (Chavez, 1988; Kaiming 
et al., 2009; Makarau et al., 2014; Shen et al., 2020) and color attenu
ation prior based methods (Zhu et al., 2015) have been developed based 
on the high reflectance of cloud. In the spectral domain (Ahmad et al., 
2014), haze-optimized transform based methods (Zhang et al., 2002; He 
et al., 2010; Chen et al., 2016), tasseled cap transformation based 
methods (Crist and Cicone, 1984), and independent component analysis 
based methods (Shen et al., 2015) have been developed based on the 
correlation of cloud cover in different bands. In the frequency domain, 
homomorphic filtering based methods (Shen et al., 2014), wavelet 
transform based methods (Yong et al., 2002) and Gaussian low-pass 
filtering based methods (Liu et al., 2014) have been developed based 
on the spatial smoothness of cloud. Benefiting from the simplicity and 
effectiveness, these kinds of methods have been widely used. However, 
there are two deficiencies in these methods. Firstly, the traditional sta
tistical modeling methods usually simplify the relationship between 
cloudy regions and clear regions as a linear relationship, whereas the 
actual relationship is often nonlinear. Secondly, when the prior hy
pothesis is invalid, the empirical models cannot remove the cloud 
completely.

As a research hotspot in recent years, deep learning has been 
demonstrated to be a very powerful tool in the statistical information 
mining of remote sensing images. In the field of thin cloud correction, 
deep learning networks have a strong advantage in terms of complex 
nonlinear feature learning and can obtain better results than the tradi
tional methods. Scholars have studied convolutional neural networks 
(CNNs)and generative adversarial networks (GANs) and have proposed 
networks such as U-Net (Ronneberger et al., 2015), the residual neural 
network (ResNet) (He et al., 2016), and conditional generative 

adversarial networks (CGANs)(Mirza and Osindero, 2014). These net
works and their variants have been widely used in thin cloud correction 
tasks(Jiang and Lu, 2018; Qin et al., 2018; Enomoto et al., 2017; 
Grohnfeldt et al., 2018; Toizumi et al., 2019). Moreover, some networks 
have been proposed specifically to remove thin clouds, such as the re
sidual symmetrical concatenation network (RSCNet) (Li et al., 2019), 
and the spatial attention generative adversarial network (SPAGAN) 
model (Wang et al., 2019). However, as with the conventional end-to- 
end learning methods, these methods are supervised and need a lot of 
paired images of cloudy/clear data, which are not readily accessible. 
This is because the system of optical remote sensing image processing is 
complex (Povey and Grainger, 2015). The complexity lies in the un
certain interactions among the subsystems. Specifically, the random 
noise produced by the vibration of the satellite platform, the unknown 
environmental parameters that come from the reflection of the ground, 
and the scattering that occurs in the atmosphere all introduce nonlinear 
errors to the system. Accordingly, remote sensing images are unique 
under the same spatial and temporal conditions. As a result, there are no 
absolutely “cloudy/clear” paired images in the real world, which limits 
the effectiveness of these supervised methods. With the advancement of 
generative adversarial techniques, unsupervised GANs can achieve 
pixel-level estimation, which effectively simulates the influence of 
nonlinear and random errors. The cycle-consistent adversarial network 
(CycleGAN) (Zhu et al., 2017) makes it possible to train an unsupervised 
thin cloud correction network (Singh and Komodakis, 2018). Faced with 
the complex imaging process, unlike the update of supervised network 
parameters guided by a single data sample, the update of CycleGAN- 
based network parameters is conducted by back-propagation of a 
discriminative module, which considers all the images in the dataset. As 
a result, CycleGAN-based networks can effectively recover more realistic 
ground information from true cloudy images. However, these methods 
do not consider the random distribution of clouds, which results in low 
stability when dealing with complex cloudy images. In summary, the 
high cost of massive paired dataset construction and the low correction 
accuracy of the unsupervised algorithms limit the engineering value of 
the existing deep learning methods.

As mentioned above, the RTE-based methods focus on quantitative 
description and can accurately correct atmospheric degradation, but 
they require a lot of auxiliary parameters. The data-based methods are 
easily accessible, but the overly simple qualitative statistics result in 
miscorrection. The third type of method is the hybrid methods, which 
combine the advantages of the other two types of methods by simpli
fying the transfer model and coupling this with the statistical informa
tion in the images. However, to date, only a few hybrid methods have 
been developed. For example, Li et al. (2012) proposed a constraint 
based on band correlation to enhance the spatial details and improve 
thin cloud correction; Lv et al. (2016) used the linear statistical infor
mation derived from cloudy images to solve the unknown variables in 
the RTE empirically; and Zhang et al. (2021) demonstrated the feasi
bility of the use of scattering theory in describing the band variations of 

Fig. 1. The classification process of the thin cloud correction methods.
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thin cloud and then developed a cirrus correction method combining the 
statistical relationship between the coastal band and blue band. Cloud- 
related physical mechanisms have also been incorporated into deep 
learning networks to improve the accuracy of the correction, in methods 
such as Dehaze Net (Cai et al., 2016) and CR-GAN-PM (Li et al., 2020). 
These methods effectively improve the accuracy of cloud correction and 
have promoted the development of cloud correction of remote sensing 
images from qualitative processing to quantitative correction. However, 
this type of method still has a strong dependence on special bands or a 
huge paired training dataset. To sum up, there is room for the further 
development of hybrid methods.

Motivated by the above discussion, it is an important and significant 
challenge (Reichstein et al., 2019) for thin cloud correction studies to 
develop a high-precision method requiring less prior knowledge or 
training data. The unsupervised deep learning methods have strong 
applicability and can quantitatively learn the complex nonlinear corre
lation between images without auxiliary conditions. If the scattering law 
and imaging mechanism of the cloud can be taken into account in the 
unsupervised correction process, it should be possible to achieve a high- 
fidelity result without the prerequisites required in the afore-mentioned 
methods. Therefore, the TC-BC method coupling a physical model with 
generative adversarial learning is proposed in this paper. The TC-BC 
method achieves thin cloud correction by separating the cloud infor
mation and ground information in the cloudy images. The proposed 
approach is composed of three key components. Firstly, a self-training 
thin cloud correction framework is presented by integrating the RTE 
and a deep learning network to enhance the robustness and generaliz
ability of the TC-BC method. Secondly, a feature separation network 
(FSNet) module in the TC-BC method is designed to mine and use the 
spectral and spatial characteristics of the imagery, to achieve a high 
correction accuracy. The FSNet module can separate mixed cloud- 
ground information completely and identify the boundaries of thin 
clouds accurately. Thirdly, a small unpaired blind correction dataset 
(UBCSet) containing a thin cloudy set, a ground set, and a cloud set was 
built to train the TC-BC method. The UBCSet considers atmospheric 
scattering and the spectral correlation of clouds to improve the training 
speed of the TC-BC method and the correction ability in complex cloudy 
regions.

The novelty and contributions of the TC-BC method can be summa
rized as follows:

1) The TC-BC method is a general algorithm that needs less prior 
information.

2) The TC-BC method can remove and detect thin clouds simulta
neously, with a high degree of accuracy.

3) The training of the TC-BC method is based on an unpaired dataset, so 
that the cost of dataset construction is reduced.

4) The FSNet module shows a better performance than the existing 
networks and could likely be applied in similar domains beyond 
cloud correction, such as haze removal, shadow removal, and rain 
removal.

The rest of this paper is organized as follows. Section 2 introduces the 
related works. Section 3 explains the proposed method for thin cloud 
correction in detail. Section 4 introduces the datasets used in this study. 

Section 5 presents the experimental analysis and discussion, including 
the results obtained by the TC-BC method and the comparative methods. 
Finally, Section 6 presents our conclusions.

2. Related works

This section focuses on the imaging model for cloudy images and the 
unsupervised frameworks based on CycleGAN.

2.1. Imaging model for cloudy images

In order to eliminate the error introduced by the optical remote 
sensing imaging system, the experimental data used in this study were 
top-of-atmosphere (TOA) reflectance dat. In a cloudy region, the imag
ing model (Kneizys et al., 1980) can be expressed as shown in Eq.(1): 

Ii(x, y) = Ii
c(x, y)+T↓T↑

Ii
g(x, y)

1 − SIi
g(x, y)

(1) 

where Ii
c(x, y) is the cloud component of the TOA value at pixel (x, y) in 

band i, T↓(respectively T↑) is the total transmission of the atmosphere on 
the path between the sun and the surface (respectively between the 
surface and the sensor), Ii

g(x, y) is the land surface component of the TOA 
value at pixel (x, y) in band i, and S is the spherical albedo of the at
mosphere. The term of Sc is closer to 0, and T↓T↑ is typically greater than 
0.9. Eq. (1) can thus be simplified to an additive model and used in the 
TC-BC method: 

Ii(x, y) = Ii
c(x, y)+ Ii

g(x, y) (2) 

2.2. CycleGAN

CycleGAN-based networks are the prevailing methods in unsuper
vised training, and are made up of two generative modules (i.e.,GA2B and 
GB2A) and two discriminative modules (i.e.,DA and D B). In the earliest 
stage, CycleGAN (Zhu et al., 2017) was applied in the image-to-image 
translation task to transfer the style of two datasets (i.e., A and B). 
Singh and Komodakis (2018) proposed CloudGAN based on CycleGAN, 
which learns the mapping between the cloudy images (style A) and clear 
images (style B) to correct the thin cloud in the cloudy images. The 
unsupervised training process is implemented by cyclic consistency 
constraints, as shown in Fig. 2. Compared with the dataset of the 
traditional strongly supervised networks, the unpaired dataset of 
CloudGAN is easier to construct.

3. Methodology

In this section, the overall architecture and key structure of the 
proposed TC-BC method are introduced. Specifically, the self-training 
framework, FSNet module, and objective function are described in 
detail.

3.1. Self-training framework

It is a general consensus that massive data are a necessary 

Fig. 2. The framework of CloudGAN.
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requirement for deep learning algorithms. The existing algorithms al
ways adopt the idea of “training first, testing later”, which means that 
the network is first trained on a massive dataset to obtain a generalized 
model. This model is then applied to different thin cloud correction 
scenarios during the testing process. As a result, the effect of thin cloud 
correction is dependent on the quantity and quality of the training data, 
but has no relationship with the test data. Moreover, there are still two 
problems in the construction of the training dataset. Firstly, there are no 
“cloudy/clear” paired remote sensing images under the same spatial and 
temporal conditions. Secondly, because of the complex cloud and sur
face cover, it is difficult to build a massive dataset containing all the 
possible ground objects.

Based on the above analysis, we introduce the concept of “self- 
training” and aim to achieve a superior correction effect in cloudy im
ages. As shown in Fig. 3, the cloudy images are added to the UBCSet as 

the input and participate in the whole training process. Because of the 
coupling of a deep learning network and a physical model, the data 
utilization and information mining capabilities of the TC-BC method are 
improved. The TC-BC method can not only be trained without supervi
sion, but can also obtain the thin cloud corrected images and correction 
model simultaneously. The corrected images are the optimal cloud 
removal result for the original cloudy images.

The thin cloudy image input into the self-training framework is 
separated into cloud and ground components by the FSNet module. For 
the image processing task, the cloud component is the thin cloud 
detection result for the cloudy image, and the ground component is the 
corrected result. These two components are then reconstructed as a new 
cloudy image by the imaging model shown in Eq.(2). The TC-BC method 
needs to minimize the difference between the reconstructed thin cloudy 
image and the input image to achieve the self-training process, as shown 
in Fig. 4. At the same time, in order to ensure the calculability of the 
training process, a symmetrical structure is introduced, where the cloud 
reference image and ground reference image are the input. The two 
FSNet modules in the self-training framework share the same training 
weights. In addition, a Markov discriminator is introduced to guide the 
parameter update of the FSNet module during training. Unlike the input 
of the Markov discriminator in CycleGAN, the combination of the cloudy 
image and its ground component is used as the input of this discrimi
nator, which ensures the fidelity of the surface information after 
correction.

Fig. 3. The idea of “self-training”. The unpaired blind correction dataset 
(UBCSet) is the dataset, and the thin cloud blind correction (TC-BC) method is 
the method proposed in this paper.

Fig. 4. The self-training framework of the TC-BC method.

Fig. 5. Details of the proposed FSNet module.
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3.2. FSNet module

Deep learning methods can remove most of the thin cloud in different 
scenarios, due to their strong nonlinear fitting capabilities. However, the 
correction results for some complex thin cloud covered regions where 
cloud information and ground information are mixed will not be perfect. 
While the traditional methods focus on the enhancement of the ground 
information, they overlook the cloud characteristics, which are impor
tant for the correction task, which makes it difficult to remove complex 
thin clouds completely. Therefore, considering both the cloud and 
ground information, the FSNet module is proposed to achieve high- 
accuracy thin cloud correction.

The FSNet module is a two-stream network, as shown in Fig. 5, the 
input of which is the thin cloud contaminated image. The input image is 
first encoded globally by a convolutional structure. The encoded fea
tures are then fed into the two streams with the same structure, i.e., the 
cloud stream and the ground stream. Finally, through convolutional 
decoding, the output of the cloud stream is the thin cloud detection 
result, and the output of the ground stream is the thin cloud correction 
result. The FSNet module contains two key structures—the information 
interaction structure and the spatially adaptive structure—which pro
gressively capture the high-level semantics of the images. The infor
mation interaction structure is focused on the separation of the mixed 
cloud-ground information in the vertical space, while the spatially 
adaptive structure is focused on the identification of cloudy and clear 
regions in the horizontal space. The two structures are described in 
detail as follows.

3.2.1. Information interaction structure
In a cloudy region, the radiative characteristics of the cloud will be 

mixed in a complex manner with the radiative characteristics of the 
ground, because of the diversity of cloud shape, the high complexity of 
the land cover, and the large coverage of remote sensing imagery. Ac
cording to the imaging model for cloudy images, all the information can 
be divided into either cloud information or ground information. The 
activation function layer determines the activation and inhibition of the 
features by retaining the positive signals and discarding the negative 
signals. Therefore, in the activation function layer, the features rejected 
by the cloud stream belong to the ground stream, and vice versa.

The information interaction structure is shown in Fig. 6. The global 
feature coding from the cloudy image is input into both the cloud stream 
and ground stream. An activation function named the positive–negative 
rectified linear unit (ReLU) (Hu and Guo, 2021) is introduced to 
continuously exchange the invalid signals from the cloud stream and 
ground stream in the coding process, to blindly separate these two 
features.

3.2.2. Spatially adaptive structure
Thin clouds are almost transparent and are largely distributed uni

formly in the atmosphere. Meanwhile, a convolutional layer always 
codes the features in a local range. Although the receptive field of a CNN 
increases with the increase of the convolutional layers, the CNN will still 

lack the ability to learn global contextual information. Therefore, it is 
difficult to detect the boundaries of thin clouds only through convolu
tional layers. In order to better detect cloudy regions, a spatially adap
tive structure is introduced, as shown in Fig. 7.

By weighting the features with the spatial map in the spatially 
adaptive structure, the FSNet module can improve the separation ability 
for cloud-ground information. The spatial map, which is produced by 
the attention block, can describe the uneven thin cloud distribution and 
intensity in space, as shown in Fig. 8.

Since the initialize recurrent neural network (IRNN) (Bell et al., 
2016) pays more attention to the sequence of the input in nonlinear 
feature learning, it has advantages in aggregating spatial context in
formation, compared to a CNN. Based on this ability, a four-direction 
sensing two-round spatial IRNN is introduced to learn the spatial map. 
The concatenation of the cloud and ground features is the input of the 
attention structure. A 1 × 1 convolutional layer is then applied to gain 
four-direction (left, right, up, and down) spatial context features, and a 
convolutional block is applied to gain four maps of the weights repre
senting the learning process of the input features. The four maps of the 
weights are then multiplied with the spatial context features along the 
different directions in an element-wise manner. By repeating this mul
tiplicative operation, the global spatial map is generated. In addition, to 
better preserve the edge features, the padding of this structure is 
reflection padding.

3.3. Objective function

An alternating iterative optimization approach is employed to train 
the generator and discriminator separately. By maximizing the 
discriminative loss in the Markov discriminator and minimizing the 
generative loss in the FSNet module, the TC-BC method can correct 
cloudy images.

The generative loss consists of consistency loss Lc, identity loss Li, 
and adversarial loss La. 

LG = ω1Lc +ω2Li +ω3La (3) 

where ω represents the weighting coefficient and the values of ω1,ω2,ω3 
are 10,5 and 1, respectively.

Fig. 6. The architecture of the information interaction structure.

Fig. 7. The architecture of the spatially adaptive structure.
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The consistency loss is a key component of the TC-BC method that 
keeps the consistency between the reconstructed image and the input 
image at the pixel level. It accelerates the convergence rate and im
proves the robustness of the optimization process. In addition, the 
consistency loss is designed with the image features of the frequency 
domain and can be expressed as shown in Eq.(4). 

Lc = ω4‖I − Iʹ́‖1 +

⃦
⃦
⃦Iʹ́g − Ig

⃦
⃦
⃦

1
+
⃦
⃦Iʹ́c − Ic

⃦
⃦

1 (4) 

where the value of ω4 is 0.5,I represents the input cloudy image, Ic 
represents the input cloud reference, Ig represents the input ground 
reference, ⋅́ʹ represents the corresponding reconstructed image, and ‖⋅‖1 
represents L1 regulation.

The identity loss is designed to enhance the ability of the FSNet 
module to capture the cloud and ground features separately from cloudy 
images, which can be expressed as follows: 

Li =

⃦
⃦
⃦I*

g − Ig

⃦
⃦
⃦

1
+
⃦
⃦I*

c − Ic
⃦
⃦

1 (5) 

where ⋅* represents the feature separation result of the FSNet module in 
the TC-BC method.

The adversarial loss is used to make the distribution characteristics of 
the thin cloud correction results consistent with those of clear images. 

La = εI→Pdata(I)[logD(I, Iʹg)] (6) 

The discriminative loss can be expressed as follows: 

LD = εIg→Pdata(Ig)[logD(Iʹ, Ig)] + εIǵ→Pdata(Ig)[log(1 − D(I, Iʹg))] (7) 

4. UBCSet dataset

In order to compare the thin cloud removal effect of different 
methods, the unpaired blind correction dataset (UBCSet) was con
structed to train the TC-BC method. The target cloudy images can be 
included in the UBCSet. The UBCSet not only guides the training of the 

TC-BC method, but can also be corrected concurrently.

4.1. Construction of the UBCSet dataset

The Landsat-8/9 images acquired by the Operational Land Imager 
(OLI) instrument with high quality and wide coverage have been widely 
used, and are available from the United States Geological Survey. In this 
study, 30 remote sensing images were collected globally between 2011 
and 2022, featuring various land-cover types, such as forests, bare soil, 
and urban areas. Because of their wide use in remote sensing application 
research, the coastal and VNIR bands were selected as the study objects. 
The geographic positions and acquisition times of the original images 
are provided in the Appendix A.

The UBCSet is made up of three sets: a thin cloudy set, a ground set, 
and a cloud set, as shown in Fig. 9. After radiometric calibration, the 
original images were clipped into patches with the size of 5 × 256 × 256 
pixels. The patches in the thin cloudy set and ground set were picked 
from cloudy regions and clear regions of the clipped patches directly. 
The other patches with other degradation influences, such as thick 
clouds or cloud shadows, were discarded. The cloudy patches degraded 
by thin clouds were selected for correction. The clear patches were used 
to provide ground reference information for training the TC-BC method. 
There are 2580 images in the thin cloudy set and 2354 images in the 
ground set. The cloud set contains 977 cloud images, each with five 
bands. These cloud images were constructed from the cirrus band via the 
scattering model (Zhang et al., 2021), which is expressed by Eq.(8). The 
patches of the cloud set provide the cloud reference information. 

Ii
c =

(
λcirrus

λi

)γ

⋅Icirrus
c (8) 

where the subscript cirrus denotes the cirrus band of the multispectral 
image;λ represents the wavelength; and γ is a scattering-related 
parameter, whose value can be calculated from the degraded images.

Fig. 8. The architecture of the attention structure.

Fig. 9. Sample patches of the UBCSet.
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4.2. Expansion of the UBCSet dataset

The patches of the UBCSet can be continuously added during thin 
cloud correction tasks. In addition, the UBCSet can be expanded by 
synthesizing new data. In order to compare the performance between 
the FSNet module and other networks, a traditional paired dataset 
named Ex_UBCSet was expanded from the UBCSet. Through the imaging 
model of the cloudy images, two images respectively coming from the 
ground set and cloud set in the UBCSet can be synthesized into a new 
cloudy patch. In the Ex_UBCSet, there are 1139 paired patches in the 
training set and 325 paired patches in the test set. Because of the same 
ground information in the synthesized cloudy patches and paired 
ground patches, the Ex_UBCSet is suitable for guiding supervised 
network training and appraising the thin cloud correction ability by 
evaluating the difference between the correction result and the ground 
patch.

5. Experiments and discussion

In this section, the thin cloud correction effectiveness of TC-BC is first 
discussed. We then describe how the superiority of the FSNet module 
was verified with five comparative deep learning networks. The cloud- 
ground separation results and the validation results of the TC-BC 
method for specific applications are then provided. Qualitative and 
quantitative comparisons are both employed in this paper to evaluate 
the proposed TC-BC method. To analyze the comparative methods more 
completely, two widely used quantitative metrics are used, i.e., the peak 
signal-to-noise ratio (PSNR) and the structural similarity index measure 
(SSIM). The larger the value of the metrics, the better the performance of 
the method.

5.1. Thin cloud correction with the TC-BC method

The TC-BC method was trained on the UBCSet for the thin cloud 
correction task and compared with three advanced cloud removal 
methods, i.e., the spatial-spectral adaptive dark channel prior (SSADCP) 
method (Shen et al., 2020), the cirrus correction method with scattering 
law (CCM_SL)(Zhang et al., 2021), and CloudGAN (Singh and Komo
dakis, 2018). To comprehensively present the thin cloud correction re
sults of the different methods, four remote sensing images with varying 
degrees of thin cloud degradation and different land cover were 
selected, as shown in Fig. 10(a). The ground references are illustrated in 
Fig. 10(b). All the images are from real scenes, with a 16-day interval of 
acquisition time. Fig. 10(c)–(f) show the cloud correction results ob
tained using the different methods, i.e., SSADCP, CCM_SL, CloudGAN, 
and the proposed TC-BC method.

It can be seen that Area #1 and Area#2 feature a few thin clouds with 
a homogenous spatial distribution, while Area#3 and Area#4 feature 
large areas of thin clouds with strong spatial heterogeneity. The main 
land-cover types of the four images are city, vegetation, soil, and water. 
As shown in the results of SSADCP, the degradation of the most homo
geneous thin clouds can be effectively corrected to restore the ground- 
truth information. However, in the images with large areas of thin 
clouds and a wide cloud distribution, there are still residual clouds and 
spectral distortion in the correction results, as shown in Fig. 10(c) 
Area#3 and Area#4. It can be found that SSADCP is not suitable for the 
correction task when the interference of thin clouds is too serious and 
the surface information loss exceeds 50 %. Since most thin clouds belong 
to cirrus clouds, high-precision correction of thin clouds can be achieved 
in most of the images, as shown in the results of CCM_SL. However, the 
junctions in some of the correction results between the cloud region and 

Fig. 10. Comparison of the thin cloud correction results of the different methods. (a) Cloudy image. (b) Ground reference. (c) SSADCP. (d) CCM_SL. (e) CloudGAN. 
(f) TC-BC.
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the clear region are unnatural, with obvious spectral distortion, as 
shown in Fig. 10(d) Area#4. This is because the correction process of 
CCL_SM is only for a single pixel, without considering the global features 
of the correction results. In the results of CloudGAN, as shown in the fifth 
column of Fig. 10, two serious problems are prominent: the checker
board effect and residual clouds. These problems can be attributed to the 
unstable training of CloudGAN, as it only focuses on how to enhance the 
ground features, and does not take into account the relationship be
tween the cloud and the ground. The weak constraint of the network 
leads to non-unique or unstable solutions. The TC-BC method can 
respond to this challenge well and achieve a superior performance, even 
when faced with complex cloud contamination, owing to its adequate 
consideration of the spatial and spectral characteristics of clouds. 

Compared with the above three methods, the proposed TC-BC method 
uses an information interaction block to divide the cloud and ground 
information in the cloud coverage area to achieve complete removal of 
thin clouds. The spatially adaptive structure aggregates the global in
formation of the image, which is helpful for accurately identifying 
cloudy and clear regions and achieving a natural transition of spectral 
features. Furthermore, the discriminator enhances the authenticity of 
the correction results. As a result, the TC-BC method achieves the best 
correction effect on all the images in this experiment. The quantitative 
comparison results are listed in Table 1. The results suggest that the TC- 
BC method shows obvious advantages, with the highest PSNR and SSIM.

5.2. Performance of the FSNet module

In order to prove the effectiveness of the FSNet module for separating 
surface information, five representative methods were utilized for 
comparison, based on the Ex_UBCSet: two traditional networks, i.e., U- 
Net (Ronneberger et al., 2015; Zheng et al., 2021) and ResNet (He et al., 
2016; Meraner et al., 2020); two thin cloud correction networks, i.e., 
RSCNet (Li et al., 2019) and SPAGAN(Wang et al., 2019; Pan, 2020); and 
also an interactive dual-stream strategy called “your trash is my trea
sure” (YTMT) (Hu and Guo, 2021). It should be clarified that Ex_UBCSet 
is a paired synthesized dataset, which was specially used for evaluating 
the ground generation ability of the compared networks.

For the six methods, it can be observed that all of the methods can 

Table 1 
The metric scores for the different images in the thin cloud correction task.

Area Evaluation indicator SSADCP CCM_SL CloudGAN TC-BC

#1 PSNR 35.00 42.26 31.51 42.78
SSIM 0.9203 0.9589 0.9298 0.9640

#2 PSNR 33.88 36.01 26.63 42.26
SSIM 0.9270 0.9596 0.9379 0.9731

#3 PSNR 28.95 37.99 22.18 39.69
SSIM 0.7557 0.9413 0.9033 0.9466

#4 PSNR 35.28 40.24 32.47 40.87
SSIM 0.8870 0.9350 0.8122 0.9546

Fig. 11. Comparison of the thin cloud correction results of the different networks. (a) Cloudy image. (b) Ground reference. (c) U-Net. (d) ResNet. (e) RSCNet. (f) 
SPAGAN. (g) YTMT. (h) FSNet.

Table 2 
The metric scores for the different images in the thin cloud correction task.

Area Evaluation indicator U-Net Res_Net RSC_Net SPAGAN YTMT FSNet

#1 PSNR 38.55 29.92 41.23 45.34 43.49 48.88
SSIM 0.9828 0.8326 0.9866 0.9952 0.9929 0.9973

#2 PSNR 46.26 43.47 41.43 53.38 51.05 53.56
SSIM 0.9931 0.9770 0.9894 0.9978 0.9962 0.9979

#3 PSNR 41.59 37.65 39.12 44.98 45.90 46.02
SSIM 0.9959 0.9885 0.9926 0.9983 0.9983 0.9987

#4 PSNR 41.34 37.96 41.38 43.65 43.65 44.07
SSIM 0.9795 0.9534 0.9889 0.9917 0.9894 0.9953
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remove most of the thin clouds in the degraded images, but the details of 
the correction results are always different. Four representative thin 
cloud contaminated images are presented to compare the performance 
of the different methods in Fig. 11, and a quantitative comparison of the 
results for the four images is provided in Table 2. These images contain 
different land cover and cloud cover. The experimental results show that 
the FSNet module can remove thin clouds more completely in cloud 
regions and maintain the color better in clear regions, which suggests 
that the FSNet module has a superior thin cloud correction ability.

Furthermore, the average thin cloud correction accuracy of the 
different networks with the Ex_UBCSet is provided in Table 3. The 
quantitative metrics for the traditional networks are clearly lower than 
those for the FSNet module with the Ex_UBCSet, which further demon
strates the superiority of the proposed network. Furthermore, experi
mental verification on a previously available dataset (Li et al., 2019) 
yielded comparable results to those obtained with the Ex_UBCSet.

In addition, YTMT and FSNet can simultaneously detect clouds while 
also correcting clouds. The cloud detection results for the cloudy images 
are given in Fig. 12. The experimental results show that the detection 
result of the FSNet module is better than that of YTMT. In Fig. 12(c) 
Area#1 and Area#2, YTMT cannot separate the cloud cover on the dark 
surface, resulting in unsatisfactory cloud detection results that are not 
continuous enough to match the true cloud distribution. In Area#3, the 
bright surface part is identified as clouds by YTMT, and the cloud is 
identified as a bright surface in Area#4 by YTMT. However, these 
phenomena never occur with the FSNet module. This is because the 
FSNet module uses a spatial adaptive structure considering the global 
distribution of the thin clouds.

An ablation study was conducted for each component in the FSNet 

module, i.e., the information interaction structure, the spatially adaptive 
structure, and the attention structure, to analyze their accuracy contri
bution. The specific results listed in Table 4 show that the introduction 
of each structure significantly improves the quantitative indicators, 
compared to the baseline.

5.3. Cloud and ground separation

To further verify the effect of the proposed TC-BC method in the thin 
cloud detection and correction task in the real world, four degraded 
images with different cloud amounts and different degradations of the 
ground surface were selected to demonstrate the separation effective
ness for cloud and ground information. The results are shown in Fig. 13. 
The experimental results indicate that the cloud components exhibit a 
high degree of visual similarity to the actual cloud, while the ground 
components accurately preserve both the spatial details and spectral 
characteristics.

A real thin cloudy image was obtained on February 19, 2023, as 
shown in Fig. 14(a), with the center coordinates 118◦01′40″E and 
31◦59′07″N. Visual observation confirms a significant presence of thin 
clouds in this cloudy image. However, the corresponding cirrus band 
exhibited in Fig. 14(b) shows very few clouds. Therefore, the observed 
degradation is mainly caused by other thin clouds, besides cirrus clouds. 
The clear reference image was acquired on February 3, 2023, and is 
shown in Fig. 14(c). Fig. 14(d) and Fig. 14(e) are the cloud and ground 
components separated by the TC-BC method. As the figure shows, the 
TC-BC method effectively captures the intricate boundaries of the mixed 
thin clouds and accurately distinguishes thin clouds from the ground. 
This suggests the robustness of the TC-BC method in detecting and 
separating thin clouds of various forms and characteristics.

5.4. Applications of TC-BC

In this section, we describe how the effectiveness and applicability of 
the TC-BC method were validated in large scenes and different satellite 
sensors.

5.4.1. Validation on large complex scenes
In order to validate the effectiveness of the TC-BC method on large 

scenes of remote sensing data, two remote sensing images covering 
extensive land areas were selected for the cloud-ground separation 
experiment. The results are shown in Fig. 15. Fig. 15(a) is a thin cloud 
covered OLI image centered at 114◦38′55″ W and 36◦13′12″ N, which 
was acquired on February 17, 2016. The main land-cover types of this 
image are rock, water, and buildings, and the cloud in this image is thin 
but unevenly distributed. It is worth emphasizing that the rocks and 

Table 3 
The metric scores with the Ex_UBCset.

Evaluation indicator U-Net Res_Net RSC_Net SPAGAN YTMT FSNet

PSNR 39.78 37.09 38.87 43.06 41.94 44.28
SSIM 0.9837 0.9423 0.9715 0.9915 0.9889 0.9931

Fig. 12. Comparison of the thin cloud detection results obtained by the 
different networks. (a) Cloudy image. (b) Cloud reference. (c) YTMT. (d) FSNet.

Table 4 
The metric scores for the ablation study with the Ex_UBCset.

Structure Evaluation indicator

Baseline IIS SAS AS PSNR SSIM

√ ​ ​ ​ 38.38 0.9772
√ √ ​ ​ 39.68 0.9784
√ √ √ ​ 39.79 0.9802
√ ​ √ √ 43.01 0.9895
√ √ √ √ 44.28 0.9931

*IIS: information interaction structure. SAS: spatial adaptive structure (without 
attention structure). AS: attention structure.
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buildings in this image exhibit high brightness, which makes them more 
challenging to separate from the clouds. The reference clear image is 
shown in Fig. 15(b), which was acquired on March 4, 2016. Fig. 15(c) 
shows the thin cloud detection image, and Fig. 15(d) shows the 
correction results of the TC-BC method. It can be found that the TC-BC 
method is suitable for the large-scale data and can achieve excellent 
separation of cloud and ground information, even under the condition of 
high thin cloud coverage. Fig. 15(e) is a cloudy image centered at 
112◦3′1.15″E and 33◦4′25.62″N, which was acquired on February 9, 
2021. The main land-cover types of this image are vegetation, water, 
soil, and buildings. The ground reference is shown in Fig. 15(f), which 
was acquired on January 8, 2021. Fig. 15(g) shows the thin cloud 
detection image, and Fig. 15(h) shows the correction results of the TC- 
BC method. It can be found that the TC-BC method can achieve excel
lent separation of the cloud and ground information, even in the con
dition of various mixed land-cover types. The corrected result is visually 

greener than the reference, which can be attributed to the phenological 
difference of the forest between the two dates and the different lighting 
conditions.

5.4.2. Validation on Sentinel-2 data
Two cloudy Sentinel-2 Multi-Spectral Instrument (MSI) images were 

collected to investigate the compatibility of the proposed method with 
different satellite sensors. The results are shown in Fig. 16. The first 
cloudy image in Fig. 16(a) centered at 113◦20′37″E and 32◦52′18″N was 
acquired on June 26, 2023. Fig. 16(b) shows its reference clear image, 
which was acquired on June 6, 2023. The second image centered at 
111◦20′34.04″E and 33◦51′22.14″N was captured on June 9, 2023, as 
shown in Fig. 16(e). Its reference clear image was captured on June 24, 
2023, as shown in Fig. 16(f). There was little surface change between the 
cloudy images and their reference images. Fig. 16(c) and Fig. 16(g) show 
thin cloud detection results. Correction results are shown in Fig. 16(d) 

Fig. 13. Cloud-ground separation results of TC-BC. (a) Cloudy image. (b) Cloud component. (c) Ground component.
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and Fig. 16(h). The Sentinel-2 data have a varying resolution across the 
different bands, with the VNIR bands used for correction having a res
olution of 10 m while the cirrus band has a resolution of 60 m. There
fore, we used the 30 m resolution cloudy images generated from 
Landsat-8/9 to guide the TC-BC method. Despite the resolution differ
ences between the two sensors, the TC-BC method still achieves effective 
cloud detection and removal in Sentinel-2 data. This further demon
strates the applicability of the proposed TC-BC method across different 
sensors.

6. Conclusion

In this paper, the novel thin cloud blind correction (TC-BC) method 

under an unsupervised self-training framework has been proposed to 
solve the thin cloud contamination problem in optical remote sensing 
images. The TC-BC method is both more universal and can obtain a 
higher thin cloud correction accuracy than the previous methods. The 
key idea is the coupling of a physical mechanism and a data-driven 
method. Specifically, a self-training framework connecting the FSNet 
module and the imaging model of cloudy images makes unsupervised 
training possible. The design of the FSNet module takes the cloud dis
tribution characteristics of cloudy images into account, which helps to 
improve the correction accuracy of the TC-BC method at the pixel level. 
In addition, the scattering law of the cloud was considered while con
structing the UBCSet.

The TC-BC method, as proposed in this paper, has strong 

Fig. 14. Cloud-ground separation result obtained by TC-BC for the non-cirrus thin cloudy image. (a) Cloudy image. (b) The cirrus band of the cloudy image. (c) 
Ground reference. (d) Cloud component. (e) Ground component.

Fig. 15. Cloud-ground separation results obtained by TC-BC with large-scale data in Landsat-8/9.

L. Xu et al.                                                                                                                                                                                                                                       ISPRS Journal of Photogrammetry and Remote Sensing 218 (2024) 246–259 

256 



practicability because of the low cost of the dataset construction, which 
not only gets rid of the need for massive paired data but also overcomes 
the dependence on specific bands or prior knowledge. The qualitative 
and quantitative analyses demonstrated that the proposed TC-BC 
method can achieve a superior thin cloud correction performance, 
compared with three advanced cloud correction methods. The correc
tion results of the TC-BC method were superior in thin cloud removal, 
ground fidelity, and global consistency, all of which indicate that the 
proposed TC-BC method can adapt to images with complex thin cloud 
contamination. Moreover, the FSNet module performed better than the 
other five deep learning networks in both cloud correction and cloud 
detection.
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Appendix 

Table A1 
Original data information for the UBCSet.

Data Top left corner Bottom right corner Data Top left corner Bottom right corner

2011/11/26 031◦00′28.17′’ N 029◦52′22.89′’ N 2018/4/12 038◦12′29.19′’ S 039◦35′32.78′’ S
113◦18′03.26′’ E 114◦32′40.60′’ E 070◦07′00.45′’ W 068◦21′00.73′’ W

2013/12/23 035◦14′44.76′’ N 034◦54′03.52′’ N 2018/8/7 042◦21′43.86′’ N 042◦01′33.46′’ N
119◦12′17.04′’ W 118◦46′47.82′’ W 005◦11′19.03′’ W 004◦43′08.76′’ W

2013/12/23 034◦29′54.59′’ N 034◦09′28.95′’ N 2018/8/7 004◦15′95.84′’ N 041◦27′35.58′’ N
119◦08′31.53′’ W 118◦43′17.76′’ W 005◦39′49.59′’ W 004◦54′35.01′’ W

2013/12/23 034◦15′56.96′’ N 033◦55′32.88′’ N 2018/8/7 041◦25′36.83′’ N 041◦05′49.68′’ N
117◦55′28.37′’ W 117◦30′36.19′’ W 006◦06′11.31′’ W 005◦38′03.59′’ W

2014/6/12 041◦44′48.48′’ N 041◦03′45.92′’ N 2018/8/23 042◦21′43.86′’ N 042◦01′33.46′’ N
085◦09′11.93′’ E 086◦33′04.44′’ E 005◦11′19.03′’ W 004◦43′08.76′’ W

2014/6/12 041◦08′49.10′’ N 040◦48′08.22′’ N 2018/8/23 004◦15′95.84′’ N 041◦27′35.58′’ N
086◦35′11.99′’ E 087◦02′38.02′’ E 005◦39′49.59′’ W 004◦54′35.01′’ W

2015/9/23 044◦03′39.99′’ N 043◦21′55.39′’ N 2018/8/23 041◦25′36.83′’ N 041◦05′49.68′’ N
080◦59′06.99′’ W 080◦02′14.45′’ W 006◦06′11.31′’ W 005◦38′03.59′’ W

2016/2/17 036◦47′20.58′’ N 035◦39′38.52′’ N 2018/8/23 041◦57′58.61′’ N 041◦17′19.80′’ N
115◦19′54.64′’ W 114◦00′00.85′’ W 004◦52′44.64′’ W 003◦56′34.76′’ W

2016/3/4 036◦47′20.58′’ N 035◦39′38.52′’ N 2018/9/26 046◦53′48.12′’ N 046◦13′18.29′’ N
115◦19′54.64′’ W 114◦00′00.85′’ W 072◦56′29.19′’ E 073◦57′41.41′’ E

2016/3/4 036◦14′59.64′’ N 035◦15′50.95′’ N 2018/9/26 046◦48′40.15′’ N 046◦28′10.42′’ N
115◦33′16.87′’ W 114◦23′30.77′’ W 073◦57′31.26′’ E 074◦27′54.79′’ E

2016/4/16 035◦07′48.75′’ N 034◦46′54.26′’ N 2022/7/11(L9) 032◦23′09.23′’ N 031◦09′22.34′’ N
135◦41′34.40′’ E 136◦06′34.24′’ E 120◦14′33.06′’ E 121◦09′38.06′’ E

2016/4/16 032◦52′34.96′’ N 032◦18′27.64′’ N 2022/7/11(L9) 032◦34′22.97′’ N 032◦08′51.90′’ N

(continued on next page)

Fig. 16. Cloud-ground separation results obtained by the TC-BC method with large-scale Sentinel-2 data.
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Table A1 (continued )

Data Top left corner Bottom right corner Data Top left corner Bottom right corner

119◦11′33.94′’ E 119◦59′30.33′’ E 118◦18′25.99′’ E 119◦15′07.27′’ E
2016/5/2 034◦51′06.25′’ N 033◦52′24.36′’ N 2022/7/28 032◦09′22.39′’ N 031◦49′49.15′’ N

135◦38′11.73′’ E 136◦47′23.16′’ E 119◦32′32.32′’ E 120◦21′51.46′’ E
2016/5/2 035◦07′48.75′’ N 034◦46′54.26′’ N 2022/7/28 031◦52′10.73′’ N 031◦31′53.04′’ N

135◦41′34.40′’ E 136◦06′34.24′’ E 120◦27′30.28′’ E 120◦52′05.87′’ E
2016/5/2 033◦14′00.47′’ N 032◦26′26.91′’ N 2022/08/05(L9) 032◦23′09.23′’ N 031◦09′22.34′’ N

118◦24′47.96′’ E 120◦02′16.68′’ E 120◦14′33.06′’ E 121◦09′38.06′’ E
2017/2/27 033◦45′15.46′’ N 033◦02′44.89′’ N 2022/08/05(L9) 032◦34′22.97′’ N 032◦08′51.90′’ N

119◦24′06.96′’ E 120◦12′14.66′’ E 118◦18′25.99′’ E 119◦15′07.27′’ E
2018/4/8 031◦02′39.00′’ N 030◦15′16.77′’ N 2022/8/13 032◦09′22.39′’ N 031◦49′49.15′’ N

113◦11′02.01′’ E 114◦36′08.54′’ E 119◦32′32.32′’ E 120◦21′51.46′’ E
*(L9) indicates Landsat-9 data.
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