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Abstract: The objective of image super-resolution is to reconstruct a high-resolution (HR) image with
the prior knowledge from one or several low-resolution (LR) images. However, in the real world, due
to the limited complementary information, the performance of both single-frame and multi-frame
super-resolution reconstruction degrades rapidly as the magnification increases. In this paper, we
propose a novel two-step image super resolution method concatenating multi-frame super-resolution
(MFSR) with single-frame super-resolution (SFSR), to progressively upsample images to the desired
resolution. The proposed method consisting of an L0-norm constrained reconstruction scheme and
an enhanced residual back-projection network, integrating the flexibility of the variational model-
based method and the feature learning capacity of the deep learning-based method. To verify the
effectiveness of the proposed algorithm, extensive experiments with both simulated and real world
sequences were implemented. The experimental results show that the proposed method yields
superior performance in both objective and perceptual quality measurements. The average PSNRs
of the cascade model in set5 and set14 are 33.413 dB and 29.658 dB respectively, which are 0.76 dB
and 0.621 dB more than the baseline method. In addition, the experiment indicates that this cascade
model can be robustly applied to different SFSR and MFSR methods.

Keywords: super-resolution; deep learning; cascade model; resolution enhancement; regularized
framework

1. Introduction

High-resolution (HR) images with high perceptual quality are often required in ap-
plications such as video surveillance [1,2], face recognition [3], medical diagnosis [4], and
remote sensing [5–7]. However, due to the different capabilities of sensors, the quality of
captured images can vary greatly and fail to meet the requirements of subsequent applica-
tions. Super-resolution technology is an effective way to overcome the inherent resolution
limitation of the current sensor imaging systems [8]. The objective of the super-resolution
technique is to reconstruct an HR image from single or multiple LR observation frames
captured at different perspectives of the same scene. In general, the observed LR image
can be modeled as a degraded representation of the HR image, which are degraded by
warp, blur, noise, and decimation [5]. According to the number of input LR images, the
conventional super-resolution approaches can be roughly categorized into single-frame
super-resolution (SFSR) [9–15] and multi-frame super-resolution (MFSR) [16–20].

Multi-frame super-resolution reconstruction aims to merge the complementary infor-
mation from different images to generate a higher spatial resolution image. The problem
was first formulated by Tsai and Huang [16] in the frequency domain to improve the spatial

Sensors 2024, 24, 5566. https://doi.org/10.3390/s24175566 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24175566
https://doi.org/10.3390/s24175566
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0217-0794
https://orcid.org/0000-0001-7140-2224
https://orcid.org/0000-0002-4063-9381
https://doi.org/10.3390/s24175566
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24175566?type=check_update&version=1


Sensors 2024, 24, 5566 2 of 20

resolution of Landsat Thematic Mapper (TM) images. Over the past few decades, the re-
search work has been presented and studied in the spatial domain to improve multi-frame
super-resolution techniques [17,18]. The SR problem is considered as an ill-posed inverse
problem, as for each LR image, the space of its plausible corresponding HR images is huge
and scales up quadratically with the magnification factor [21]. Owing to its effectiveness
and flexibility, most research has focused on regularized frameworks, which impose some
constraints on the solution space [22]. The maximum a posteriori estimation (MAP) method
transforms the super-resolution reconstruction into an energy function optimization prob-
lem. Generally, the energy function consists of a data fidelity term that measures the model
error between the degraded observations and the ideal image, and a regularization term
that imposes some prior knowledge to constrain the model to achieve a robust solution.
However, the priors of these methods are hand-crafted based on limited observations of
specific image statistics, which may restore unsatisfactory results, as the real constraint
often deviates from the predefined priors. On the one hand, the ill-posed nature is partic-
ularly evident for large magnification factors, which increases the problem of sub-pixel
alignment and leads to the absence of texture details in the reconstructed images. On the
other hand, it is difficult to obtain sufficient LR images with non-redundant information
to recover the aliasing high-frequency components. Therefore, the performance of MFSR
algorithms decreases rapidly with increasing magnification.

The mainstream algorithms of SFSR involve, e.g., reconstruction-based [9], example-
based [23], sparse representation-based [24], regression-based [11], and deep learning-based
approaches [13–15,25]. With the rapid development of deep learning, the convolutional
neural network (CNN) dominated the research of SR due to its promising performance
in terms of effectiveness and efficiency [26]. A pioneering work of SRCNN [12] applied a
three-layer network to learn non-linear mapping relationships between the HR patches
and the corresponding LR patches. Since then, considering the excellent learning capac-
ity of convolutional neural networks (CNNs), deep learning-based methods have been
developed in various ways by using new architectures or proper loss functions. The im-
proved network [13] exploited residual learning (VDSR) [27] and recursive structure layers
(DRCN) [28] to achieve an outstanding performance for SFSR. The residual dense network
(RDN) [14] innovatively combined residual learning and dense connection to fully utilize
both the shallow features and deep features together with over 100 layers. Recently, the
network of channel attention (RCAN) [29] and second-order channel attention (SAN) [15]
were introduced to exploit feature correlation for superiority performance. These end-
to-end networks compute a series of feature maps from the LR image, culminating with
one or more upsampling layers to construct the HR image. Therefore, it is convenient in
that it automatically learns good features from massive quantities of data without much
expertise and manual feature learning. Nevertheless, many deep learning approaches
hypothesize that the training and test dataset are drawn from the same feature space with
the similar distribution. Hence, the SR performance is heavily bound to the consistency
between testing data and training data [8]. Meanwhile, learning-based methods directly
generate high-resolution details according to the learned mapping functions and low-
resolution input, and some unexpected artifacts may be produced in the reconstructed
results, especially for large magnification factors. Furthermore, the difficulty in estimating
missing high-frequency details increases with the scale factor due to the increment in the
ambiguities between LR and HR.

Briefly speaking, the SR performance at a large scale factor remains a challenging
problem for both the MFSR and SFSR approaches. On the one hand, model-based MFSR
algorithms encounter difficulty in recovering missing high-frequency details with the lim-
ited complementary information. On the other hand, at large upsampling scales, since
insufficient information is available to recover such high-frequency components, deep
learning-based SFSR methods may “hallucinate” the fine detail structure. In particular, the
hallucination can be very problematic in some critical applications. To deal with this chal-
lenge, some researchers [30,31] have proposed exploiting the complementary advantages of
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external and internal information to improve SR performance and perceptual visual quality.
However, most deep learning-based video and multi-frame super-resolution methods can-
not fully exploit the temporal and spatial correlations among multiple images. Their fusion
modules do not adapt well to image sequences with weak temporal correlations [32]. These
methods cannot satisfy our everyday requirements, because of the limited information
involved in the reconstruction model.

To our knowledge, the MFSR and SFSR methods extract missing details from different
sources. SFSR extracts various feature maps representing the details of a target image.
MFSR provides multiple sets of feature maps from other images. The model-based MFSR
methods and the deep learning-based SFSR procedures are complementary, to a large
extent [33]. Combining the feature learning capacity of SFSR with the information fusion
brought by MFSR, a few pieces of research proposed a combination of single-frame and
multi-frame SR such as [34,35]. In [34] the input LR images are first magnified and recovered
by a conventional MFSR method with a 4× scaling factor; then, an SFSR network is applied
to the previous recovered result for artifacts removal without magnification. The authors
of [35] carried out the process in the inverse order to [34], where they input LR images
separately through the SFSR network, and then a conventional MFSR was applied on
the resulting image. In contrast, the SFSR network in the former framework is only
used as a filter to fine-tune the output of the MFSR method, while the SFSR network is
used to initialize the input of the MFSR method in the latter research. Compared with
traditional methods, the cascade model can simultaneously capitalize on both inter-frame
aliasing information and external learned feature information, which notably improves the
utilization of multiple images and external example data.

In this paper, we propose a novel two-step super-resolution reconstruction method
concatenating the L0-norm constrained reconstruction with an enhanced residual back-
projection network. Such a cascade model property induces considerable advantages for
image SR, which integrates the flexibility of model-based method and the feature learning
capacity of learning-based method. Specifically, the L0-norm constrained reconstruction
method takes multiple images as input to obtain an initial high-resolution image, and then
an enhanced residual back-projection network is further applied to the initial image for
recovering a more accurate result. The proposed cascade model leverages the informa-
tion learned from multiple low-resolution inputs and neural networks, outperforming
the existing baseline SR methods in the cascade model in both objective and perceptual
quality measurements.

The rest of this paper is organized as follows: Section 2 introduces the variational
model-based MFSR algorithm and the deep learning-based SFSR algorithm that are con-
catenated in the cascade model. We present the detailed experimental results for this
multi/single-frame super-resolution cascade model in Section 3, followed with a discus-
sion of the strategy for cascade model in Section 4. Finally, our conclusions are drawn in
Section 5.

2. The Cascade Model for Image Super-Resolution

Most methods reconstruct HR images in one upsampling step, which increases the
difficulty of reconstructing at large scaling factors. A Laplacian pyramid framework
(LapSRN) [36] is proposed to progressively reconstruct multiple images with different scales
in one feed-forward. However, this network relies only on the limited features available
in the LR space with a stack of single upsampling networks. Because of the insufficient
information available to restore such high frequencies, it is unrealistic to generate sharp
HR images with fine detail at large scale factors.

The cascade model of MFSR and SFSR is proposed to obtain high-performance results
for image super-resolution at large scaling factors. There are four structures for performing
SR using MFSR, SFSR, or combinations of them when the upscaling factor is a divisible
integer such as 4, as shown in Figure 1. To the best of our knowledge, the question of how
to best combine SFSR and MFSR has not been answered theoretically. Since the actual
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degradation is more complex and varying, the learning-based SFSR cannot fully simulate
the image degradation process, which may cause incorrect results in actual reconstruction.
In order to reduce the error transmission, we suggest using the multi-frame first and then
single-frame cascade method for super-resolution (MFSF-SR), while the opposite method
by applying SFSR first and MFSR after (SFMF-SR) is analyzed in detail in the subsequent
discussion section.
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The proposed cascade method consists of two main parts: the variational model-based
MFSR and the deep learning-based SFSR. We aim to concatenate the MFSR method with
the SFSR method to progressively upsample images to the desired resolution. Regarding
the choice of the MFSR and SFSR methods, we employ the MFSR approach via L0-norm
regularized intensity and gradient combined prior (L0RIG) and the SFSR approach using
enhanced residual back-projection networks (ERBPN), respectively, which are introduced
in the following subsection.

2.1. Multi-Frame Super-Resolution via the L0-Norm Regularized Intensity and Gradient
Combined Prior

In image super-resolution reconstruction, as a typical inverse problem, SR is highly
coupled with the degradation model. Generally speaking, the HR image is inevitably
corrupted by many factors in the acquisition process, including warping, blurring, sub-
sampling operators, and additive noise [5]. It allows for us to reconstruct an output image
above the Nyquist Limit of the original imaging device. Super-resolution turns out to be an
inherently ill-posed inverse problem because the information contained in the observed LR
images is not sufficient to solve the HR image. Therefore, it is necessary to impose a specific
regularization in order to obtain a stable solution. The model-based methods incorporate
prior constraints to estimate the desired HR image by minimizing an objective function of
the posterior probability.

We denote the ideal HR image required to be reconstructed as z ∈ RMs×Ns , the

observed LR images as {gk}s2

k=1 ∈ RM×N , the downsampling matrix as D ∈ RMN×MNs2
,

the motion matrix as {Mk}s2

k=1 ∈ RMNs2×MNs2
, and B ∈ RMNs2×MNs2

as the blur matrix
including the sensor blur, optical blur, and atmospheric turbulence, where we assume that
the blur of multiple images obtained under the same scene is consistent. The additive noise
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of the image observation model is usually assumed to be white Gaussian noise. Thus, the
size of the LR image gk is M × N, the scaling factor is S, and the size of the HR image is
Ms × Ns. By changing the number of LR images, they can be applied to the MFSR or SFSR
tasks. The MAP-based solution model for the super-resolution problem can be represented
by a generalized minimization cost function as follows:

ẑ = argmin
z

{
K

∑
k
∥gk − DBMkz∥2

2 + λU(z)

}
(1)

The first term of the cost function is the data fidelity term, which measures the
reconstruction error to ensure that pixels in the reconstructed HR image are close to
real values; the second term U(z) is the regularization term associated with the general
prior information about the desirable HR image to obtain a robust solution; and λ is the
regularization parameter, which provides a tradeoff between the data fidelity term and the
regularization term.

In the image processing field, Gaussian-type noise is the most commonly assumed
because the noise generated in image acquisition usually satisfies a Gaussian distribu-
tion [22]. We assume the noise to be additive white Gaussian noise, so the fidelity term can
be characterized by the L2-norm. For the regularization term, Laplacian [37], total variation
(TV) [20] and Huber–Markov random field (HMRF) [38] regularization are first considered,
due to their simplicity and efficiency. Based on the advantages of the TV regularization, a
combined image prior based on intensity and gradient is proposed for natural images [39],
which describes the two-tone distribution characteristics of the gradient statistics. This
expression is written as follows:

U(z) = ∥z∥0 + ∥∇z∥0 (2)

where ∇ is the gradient operator. As the intensity prior is based on independent pixels
instead of the disparities of neighboring pixels, it introduces significant noise and artifacts
in the image restoration. In contrast, the gradient prior is based on the disparities of
neighboring pixels, and thus enforces smooth results with fewer artifacts. Prior knowledge
for constraining the intensity and gradient can sufficiently exploit the statistical properties
of natural images. To effectively preserve the detailed texture information and enhance
the reconstructed image quality, the intensity and gradient combined prior is employed
in the super-resolution reconstruction [40]. We propose an MFSR algorithm via an L0-
norm regularized intensity and gradient combined prior (L0RIG) to integrate into the
cascade model.

Typically, geometric registrations and the blur can be estimated from the input data
and used with the generative model to reconstruct the super-resolution image. The super-
resolution becomes very limited without a good estimation of the blur and motion between
the LR sequences. In this work, we compute the warping matrix M and blur matrix B
with the optical flow approach [41] and the blind blur kernel estimation method [39],
respectively. In order to simplify Equation (1), DBMk can be regarded as a system matrix
Wk. By substituting Equation (2) into Equation (1), the following minimization function for
solving the MFSR model can be obtained:

ẑ = argmin
z

{
K

∑
k
∥gk − Wkz∥2

2 + λ(∥z∥0 + ∥∇z∥0)

}
(3)

Due to the L0 regularization term in Equation (3), it is difficult to solve the super-
resolution model since it is a nonconvex function. As known, variable splitting and alternate
iterative optimization algorithms are typically used for optimizing the solutions of the
variational model. Based on the variable splitting L0 minimization approach, we adopt the
alternating direction method of multipliers (ADMM) algorithm [42] to solve the model. We
introduce the auxiliary variables u and v, representing z and ∇z, respectively, to move a
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few terms out of the non-differentiable L0 norm expression. The objective function can be
rewritten as follows:

ẑ = argmin
z

{
K

∑
k
∥gk − Wkz∥2

2 + λ(∥u∥0 + ∥v∥0)

}
s.t. u = z, v = ∇z (4)

By transforming Equation (4) to generate an unconstrained problem with the aug-
mented Lagrangian algorithm, it can be rewritten:

ẑ = argmin
z

{
K

∑
k
∥gk − Wkz∥2

2 +
β

2
∥z − u∥2

2 +
µ

2
∥∇z − v∥2

2 + λ(∥u∥0 + ∥v∥0)

}
(5)

where β and µ are penalty parameters, and are set to be 0.001 initially, that times 0.9
after each iteration to accelerate the convergence. Equation (5) can be efficiently solved
through alternately minimizing z, u, and v independently, by fixing the other variables.
The flowchart of the MFSR via L0-norm regularized intensity and gradient combined prior
(L0RIG) algorithm is illustrated in Figure 2.
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2.2. Single-Frame Super-Resolution Using Enhanced Residual Back-Projection Network

Inspired by the idea of iterative back-projection framework, Haris et al. [43] proposed
deep back-projection network (DBPN) to iteratively use error feedbacks from the multiple
up- and downscaling steps, which achieves the state-of-the-art SR performance with large
scale factors. Since the iterative up/downsampling framework has the advantage of
capturing the deep relationships between LR and corresponding HR images, it has become
a promising framework in the field of SFSR [44]. Figure 3 illustrates the schematic pipeline
of the proposed enhanced residual back-projection network (ERBPN), which is designed
on the basic architecture of the original DBPN [43]. The architecture of ERBPN consists of
three parts, namely, initial feature extract module, projection unit, and SR reconstruction
module, as described below. Some modifications were made for the projection unit: (1) the
down-projection unit was replaced with the downsampling unit; (2) the concatenation
operation was replaced with a sequential feature fusion (SFF) operation. In the following,
the major improvements are further explained.
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Figure 3. Architecture of ERBPN.

The first part extracts the shallow feature L0 from the input LR image ILR and can be for-
mulated by L0 = finit(ILR), where finit denotes a convolution operation with Conv(3, nl , n f )
and nl , n f are the number of input LR image channel and the feature maps, respectively.
Then, a 1 × 1 convolution layer is used as feature pooling and dimension reduction before
entering the projection unit.

Then, the initial feature extraction is followed by a sequence of projection units,
alternating between construction of the LR and HR feature maps Lt, Ht. The projection
units in our proposed framework include the up-projection unit and the downsampling
unit. Iterative error feedback mechanism is proposed by iteratively estimating and applying
a correction to the current estimation of the LR and HR feature maps. Here, the projection
errors are used to characterize or constraint the features in early layers. The up-projection
unit is utilized to map the LR feature maps to the HR feature maps, which is shown in
Figure 4a. However, it is intuitive that obtaining LR feature maps from HR feature maps is
simple and does not require projection unit based on iterative error feedback mechanism.
Therefore, we simplify the back-projection network with a downsampling unit for faster
computation, which has a very simple structure with a convolution layer as is shown
in Figure 4b. Note that each input feature map is concatenated and fused through the
sequential feature fusion (SFF) operation before entering the projection unit.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 21 
 

 

it has become a promising framework in the field of SFSR [44]. Figure 3 illustrates the 
schematic pipeline of the proposed enhanced residual back-projection network 
(ERBPN), which is designed on the basic architecture of the original DBPN [43]. The ar-
chitecture of ERBPN consists of three parts, namely, initial feature extract module, pro-
jection unit, and SR reconstruction module, as described below. Some modifications 
were made for the projection unit: (1) the down-projection unit was replaced with the 
downsampling unit; (2) the concatenation operation was replaced with a sequential fea-
ture fusion (SFF) operation. In the following, the major improvements are further ex-
plained. 

 
Figure 3. Architecture of ERBPN. 

The first part extracts the shallow feature 0L  from the input LR image LRI  and 

can be formulated by 0 ( )init LRL f I= , where initf  denotes a convolution operation 

with (3, , )l fConv n n  and ln , fn  are the number of input LR image channel and the 

feature maps, respectively. Then, a 1 × 1 convolution layer is used as feature pooling and 
dimension reduction before entering the projection unit. 

Then, the initial feature extraction is followed by a sequence of projection units, al-

ternating between construction of the LR and HR feature maps tL , tH . The projection 
units in our proposed framework include the up-projection unit and the downsampling 
unit. Iterative error feedback mechanism is proposed by iteratively estimating and ap-
plying a correction to the current estimation of the LR and HR feature maps. Here, the 
projection errors are used to characterize or constraint the features in early layers. The 
up-projection unit is utilized to map the LR feature maps to the HR feature maps, which 
is shown in Figure 4a. However, it is intuitive that obtaining LR feature maps from HR 
feature maps is simple and does not require projection unit based on iterative error 
feedback mechanism. Therefore, we simplify the back-projection network with a 
downsampling unit for faster computation, which has a very simple structure with a 
convolution layer as is shown in Figure 4b. Note that each input feature map is concate-
nated and fused through the sequential feature fusion (SFF) operation before entering 
the projection unit. 

 
(a) (b) 

Figure 4. Architecture of the dense up-projection unit (a) and downsampling unit (b). Figure 4. Architecture of the dense up-projection unit (a) and downsampling unit (b).

The up-projection and downsampling unit are densely connected to alleviate the
vanishing gradient problem, produce improved feature, and encourage feature reuse [14].
The input for each unit is the concatenation of the outputs from all previous units to
generate the feature maps effectively. Generally speaking, the feature maps generated by
different projection units have different types of HR and LR components with different
impacts on the quality of the results. Therefore, it is necessary to discriminate these feature
maps with a feature fusion module [45]. In our framework, the sequential feature fusion
operation (SFF) is employed to deal with the feature maps discriminatorily, integrating
these feature maps in a sequential manner. Figure 5 shows the illustration of the SFF.
Suppose that mt represents the tth input LR/HR feature map, yt denotes the output of the
tth convolutional layer. Next, we obtain the following equation:

yt = f ([mt; yt−1]) (6)
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where t = 1, 2, . . . , n, y0 = 0. n denotes the number of projection units, [· ; ·] represents the
concatenation operation, and f denotes a convolution operation with 3 × 3 convolutional
layer. It is worth pointing out that the SFF has discriminative ability because the feature
maps generated by different projection units are processed at different depths of the
network. Different from other networks, our reconstruction directly exploits different types
of LR-to-HR features without propagating through up-projection layers.
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Finally, we employ a global residual back-projection block structure. Residual learning
helps the network converge faster and makes it easier for the network to generate only
the difference between the HR and interpolated LR images [29], which can address the
performance degradation problem caused by the details loss after so many layers in deep
networks. In our ERBPN framework, the LR image is taken as the input to reduce the
computation time. At the last stage, all HR feature maps from the up-projection step are
deeply concatenated and fused with the SFF, then added to the interpolated LR image to
generate the final super-solved image.

The last convolution layer is used for image reconstruction with filter size of 3 × 3. The
network takes the reconstructed results, denoted as z′, as the output. Loss functions help
us estimate the difference between the recovered SR images and the corresponding ground-
truth HR images. MSE loss between the ground-truth HR image and the reconstructed HR
image is used as the objective function, which can be written as follows:

Loss =
1
N

N

∑
i=1

∥∥zi − z′i
∥∥2

2 (7)

where N is the number of the training images.

2.3. Summary of the Proposed Cascade Model for Super-Resolution

In our work, the two-step super-resolution reconstruction method cascades the model-
based MFSR and the deep learning-based SFSR method abovementioned. The MFSR with
L0-norm regularized intensity and gradient combination prior (L0RIG) and the SFSR via
enhanced residual back projection network (ERBPN) are employed to reconstruct a more
accurate result. Specifically, first, we take 16 low-resolution images as the input of the
L0RIG method to reconstruct one intermediate super-resolved image denoted as zl , whose
dimensions are 2× larger than the input LR images. Then, the intermediate super-resolved
image zl is fed into the ERBPN framework to obtain a high-resolution result zl+ with better
quality. The high-resolution result zl+ are 2× larger than zl , hence 4× larger than the input
LR images. Even though we exemplify our super resolution reconstruction method using
4× scaling factor, it can be directly extended to other SR scaling factors. The schematic
diagram for the proposed cascade method is illustrated in Figure 6.
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3. Experiments

To validly confirm the effectiveness of the proposed cascade model of MFSF-SR, this
section presents the experimental results on both synthesized and real images. We combine
the multi-frame-based L0RIG method with the single-frame-based ERBPN method, to
up sampling images progressively at the 4× scale factor. The proposed cascade method
applies ERBPN directly on the output of L0RIG in a sequential manner, where the L0RIG
method reconstructs the LR images first, and then the resulting image is independently
enhanced using the ERBPN method to obtain a higher-quality output. At the same time,
the two baseline super-resolution reconstruct methods of L0RIG and ERBPN are also
implemented to compare with the cascade method. In the simulation experiments, the
effect of the proposed method under different noise levels is further investigated to verify
the robustness to noise. The detailed steps are presented in the following sections.

3.1. Data and Training Details

The five grayscale HR images shown in Figure 7 were selected as the test images in
the simulation experiments. For each image from these test sets, we generated a set of N
= 16 images with different subpixel shifts applied before further degradation. Synthetic
sequences of 16 LR images were generated by applying isotropic Gaussian blur to the
sequential subpixel shifts HR image, then downsampling the row and column of the image
by a factor of 4.
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In the reconstruction stage of the L0RIG, the central frame of LR sequence is chosen as
our reference frame and the initial HR image is obtained by bicubic interpolation method.
The regularization parameter λ is determined empirically based on numerous experiments
to produce the best performance. Since minimizing the objective function by preconditioned
conjugate gradient method usually converges within 30 iterations, the maximum iteration
number is set to TS = 30.

In the ERBPN, the filter size in the up-projection unit varies with respect to the scaling
factor. For the 2× enlargement, we used a 6 × 6 convolutional layer with two striding
and two padding. The 4× enlargement then used an 8 × 8 convolutional layer with
four striding and two padding. In the training phase, we augmented the training data
from the DIV2K dataset [46] by randomly employing 90◦, 180◦, and 270◦ rotation and
horizontal and vertical flipping [44]. In each mini-batch, 128 degraded LR images with a
patch size of 64 × 64 were provided as inputs for the model, and the corresponding HR
image served as the ground truth for calculating the loss. The models were optimized
using the ADAM optimizer [47] with β1 = 0.9, β2 = 0.999, and ε = 10−8. The initial learning
rate was set to 10−4 and then decreased by half every 100 epochs. A total of 1000 epochs
were used for training the models since more epochs did not bring further improvements.
All experiments were implemented using Caffe framework version 1.0.0-rc3 and MATLAB
R2022a on an Nvidia RTX GPU, Santa Clara, CA, USA.

Image enhancement or visual quality improvement can be subjective because the
perception of better image quality can vary from person to person. For this reason, it is
necessary to establish quantitative measures for the comparison of image enhancement
algorithms. To assess the image quality of the super-resolution reconstructed results, two
classical evaluation criteria—the peak signal-to-noise ratio (PSNR/dB) and the structural
similarity index measure (SSIM)—were chosen to measure the performance of the different
super-resolution methods [48]. The higher the quantitative measure, the better the quality
of the reconstructed image.

3.2. Experiments on Synthetic Data

L0RIG and ERBPN are the baseline methods of the proposed MFSF-SR, which only
reconstruct by upsampling one step instead of step-by-step reconstruction under an up-
scaling factor of 4, for comparison with the cascade model. For a fair comparison, we
run SFSR method for all 16 simulated LR images and compute the mean metric from the
reconstruction outcomes—this way, the method is fed with the same data as those for
MFSR. Additionally, a bicubic interpolation of the LR reference frame is also constructed
for comparison.

Table 1 shows the quantitative performance comparison in terms of PSNR and SSIM
for the five simulated images presented in Figure 7 with the different methods. For the sake
of comparison, the two types of L0RIG and ERBPN algorithm directly reconstructed on
4× enlargement. The output of the cascade model is a super-resolved central frame with
four times the size of the original LR images.

For the sake of comparison, we analyzed the simulated experimental results from
both subjective and objective perspectives. Quantitatively, as displayed in Table 1, the
proposed cascade model yields the best scores in the evaluation metrics among all the
compared methods. In the experiment with the butterfly image, the PSNR values are
25.073 dB for L0RIG, 26.006 dB for ERBPN, 26.863 dB for MFSF-SR. These quantitative
results confirm the effectiveness of the MFSF-SR cascade model. From a subjective per-
spective, the red rectangles show zoomed regions of the restored images, to compare the
qualitative performance of the different methods. L0RIG shows the preferable performance,
but some edge is oversmoothed. ERBPN can produce good contrast through the up- and
down-projection unit, but there are some unnatural artifacts around the slight edge. The
result of the proposed MFSF-SR method contains more details and fewer blurred contours
than L0RIG and ERBPN.
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Table 1. Quantitative results (PSNR(dB) and SSIM) of the simulation experiments for 4× SR. The
bold portion indicates the best performance.

Data Metric Bicubic L0RIG ERBPN MFSF-SR

Cameraman
PSNR 24.120 26.004 26.787 27.642
SSIM 0.756 0.823 0.832 0.866

House
PSNR 27.228 31.572 32.549 33.391
SSIM 0.792 0.868 0.881 0.896

Baby PSNR 31.770 33.653 34.352 34.744
SSIM 0.856 0.898 0.915 0.922

Butterfly PSNR 22.099 25.073 26.006 26.863
SSIM 0.738 0.866 0.874 0.884

Parrot
PSNR 25.724 28.740 29.905 30.636
SSIM 0.874 0.916 0.935 0.941

Furthermore, in the experiment with the parrot image, the PSNR value for the pro-
posed MFSF-SR is 30.636 dB, which is 1.896 dB and 0.731 dB better than L0RIG and ERBPN,
respectively. As displayed in Figure 8, images reconstructed with the MFSF-SR cascade
model are able to preserve the HR components which contain more details, with rare
additional artifacts. As a simple comparison, in the bottom line of Figure 8, the enlarged
image in the result of L0RIG shows the misinterpreted area of the diagonal stripe due to the
ringing artifact effect. It shows that the MFSF-SR can preserve the low-frequency content,
and reliably restore the high-frequency details with the combination of the inter-frame in-
formation and external learning prior. From both the qualitative and quantitative analyses,
most of the results show that the MFSF-SR with a two-step reconstruction creates more
high-frequency information than the baseline methods at large magnification factors.
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To further assess the robustness of the proposed method with regard to different noise
levels, the Zebra image from the BSD68 dataset [49] was also selected as a synthesized
test image with warping, blurring, downsampling, and different noise levels of additive
white Gaussian noise (AWGN) added. For the color image sequence of the synthesized
zebra image, we first convert the color input to YCbCr space, and then reconstructed the
luminance component with the super-resolution algorithm.

To further compare the performance of the proposed method, a simulation experiment
with the zebra image was implemented under different noise levels. The quantitative
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reconstruction results of the different methods with the color zebra image are shown in
Table 2, where the proposed MFSF-SR method achieves very pleasing PSNR and SSIM
results at all the noise levels. Figure 9 shows the quantitative performance comparison in
terms of PSNR and SSIM for the zebra images under different noise levels. To be specific,
in the experiment with a noise variance of 0.005, the proposed method outperforms all the
compared methods with a result of 29.22 dB, which is 0.907 dB and 1.325 dB better than
L0RIG and ERBPN, respectively. Furthermore, it can be observed that the performance
advantage is more obvious for the high noise levels, and the proposed method turns out to
be effectively adapted to different noise characteristics.

Table 2. Quantitative results of the simulation experiment with different noise levels for 4× SR. The
bold portion indicates the best performance.

Noise Variance Metric Bicubic L0RIG ERBPN MFSF-SR

0.001
PSNR 19.698 22.538 22.518 23.206

SSIM 0.783 0.901 0.899 0.917

0.002
PSNR 19.681 22.151 22.036 22.703

SSIM 0.782 0.892 0.889 0.906

0.003
PSNR 19.666 21.825 21.673 22.341

SSIM 0.781 0.884 0.881 0.896

0.004
PSNR 19.651 21.549 21.379 22.002

SSIM 0.779 0.877 0.873 0.887

0.005
PSNR 19.638 21.313 21.095 21.822

SSIM 0.778 0.872 0.866 0.881
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For these simulation experiments, Figure 10 shows the HR reconstruction results for
the different methods at a scale factor of 4×. The green boxes show the zoomed regions
to compare the performance of different methods. As the partial enlargement shows, the
L0RIG method shows a better trade-off between removing noise and preserving the edges,
but it is not able to recover the lost fine details. Undesired edge artifacts can be found
in the results of the ERBPN method, which produces artificial edges in the flat surfaces
and fails to suppress the noise in the details of the image. In Figure 10, the result of the
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proposed method shows a very good performance, with clear details and fewer ringing
effects. Specifically, the distorted content, e.g., the stripes on the zebra, can be finely
restored in the proposed two-step cascade model. Overall, the MFSF-SR cascade model
performs favorably when compared to the baseline methods in this comparison experiment.
It demonstrated that cascading L0RIG and ERBPN to enhance each individual baseline
methods can substantially improve the final super-resolved image.
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In conclusion, with the qualitative and quantitative analysis, most of the results show
that the cascade model creates more high-frequency information than the L0RIG and
ERBPN methods. The MFSF-SR method works better in either noisy or noise-free case.
It can reliably recover high-frequency details with higher consistency and contrast loss,
while preserving strong edges and contours with few additional artifacts. The results were
perceived as most informative and natural.

3.3. Experiments on Real Data

Besides the above experiments on synthetic test images, we also conducted experiments
on real images to demonstrate the effectiveness of the proposed MFSF-SR cascade model.
The real image grayscale sequences of Car and Eia are part of the Multi-Dimensional Signal
Processing Research Group (MDSP) benchmark dataset [50], which is the most widely used
dataset to test the performance of multi-frame super-resolution methods. In our experiment,
16 frames from these two image sequences were used as the low-resolution input image.
The central frame in the sequence was set as the reference frame in this reconstruction.

Since no ground-truth HR image is available for the real sequence, we introduced
no-reference image evaluation metrics the natural image quality evaluator (NIQE) [51] and
the perception-based image quality evaluator (PIQE) [52] to further evaluate the quality
of the real image SR results. Smaller values of NIQE and PIQE indicate better SR results.
Figure 11 provides a visual comparison of the super-resolved results for the Car and Eia
images with magnification factor 4. The red rectangles show zoomed regions of the restored
images to compare the qualitative performance of the different methods. Experimental
results on real image sequences show that our method yields a boosted performance in
both objective metrics and visual quality. The MFSF-SR method achieves comparable or
even better performance than the baseline methods in terms of quantitative evaluations.
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For a real-world image, the downsampling kernel is unknown and complicated; thus,
performance of the non-blind SR methods are severely affected. Nevertheless, our method
can produce visual pleasant images and effectively suppress the errors caused by noise,
registration, and bad estimation of unknown PSF kernels.
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From the top line of Figure 11, we can observe that the experiment with the Car
sequence can be considered as a challenging example because the LR Car images are
severely degraded by blur and noise, with a complicated noise model. It was observed
that the bicubic interpolation method is too blurry to be recognized, while the L0RIG
and ERBPN algorithms can produce better visual effects than the bicubic interpolation
method. Compared with the bicubic interpolation method, other methods are more efficient
in improving spatial resolution due to the use of LR frame sequences or external prior
knowledge in the reconstruction. With a L0-norm regularized constrain, L0RIG algorithm
prefers a smooth result, but important edges and texture are also oversmoothed. As a
contrast, the result of ERBPN suffers from visible ghosting artifacts and is seriously affected
by the stair effects. As expected, the MFSF-SR algorithm has the best visual performance
with clear edges and less influence of artifacts and can effectively remove noise in the
smoothing area of the image. Meanwhile, as shown in the bottom line of Figure 11, the
proposed method gives rise to the most visually pleasing results with both sharpness and
naturalness. The L0RIG algorithm has a good noise suppression effect, but it over-smooths
the image, resulting in the loss of edge information. In contrast, ERBPN produce result
with sharp edges, but it lacks the ability to recover clean HR image because of the effect
of artifacts. In summary, the proposed MFSF-SR cascade model is capable of generating
clean and sharp HR images at a large scale factor without any hallucination of fine details.
It consistently demonstrated the effectiveness and superiority in the thorough experiments
conducted in this study.

4. Discussion
4.1. Effectiveness of the Two Different Cascade Models

The validity and reliability of the proposed MFSF-SR method was proven by the
experiments described in Sections 3.2 and 3.3. To further investigate the effectiveness of the
two different cascade models, we tested the two cascade models of MFSF-SR and SFMF-SR.
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The two kinds of cascade models combine the multi-frame-based L0RIG method with
the single-frame-based ERBPN method in opposite order, compared with the two kinds
of baseline methods with only one upsampling step at the 4× magnification factor. The
SFMF-SR method reconstructed with ERBPN + L0RIG. Each LR image is independently
enhanced using SFSR to obtain a higher-quality output. Then, the multi-frame-based L0RIG
method is applied to the reconstructed images to obtain the final result for the reference
image with a 2× scaling factor.

Table 3 shows the quantitative performance comparison in terms of the mean of
PSNR and SSIM with the different cascade models on the Set5 [53] and Set14 [54]. On 4×
enlargement, the cascade model, MFSF-SR, gains 0.339 dB and 0.364 dB more than SFMF-SR
on the Set5 and Set14, respectively. It demonstrates that the cascade model by applying
MFSR first and SFSR after outperforms the cascade model in the opposite order. Meanwhile,
both of the two cascade models improve the quantitative performance compared to the
two baseline methods of L0RIG and ERBPN. Figure 12 provides a visual comparison of
simulation experiment results for the cameraman image with magnification factor 4. The
images enclosed in red box show zoomed regions of the restored images to compare the
qualitative performance of the different algorithms. As one can see, the cascade model
of ERBPN + L0RIG tends to generate unexpected artifacts and seriously affected by the
ringing effects. In fact, the MFSF-SR generates softer patterns containing more details
and fewer blurred contours which subjectively closer to the ground truth. It produces
superior results compared to the other cascade model in both objective and perceptual
quality measurements. Additionally, the MFSF-SR approach also has significantly lower
computational complexity than the SFMF-SR method that first applies SFSR to all the input
LR images.

Table 3. Average PSNR/SSIM results for 4× SR on datasets Set5, Set14. Best and second best results
are highlighted and underlined.

Dataset Metric MFSR (L0RIG) SFSR (ERBPN) SFMF-SR (ERBPN + L0RIG) MFSF-SR(L0RIG + ERBPN)

Set5
PSNR 31.962 32.653 33.075 33.413
SSIM 0.891 0.899 0.910 0.917

Set14
PSNR 28.354 29.037 29.294 29.658
SSIM 0.779 0.791 0.821 0.828
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4.2. Exploring the Robustness of Cascading Model

In this section, we further discuss the generalization performance and limitations of
the proposed cascade model. According to the above discussion, the MFSF-SR approach
was selected as the proposed cascade model due to its better performance than the SFMF-SR
approach. Another group of the state-of-the-art MFSR and SFSR methods were selected
as the baseline methods, such as the MFSR based on the spatially weighted bilateral total
variation regularization model (SWBTV) [19] and the SFSR method with the inaccurate
kernel progressively correction (IKC) [55]. These two approaches were embedded into our
MFSF-SR framework to verify the robustness of the cascade model.
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There are four groups cascade methods with the combination of the four methods in
a cascade manner of multiple first and single later. The simulation experiments include
eight sets of comparative algorithms in addition to bicubic interpolation. The eight sets
of comparison algorithms are single-frame- and multi-frame-based methods, as well as
cascade methods: (1) the MFSR method of SWBTV [19] (denoted by M1); (2) the MFSR
method of L0RIG (denoted by M2); (3) the SFSR method of IKC [55](denoted by S1);
(4) the SFSR method of ERBPN (denoted by S2); (5) the MFSF-SR method of SWBTV + IKC
(denoted by M1S1); (6) the MFSF-SR method of SWBTV + ERBPN (denoted by M1S2);
(7) the MFSF-SR method of L0RIG + IKC (denoted by M2S1); (8) the MFSF-SR method of
L0RIG + ERBPN (denoted by M2S2).

Table 4 shows the quantitative performance comparison in terms of the mean of PSNR
and SSIM with the different methods on the three public benchmark datasets: Set5 [53],
Set14 [54], and Urban100 [56]. The Set5 and Set14 datasets consist of natural scenes; the
Urban100 set contains challenging urban scenes images with details in different frequency
bands. We can draw some conclusion from the quantitative comparison. Firstly, all four
groups of cascade methods are superior to their constituent single-frame and multi-frame
super-resolution methods by a large margin. Therefore, it can be concluded that the pro-
posed cascade model performs successfully and is robust to different SFSR and MFSR
methods. Secondly, with the significant progress of image super-resolution achieved by
deep learning, the deep learning-based SFSR approaches greatly improved the SR perfor-
mance on synthetic LR images. Finally, as the initial input images of the learning based
SFSR method, the results of the model-based MFSR are complex and varied. Nevertheless,
IKC can handle complex degraded images through iterative correction of blur kernels, so it
is more robust in the cascade model.

Table 4. Average PSNR/SSIM results for 4× SR on datasets Set5, Set14, and Urban100. Best and
second best results are highlighted and underlined. M1, M2, S1, and S2 represent the SR methods of
SWBTV [19], L0RIG, IKC [55], and ERBPN, respectively. M1S1, M1S2, M2S1, and M2S2 represent the
cascade methods of SWBTV + IKC, SWBTV + ERBPN, L0RIG + IKC, and L0RIG + ERBPN, respectively.

Dataset Metric Bicubic
MFSR SFSR MFSF-SR

M1 M2 S1 S2 M1S1 M1S2 M2S1 M2S2

Set5
PSNR 28.423 30.985 31.962 31.520 32.653 33.125 33.007 33.601 33.413
SSIM 0.811 0.865 0.891 0.878 0.899 0.912 0.909 0.921 0.917

Set14
PSNR 26.101 27.703 28.354 28.263 29.037 29.349 29.258 29.813 29.658
SSIM 0.704 0.757 0.779 0.774 0.791 0.824 0.818 0.837 0.828

Urban100
PSNR 23.152 24.614 25.683 25.334 26.086 26.858 26.672 27.163 27.072
SSIM 0.659 0.729 0.773 0.759 0.803 0.815 0.812 0.830 0.827

In Figure 13, we show visual comparisons on Urban100 with a scale factor of 4×
for the different comparative methods. Compare with the baseline methods, our cascade
model more accurately reconstructs parallel straight lines, grid patterns such as windows.
We obtain several observations from Figure 13. For image ‘img_074’ in Urban100, we
can find that most baseline methods fail to recover edges and also suffer from blurring
artifacts. Some of them even distort the horizontal lines and blur out the background. The
results generated from IKC methods still contain noticeable artifacts caused by spatial
aliasing. However, with an initialization reconstruction step by the model-based method
of SWBTV or L0RIG, the cascade method SWBTV + IKC (M1S1) and L0RIG + IKC (M2S1)
can effectively suppress such artifacts through progressive reconstruction. It significantly
improves the performance of the resolved image with proper straight lines.
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M2S2 represent the cascade methods of SWBTV + IKC, SWBTV + ERBPN, L0RIG + IKC, and
L0RIG + ERBPN, respectively.

Similarly, in the second example, e.g., ‘img_099’ in Figure 13, the four baseline methods
are unable to recover the rectangular shapes and blur out the boundaries representing the
outlines of the windows. In contrast, the MFSF-SR cascade models show great abilities
in producing accurate information from the LR image and removing the blur artifacts.
Our method recovers the structures correctly with less distortion and more faithful to the
ground-truth image. It was clearly demonstrated that the proposed cascade model can
obtain a better tradeoff between recovering lost details and suppressing ringing artifacts.
The abovementioned phenomena prove the advantages and robustness of the proposed
cascade model on super-resolution reconstruction.

5. Conclusions

In this paper, we proposed a novel multi-frame super-resolution reconstruction con-
catenating the model-based MFSR method with the deep learning-based SFSR method.
Our approach consists of an L0-norm constrained reconstruction scheme and an enhanced
residual back-projection network in a concatenated fashion for image reconstruction. The
proposed method first builds a MFSR method to obtain an initial result and apply SFSR
method directly on the initial result. It takes both the sub-pixel shift information and
external learned feature information into consideration, integrating the flexibility of the
model-based method and the feature learning capacity of the deep learning-based method.
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Extensive experiments on benchmark and real-world images illustrates that the pro-
posed cascade model can significantly improve the performance of the super-resolution
task. Superior results are produces compared to the other baseline methods in both qualita-
tively and quantitatively measurements. In addition, we have demonstrated that both the
two kinds of cascade methods perform better than the baseline methods and the proposed
cascade model can be robustly applied to different MFSR and SFSR methods. It means that
potential future advances in MFSR and SFSR can be easily exploited to further improve
the reconstructed image. In our future work, we will further study the coupling of the
model-based MFSR and the deep learning-based SFSR methods in order to bring out their
respective advantages.
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