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A B S T R A C T   

Reconstruction of cloud-covered thermal infrared land surface temperature (LST) is vital for the measurement of 
physical properties in land surface at regional and global scales. In this paper, a novel reconstruction method for 
Moderate Resolution Imaging Spectroradiometer (MODIS) LST data with a 1-km spatial resolution is proposed by 
combining assimilation data and remote sensing data through a nonlocality-reinforced network (NRN) model. 
Firstly, a data grading criterion is introduced to evaluate the importance of the various datasets, forming four 
combinations of multi-modal datasets for the training and testing of the NRN model. Secondly, the NRN model 
with a multiscale encoding–decoding structure considering the nonlocality-reinforced module is proposed for 
LST reconstruction. The results suggest that the proposed method can precisely reconstruct cloud-covered LST, 
with a mean absolute error (MAE) less than 0.8 K, even when no auxiliary remote sensing LST are used 
(Combination 1). The best result is the full combination (Combination 4), in which the coefficient of determi
nation is 0.8956, the MAE is 0.5219 K, and the root-mean-square error is 0.7622 K. Compared with the tradi
tional harmonic analysis of time series method, the improved enhanced spatial and temporal adaptive reflectance 
fusion method and the multiscale feature connected convolutional neural network method for LST reconstruc
tion, the proposed method can achieve superior results. The proposed method with Combination 1 has been 
implemented to reconstruct the daily LST in the study area for 2019. Referring to the meteorological station 
observations, the reconstructed bias absolute value is less than 1 K, indicating that the proposed model is very 
effective and valid for regional cloud-covered LST reconstruction.   

1. Introduction 

Land surface temperature (LST) is an important indicator of the 
physical characteristics of the land surface at both regional and global 
scales (Li et al., 2013), and is a key research factor widely used in 
climatology, ecology, and military reconnaissance (Kustas and Ander
son, 2009; Hansen et al., 2010; Zhang et al., 2023). Thus, LST and its 
spatio-temporal dynamics have always been important research di
rections in the international academic community (Hong et al., 2021). 
As a result of the small number of ground stations and their discrete 
spatial distribution, ground-based LST data cannot represent the 
continuous spatial distribution characteristics of a complex land surface 
(Yu et al., 2015). Remote sensing techniques have improved signifi
cantly in recent decades, and many thermal infrared (TIR) remote 

sensing LST products with high accuracies have been produced. 
Retrieving LST based on remote sensing technology has been used in an 
extensive manner to obtain spatially contiguous LST (Aires et al., 2004; 
Wang and Upreti, 2019). However, it is often difficult for satellites to 
obtain surface thermal information, due to the large cloud coverage with 
high frequency (Crosson et al., 2012). The large numbers of invalid 
pixels caused by cloud cover seriously restrict the subsequent applica
tion of LST data. Therefore, reconstructing the cloud-covered TIR LST 
data to obtain gapless LST is crucial for obtaining a continuous heat 
distribution of the Earth’s surface (Lu et al., 2011). 

In recent years, a variety of cloud removal methods for TIR LST have 
been proposed by utilizing the complementary LST information from 
other regions, times or sources to reconstruct the cloud-covered LST (Mo 
et al., 2021). Meanwhile, those data reflecting the surface physical/ 
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geometric properties, such as albedo, normalized difference vegetation 
index (NDVI), and digital elevation model (DEM), have also been uti
lized to supply important auxiliary information. According to the dif
ferences of the data sources, LST reconstruction methods can be divided 
into two main categories: 1) homologous data supported methods; and 
2) heterologous data supported methods. The homologous data sup
ported methods are the early mainstream methods, in which the TIR LST 
is taken as the primary reference to reconstruct the cloud-covered LST. 
The complementary relationship is constructed in the spatial (Lyon 
et al., 2010; Neteler, 2010; Shuai et al., 2014), temporal (Di et al., 2019; 
Scharlemann et al., 2008a; Xu and Shen, 2013) or spatio-temporal 
domain (Weiss et al., 2014; Liu et al., 2017; Duan et al., 2017; Pham 
et al., 2019). Physics-based models, statistical models or deep learning 
networks (Arslan and Sekertekin, 2019; Chen et al., 2019; Wu et al., 
2019; Yao et al., 2021) are built to determine this complementary 
relationship, so as to reconstruct the cloud-covered LST. Among the 
different models, deep learning models have shown advantages over the 
traditional methods for LST reconstruction due to their outstanding 
abilities to mine complex nonlinear relationships among multiple 
datasets (Youssef et al., 2020). However, it can be found that the cloudy- 
sky LST is reconstructed by using the clear-sky auxiliary information in 
the homologous data supported methods, which is a compromise solu
tion in contrast with the data missing. In fact, cloudy-sky LST differs 
from in that of clear-sky LST (Hong et al., 2021). How to take this dif
ference into account to obtain a more realistic cloudy-sky LST has 
become a challenge in the LST reconstruction. The second category of 
methods—the heterologous data supported methods, is established by 
considering the LST difference between clear-sky and cloudy-sky con
ditions (Cheng et al., 2020; Zhang et al., 2020; Zhao and Duan, 2020). 
Such methods typically use gapless LST data from other sources under 
the same meteorological conditions as the complementary information, 
such as passive microwave (PMW) LST (Tang et al., 2022), assimilation 
LST (Zhang et al., 2021), and indirectly using radiation data to correct 
LST (Zhao and Duan, 2020). Among the different data sources, PMW LST 
reflects the temperature of the soil surface with a coarse resolution, so 
that the heterologous data normalization and spatial downscaling are 
required when PMW LST data are used for the TIR LST reconstruction. 
Some complicated data-driven models have been used to solve these two 
problems, such as random forest model (Zhang et al., 2022) and deep 
learning models (Wu et al., 2022), from which high reconstruction ac
curacies have been reported and the strict data requirements have been 
met. Assimilation data realizes high-precision simulation of land surface 
parameters based on physical models, providing more real-time and 
effective information for the cloudy-sky LST reconstruction. In recent 
years, a few studies have generated all-weather LST using the improved 
enhanced spatial and temporal adaptive reflectance fusion method 
(improved-ESTARFM) (Long et al., 2020), the improved LST time series 
decomposition model (Zhang et al., 2021), and the annual/diurnal 
temperature cycle-based framework (Hong et al., 2021; Ma et al., 2022) 
and so on, combining downscaling and bias correction approaches to 
resolve the spatial incompleteness and tradeoff between the heterolo
gous LST (Jia et al., 2021; Wang et al., 2021). In addition to directly 
referring to LST products, there is another solution that uses the dif
ference of the radiation in cloudy and clear-sky conditions, radiation 
data was used to correct the LST results under clear-sky conditions, 
which has achieved realistic results (Zeng et al., 2018; Yang et al., 2019). 

In summary, it can be found that both homologous and heterologous 
data are valuable for the cloud-covered TIR LST reconstruction (Wu 
et al., 2022). However, the auxiliary homologous data at other times are 
also likely to be covered by cloud, and thus fail to provide sufficient 
complementary information for the cloud-covered LST reconstruction. 
Therefore, using heterologous data, such as PMW data and assimilation 
data, to realize cloud-covered LST reconstruction has been a research 
hotspot over the last few years. PMW data do not suffer from the cloud 
cover problem, but do suffer from missing data due to orbital gaps (Wu 
et al., 2022). Beyond this, LST retrieval with PMW data is an ill-posed 

problem which is difficult to solve (Gao et al., 2013), so that PMW 
LST data are not easily obtained. Assimilation data can provide spatially 
continuous auxiliary information reflecting the real thermal state of the 
land surface, which is very significant for the TIR LST reconstruction. 
There are now some public assimilation datasets available, providing 
convenience for its common use. Examples are the Global Land Data 
Assimilation System (GLDAS) and the China Land Data Assimilation 
System (CLDAS), for which the correlation coefficient/root mean square 
error (RMSE) when compared with ground sites are 0.82/4.2 K and 
0.98/1.8 K, respectively (Li et al., 2016; Zhang et al., 2021). This is also 
the reason why we used the assimilation data in this study. Besides the 
LST data, the basic physical and geometric properties of the Earth’s 
surface, such as the vegetation coverage, the elevation, and etc., are also 
very significant for the LST reconstruction and should not be neglected. 
There are differences between clear and cloudy-sky LST under the same 
physical/geometric attributes. Combining them with data that can 
reflect the real thermal state of the surface is considered in this paper. 
Hence, it can be concluded that even though those multiple sources of 
data can provide complementary information for the cloud-covered LST 
reconstruction, they differ in importance, spatial coverage and access. 
How to select the most reasonable and efficient data combinations from 
multi-source data, and establish the relationship between the multi- 
source data and the real LST, are important problems that need to be 
solved for practical LST reconstruction. 

Therefore, in this study, we developed a reconstruction method for 
Moderate Resolution Imaging Spectroradiometer LST data through 
combining assimilation data and remote sensing data through the NRN 
model. Four different data combinations were investigated in depth for 
precise and practical LST reconstruction. The main contributions of this 
paper are as follows: 1) The NRN model is proposed to combine multiple 
sources of data, including remote sensing data and assimilation data, to 
realize LST reconstruction of cloud-covered regions for MOD11A1 LST 
data. 2) A grading criterion is introduced to quantitatively weight each 
auxiliary remote sensing LST data source by comprehensively evalu
ating its acquisition complexity and its significance to the pending data. 
3) The performance of four different data combinations is compared, 
and the best combination can be selected according to the data condi
tions, which represents a practical way of gapless LST generation in a 
large region. 

2. Datasets 

2.1. Study area 

As shown in Fig. 1, the study area is located in the south of China, 
covering the Yangtze River Economic Belt, including the 11 provinces 
and cities of Shanghai, Jiangsu, Zhejiang, Anhui, Jiangxi, Hubei, Hunan, 
Chongqing, Sichuan, Yunnan, and Guizhou. The top-left corner of the 
study region is 35.13◦N, 97.35◦E and the bottom-right corner is 
21.14◦N, 122.84◦E. The topography of the study area is complex, 
including mountains, plateaus, basins, and plains, and the elevation 
range is widely distributed from 0 to 6904 m. The complex surface 
conditions can ensure the generality of the proposed method. 

2.2. Data collection 

All the data utilized in this study are listed in Table 1. There are three 
types of data: assimilation data, remote sensing data and ground station 
data, which are described in details below. 

2.2.1. Assimilation data 
The CLDAS datasets combine observational information obtained by 

meteorological stations in China and multiple data products (Shi et al., 
2011; Zhang et al., 2013). The CLDAS datasets provide high-resolution, 
high-quality, and near real-time grid data of the surface state and flux 
parameters. The CLDAS version 2.0 datasets were downloaded from the 

Y. Gong et al.                                                                                                                                                                                                                                    



International Journal of Applied Earth Observation and Geoinformation 117 (2023) 103195

3

China Meteorological Data Service Centre (https://data.cma.cn/). The 
daily ground temperature (DGT) was used for the reconstruction data
sets. Spatial interpolation was used to process the DGT data into a 1-km 
resolution. 

2.2.2. Remote sensing data 
The remote sensing data utilized in this study included DEM prod

ucts, NDVI products and four kinds of LST products. 
DEM: DEM data are an important factor when attempting to obtain 

spatio-temporal gapless LST of a coarse-to-fine scale (Zhan et al., 2012; 
Duan and Li, 2016). The DEM data were downloaded from the Con
sortium of International Agricultural Research Centers Consortium for 
Spatial Information (CGIAR-CSI, https://srtm.csi.cgiar.org/index.asp). 
The elevation variable of the DEM products with a spatial resolution of 
250 m was resampled with bicubic interpolation to a 1-km resolution. 

NDVI: Many previous studies have demonstrated that NDVI data are 
effective for reconstructing LST (Zeng et al., 2018). The spatial resolu
tion of the MOD13A2 NDVI product is 1 km. The reason for using a 16- 
day NDVI product is that there is likely to be no obvious change in the 
NDVI values within 16 days. 

LST: MOD11A1, MYD11A1, MOD11A2, and MOD11B3 LST data 
were utilized in this study. The first three kinds of data were utilized for 
the MOD11A1 LST reconstruction. The MOD11B3 LST data were used 
for the verification of the regional experiment. For these products, the 
equatorial crossing time of the Terra satellite is about 10:30 a.m., and 
that of the Aqua satellite is about 13:30p.m. 

In this study, the MODIS data were obtained from the Level-1 and 
Atmosphere Archive and Distribution System Distributed Active Archive 
Center (https://ladsweb. modaps.eosdis.nasa.gov/search/). 

2.2.3. Ground station data 
The 0-cm LST data from the China Meteorological Administration, 

were downloaded from the China Meteorological Data Service Centre 
(http://data.cma.cn/). According to the specifications for surface 
meteorological observations, the 0-cm LST is measured by a platinum 
resistance sensor at the automatic observation stations half buried in the 
soil and half exposed to the air (WMO, 2014). 0-cm LST data from four 
ground stations were chosen to validated the dependability of the 
application in regional LST reconstruction. Details of the ground site 
measurements are provided in Table 2. 

3. Methodology 

3.1. Data combinations 

3.1.1. Datasets preparation 
The aim of this study was to remove the cloud-covered pixels in the 

MOD11A1 LST product. The missing rate of data (MRD) of the 
MOD11A1 product in 2019 was calculated, which mainly ranges from 
50 % to 90 % and the average MRD is 69.42 %, as shown in Fig. 2. 
Different masks with different MRDs (50 %, 70 %, and 90 %) were 
generated to simulate the cloud cover status, and then the dataset 
comprising of cloudy and clear LST image pairs can be prepared for the 
deep learning model, as shown in Fig. 3. The white area retains the 
original MOD11A1 LST, and the black areas simulate missing pixels. 

In the process of data clipping, all the images of the study area were 
included as much as possible, so that the reconstruction datasets covered 
abundant complex terrain areas. Thus, 3698 pairs of cloudy-sky 
MOD11A1 images and auxiliary images for the corresponding position 
with the size of 64 × 64 were prepared, among which 3330 pairs were 
used for the training and 368 pairs for the testing. Among, them, spatial 
interpolation was used to process the DGT data into 1 km resolution. The 

Fig. 1. Location of the Yangtze River Economic Belt in China (a) and its DEM (b).  

Table 1 
Data collection.  

Data type Data Spatial/ 
temporal 
resolution 

Description 

Assimilation 
data 

CLDAS DGT 0.0625◦/1 day Daily ground temperature 

Remote sensing 
data 

MOD13A2 
NDVI 

1 km/16 days 16-day normalized 
difference vegetation index 
(Aqua) 

MOD11A2 
LST 

1 km/8 days 8-day land surface 
temperature (Aqua) 

MYD11A1 
LST 

1 km/1 day Daily land surface 
temperature (Terra) 

MOD11A1 
LST 

1 km/1 day Daily land surface 
temperature (Aqua) 

MOD11B3 
LST 

6 km/1 month Monthly land surface 
temperature (Aqua) 

SRTM DEM 250 m/ - Elevation 
Ground station 

data 
CMA 0-cm 
LST 

—/1 h Ground 0-cm land surface 
temperature  

Table 2 
Details of the ground site measurements.  

Site City Location (◦ E, ◦N) Elevation (m) 

No. 56571 Xichang 102.27◦ , 27.90◦ 1592.4 
No. 56748 Baoshan 99.11◦, 25.07◦ 1652.2 
No. 56778 Kunming 102.39◦ , 25.00◦ 1888.1 
No. 57932 Rongjiang 108.53◦ , 25.97◦ 287.4 

The detailed information about the ground sites data from the China Meteoro
logical Data Service Centre (http://data.cma.cn). 
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moment matching method is used to normalize CLDAS GST to 
MOD11A1. 

3.1.2. Data grading criterion 
A grading criterion was developed to evaluate the importance of the 

various input auxiliary data by comprehensively considering the missing 
rate of the auxiliary data and its correlation to the pending data 
(determination coefficient, R2). According to the importance of the 
auxiliary data, the input data were composed of three parts: 1) data that 
reflect the physical/geometric properties of the ground surface; 2) 
gapless temperature data that reflect the real-time thermal state of the 
ground surface; and 3) LST products with complementary information at 
adjacent times. Among these inputs, the first two parts are necessary 

inputs, and the third part is selective inputs ranked according to the 
importance of the data rating. 

The surface physical and geometric attribute can be characterized by 
the NDVI and DEM data, respectively. Many studies have shown that 
LST and NDVI have a strong correlation (e.g., Sun and Kafatos, 2007; 
Yue et al., 2007; Tan et al., 2012). Therefore, MOD13A2 NDVI data were 
used as the necessary data for the reconstruction of the NRN model. DEM 
data have a powerful influence on the spatial distribution of LST, as LST 
is affected by elevation and topographic relief. Many studies have found 
that DEM data have a significant negative correlation with LST (Duan 
et al., 2017). In addition, SRTM DEM is easy to download, and contains 
elevation data covering 80 % of the Earth’s surface. DEM data are 
necessary data for an LST reconstruction model. 

The gapless temperature used to reflect the real-time thermal state of 
the surface was the CLDAS DGT, which builds a bridge between the 
remote sensing data and ground observation data. It has been proved 
that the relative correlation coefficient between the CLDAS DGT and 
ground LST is as high as 0.98 in China, and the deviation is less than 2 K 
(Chen, 2010). The CLDAS DGT data are also gapless, and were thus used 
as the necessary data in this study. 

There are three types of LST products at adjacent times: MYD11A1, 
MOD11A1, and MOD11A2. The instantaneous observation of LST is not 
independent, but has a certain correlation in the time series, which can 
provide rich information for reconstruction. If we suppose that the 
acquisition time of the missing MOD11A1 product is D1T1 (day 1, time 
1), then the available LST auxiliary data are D1∼8T1 MOD11A2, D1T2 
MYD11A1, and D2T1 MOD11A1. As shown in Fig. 4, the MRD for the 
three auxiliary LST products was calculated for the study area in 2019. 
Clearly, the MRD of the MOD11A2 product is the lowest, and that of 
MOD11A1 is close to that of MYD11A1. The R values for these three LST 
products with the D1T1 MOD11A1 for each day in 2019 are presented in 
Fig. 5. On the whole, the R values are, in descending order, D1∼8T1 

Fig. 2. The missing rate of data (MRD) for the MOD11A1 product in the study 
region in 2019. 

Fig. 3. Masks (size: 64 × 64) with different MRDs for the missing observations. The white and the black pixels represent the clear-sky areas and the missing areas, 
respectively. (a)–(d) 50 % MRD. (e)–(g) 70 % MRD. (h) and (i) 90 % MRD. 
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MOD11A2, D1T2 MYD11A1, D2T1 MOD11A1. 
The average statistical MRD and R values for 2019 are listed in 

Table 3. That the MRD from low to high is D1∼8T1 MOD11A2 < D1T2 
MOD11A1 < D2T1 MYD11A1, and the R from strong to weak is D1∼8T1 
MOD11A2 > D1T2 MYD11A1 > D2T1 MOD11A1. 

The grading criterion results for the three kinds of auxiliary data are 
listed in Table 4. Clearly, the total score of MOD11A2, MYD11A1, and 
MOD11A1 rank from high to low by the importance score. 

Based on the above analysis, we scored four input combinations 
according to their importance grading criterion. Among these combi
nations, Combination (Com) 1 is composed of the necessary data, and 
Coms 2, 3, and 4 add the relevant LST variables in sequence according to 
the scoring standard on the basis of Com 1. The following auxiliary data 
combinations were considered in the experiments: 

Com 1: MOD13A2 NDVI + SRTM DEM + CLDAS DGT. 
Com 2: MOD13A2 NDVI + SRTM DEM + CLDAS DGT + MOD11A2 

LST. 
Com 3: MOD13A2 NDVI + SRTM DEM + CLDAS DGT + MOD11A2 

LST + MYD11A1 LST. 
Com 4: MOD13A2 NDVI + SRTM DEM + CLDAS DGT + MOD11A2 

LST + MYD11A1 LST + MOD11A1 LST (MOD11A1 LST is the adjacent 
temporal LST of the pending MOD11A1 LST). 

3.2. The nonlocality-reinforced network model for cloud removal of LST 
data 

The proposed nonlocality-reinforced network (NRN) model is a U- 
shaped structure of multiscale encoding–decoding, as shown in Fig. 6. In 
the encoding structure, a nonlocality-reinforced module is used to 

enhance the spatial cognition and learning ability of the network, which 
can effectively learn the longer distance spatial correlation in multi- 
source data, reconstructing more accurate cloudy-sky LST. The multi
scale encoding–decoding structure can increase the receptive field and 
reduce the amount of computation (Ronneberger et al., 2015), and the 
skip connection structure can effectively reduce the gradient disap
pearance and degradation problems (Szegedy et al., 2016). The 
nonlocality-reinforced module and loss function of the NRN model are 
described in detail below. 

Fig. 4. The MRD for the various auxiliary LST products.  

Fig. 5. R between the MOD11A1 product to be reconstructed and the various auxiliary LST products.  

Table 3 
Average statistical MRD and R for each day in 2019.   

D1∼8T1 MOD11A2 D1T2 MYD11A1 D2T1 MOD11A1 

MRD  22.90 %  71.21 %  69.42 % 
R  0.9241  0.8769  0.7757  

Table 4 
Importance scores for the various LST data sources.  

Data Correlation to 
pending data (0–1) 

Probability of acquiring 
gapless data (0–1) 

Total score 
(0–2) 

MOD11A2 
LST  

0.92  0.77  1.69 

MYD11A1 
LST  

0.88  0.29  1.17 

MOD11A1 
LST  

0.78  0.31  1.09  
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3.2.1. Nonlocality-reinforced module 
LST is a spatially continuous and autocorrelated variable. Three 

nonlocality-reinforced modules are embedded into the cloud removal 
network to better learn the global spatial features and those of the multi- 
source auxiliary data (Wang et al., 2018; Woo et al., 2018). In a 
nonlocality-reinforced module, the response in one location is computed 
as the weighted sum of the features in all the locations, thus overcoming 
the shortcoming of convolution processing paying attention to local 
information. The nonlocality-reinforced module structure is shown in 
Fig. 7. 

In the nonlocality-reinforced module, global feature points are 
considered for the weighting calculation, which expands the receptive 
field. The expression is as follows: 

XNRA
LSTi

=
1

C(XC
LST)

∑

∀j
f (XC

LSTi
− XC

LSTj
)g(XLSTj ) (1) 

where XC
LST is the output LST signal of the previous step; i represents 

any position of the output LST feature map; j is the index of all the lo
cations; XNRA

LST is the output LST feature map; CXC
LST is a normalized 

function; and f(x) is a function to calculate the feature’s similarity 

between position i and position j. In the proposed method, an embedded 
Gaussian function, which is a simple variant of the Gaussian function, is 
used as f(x) to calculate the similarity in embedded space. 

3.2.2. Loss function 
The L2-norm and the Structural SIMilarity (SSIM) index are com

bined as the loss function of the NRN model. The L2-norm loss function 
is not only derivable everywhere, but is also easy to optimize, and has a 
relatively stable solution. However, the L2-norm is based on pixel-by- 
pixel comparison that particularly sensitive to outliers. The SSIM 
index considers the similarity of two LST images, which is counteract the 
influence of individual outliers on the overall training of the network 
(Wang et al., 2004). 

The L2-norm loss function measures the Euclidean distance between 
the true LST and the reconstructed LST of the deep learning networks 
(Zhang et al., 2017). The mathematical formula is as follows: 

LossL2− norm =
1
N

∑N

i
(LSTre(i) − LSTes(i))

2 (2) 

where LSTes and LSTre represent the estimated LST value and real LST 
value, respectively. i represents a point of the LST images. N represents 
the number of points of the LST images. 

The larger the SSIM index value is, the more similar the two LST 
images are. When the two LST images are identical, the SSIM index value 
is 1. The SSIM index is calculated as follows: 

SSIM(LSTre − LSTes) =
(2μLSTre

μLSTes
+ c1)(2σLSTreLSTes + c2)

(μ2
LSTre

+ μ2
LSTes

+ c1)(σ2
LSTre

+ σ2
LSTes

+ c2)
(3)  

LossSSIM = 1 − SSIM (4) 

where LSTes and LSTre represent the estimated LST value and real LST 
value, respectively. μLSTre 

and μLSTes 
represent the average values of the 

estimated LST and the real LST, respectively. σLSTes and σLSTre are the 
standard deviations of the pixel values of the estimated LST and the real 
LST, respectively. σLSTreLSTes is the covariance between the estimated LST 
and the real LST. c1 and c2 are constants. 

Fig. 6. Flowchart of the proposed method: A. Data input, B. Nonlocality-reinforced network, and C. Output.  

Fig. 7. The structure of the nonlocality-reinforced module.  
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4. Results 

4.1. Examination of the different data combinations for LST 
reconstruction 

4.1.1. Visual assessment 
In all four input combinations, the proposed reconstruction method 

can fully fill the invalid LST pixels caused by cloud coverage, as shown in 
Fig. 8. Three test data were randomly selected for different terrain in 
different areas of the study area over different days. The first column 
shows the missing LST simulated by the reference LST, and the middle 
four columns are different combinations reconstructed LST. More spe
cifically, in the three samples, Com 4 works best among all the combi
nations, and its reconstruction result is the closest to the real LST, with 
the best overall details. The reconstruction results of Com 1 have rough 
spatial details, and are the worst one among the four combinations, 
showing some deviation between the reconstructed LST and original real 
LST. Com 1 has the lowest difficulty of data acquisition, promoting the 
broad prospect of large-scale application, and is a cost-effective recon
struction method. The reconstruction results of Com 2 and Com 3 are 
between the best and the worst, and the results of Com 3 have richer 
detail consistency than those of Com 2. In addition, in the four recon
struction results, with the increase of the MRD, the reconstruction visual 
effect shows fewer and fewer details. With the exception of the three 
examples shown in Fig. 8, all of the reconstructed visual effects in the 
dataset behave similarly. 

4.1.2. Quantitative assessment 
To evaluate the accuracy of the four combinations for LST recon

struction, the quantitative statistical accuracies with different MRDs for 
the NRN model were compared. The three evaluation indices considered 
in this paper are: mean absolute error (MAE), RMSE, and R2. Among the 
indices, a smaller MAE, a smaller RMSE, and a larger R2 indicate better 
reconstruction results. 

Fig. 9 shows the quantitative statistics of the NRN model for the four 
combinations of MOD11A1 images, where red represents MAE, gray 
represents RMSE, and blue represents R2. It can be seen that the overall 
accuracy evaluation results are consistent with the visual effects. Com 4 
obtains the best reconstruction results, with an MAE of 0.5219 K, an 

RMSE of 0.7622 K, and an R2 value of 0.8956. The deviation and ab
solute error are also the smallest between the reconstruction LST and 
real LST. Com 3 obtains an effect that is second only to that of Com 4, 
and is slightly better than that of Com 2. Although Com 1 acquires the 
worst reconstruction result, the R2 is higher than 0.78 and the MAE is 
less than 0.78 K, maintaining reasonable consistency with the real LST. 

To analyze the influence of different MRDs and combinations in 
more detail, Fig. 10 shows the quantitative statistics of the NRN model 
for the four combinations of MOD11A1 images with different MRDs. 
With the increase of the MRD, the reconstruction results all become 
worse. When only the necessary auxiliary data are used as inputs (Com 
1), NRN achieves a relatively poor accuracy, with an RMSE of less than 
1.5 K at 90 % MRD. With the addition of more remote sensing multi- 
temporal LST data (Coms 2–4), the accuracy of the reconstruction re
sults is significantly improved, with a closer consistency with the true 
LST. This is due to the space–time complementary correlation between 
the multi-temporal LST products. The quantitative assessment results 
are provided in Table 5. 

Fig. 11 shows the error distribution of the four combinations. All the 
combinations are all basically normally distributed, and the errors are 
all distributed from − 5 K to 5 K. The errors are mainly concentrated in 
the − 2 K to 2 K range, with peaks close to 0 K, and a few errors with 
larger values. The mean value of error distribution is very close to 0 K. 
With the increase of auxiliary data variables, the standard deviation also 

Fig. 8. LST reconstruction results obtained using the NRN model for MOD11A1 during different situations.  

Fig. 9. Quantitative statistics of the NRN model for the four combinations of 
MOD11A1 images. 
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decreases, and the peak of the curve becomes higher and the distribution 
is more concentrated, which means that the errors are smaller. This 
shows that the multiple dataset combination method proposed in this 
paper provides rich auxiliary information and can improve the accuracy 
of LST reconstruction. 

4.2. Comparison with other methods 

To investigate the NRN model performance, the traditional method 
of the harmonic analysis of time series (HANTS) (Xu and Shen, 2013), 
improved ESTARFM method (Long et al., 2020) and the deep learning 
method of MFCTR-CNN (Wu et al., 2019) were compared with the 
proposed method. The spatial and temporal fusions and bias-corrected 
LST are used in the improved ESTARFM reconstruction method, and 
MFCTR-CNN uses a multiscale CNN combined with spatial attention to 

learn high-level features of the adjacent-time LST for reconstruction. 
The quantitative statistical results of these four methods are listed in 

Table 6. Except that the R2 values of improved-ESTARFM is lower than 
0.5, the other three methods are higher than 0.7. There are significant 
differences in MAE and RMSE. The MAE of the improved-ESTARFM is 
greater than 3.5 K, while that of HANTS, MFCTR-CNN and the NRN 
model are less than 1 K. 1) The improved-ESTARFM, although system
atically bias corrected for the results of the spatio-temporal fusion of 
CLDAS GST and MOD11A1, still has a large bias with original 
MOD11A1. The improved-ESTARFM method only considers simple 
linear relationships in spatio-temporal, making it difficult to achieve 
better results. The HANTS methods only used time series LST informa
tion, achieving an acceptable result, without taking into account the LST 
difference between clear and cloudy-sky. The other two methods take 
into account the spatio-temporal complementarity with good results, 
while deeply mining its characteristics. 2) The NRN model (Com 1) 
obtains the best results in the four evaluation indicators. This is probably 
due to the HANTS, the improved ESTARFM and the MFCTR-CNN 
methods only considering LST as auxiliary data, while the NRN model 
also considers the data reflecting physical/geometric attributes (NDVI/ 
DEM) and the real-time thermal state (CLDAS GST) of the surface as 
necessary auxiliary data. 

To verify the capabilities of the NRN structure, Unet (Ronneberger 
et al., 2015) and MFCTR-CNN were compared in this study. Unet is a 
three-times down-up sampling structure, and MFCTR-CNN adds the 
spatial attention structure to upsampling (named UnetSA in this paper), 
while the NRN model adds a nonlocality-reinforced module in the 
downsampling. 

As shown in Fig. 12, with the four input combinations, the test results 
of UnetSA and the NRN model are improved, compared with the Unet 
structure, but the NRN model shows a more significant improvement. 

Fig. 10. Quantitative statistics of the NRN model for the four combinations of MOD11A1 images with different missing rates.  

Table 5 
Quantitative statistics for the reconstruction results of the four combinations 
with different missing rates.  

Indicator MRD Com 1 Com 2 Com 3 Com 4 

MAE/K 50 %  0.5442  0.4248  0.3895  0.3501 
70 %  0.8285  0.6805  0.6249  0.5784 
90 %  1.1124  0.8809  0.7936  0.7395 
Average  0.7767  0.6216  0.5672  0.5219 

RMSE/K 50 %  0.8414  0.6780  0.6231  0.5611 
70 %  1.1756  0.9924  0.9168  0.8524 
90 %  1.4210  1.1447  1.0406  0.9767 
Average  1.0950  0.8990  0.8255  0.7622 

R2 50 %  0.8541  0.8930  0.9206  0.9345 
70 %  0.7878  0.8209  0.8727  0.8901 
90 %  0.6451  0.7534  0.8094  0.8342 
Average  0.7828  0.8351  0.8780  0.8956  
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Firstly, the spatial attention module enhances the weight of the impor
tant features, but is still a local calculation, with a small receptive field. 
The nonlocality-reinforced module not only increases the weight of the 
important features, but also solves the limitation of the CNN paying too 
much attention to the local features. Secondly, UnetSA pays attention to 
the high-level features and achieves certain results. The NRN model uses 
the nonlocality-reinforced module for the downsampling, paying more 
attention to the features obtained from the input combinations of data 
rather than the features obtained after multiple convolution trans
formations. These points fully prove the superiority of the nonlocality- 
reinforced structure and its insertion position. In addition, with the in
crease of the optional data, the accuracy of all three networks is 
significantly improved, which verifies the generality and expansibility of 
the various combinations proposed in this paper. 

4.3. Application to regional MODIS LST reconstruction 

In Section 3.1, we described how the four input combinations pro
vided the possibility of reconstructing LST for the whole study area in 
2019. In Com 1, the input data only include the pending MOD11A1 LST, 
MOD13A2 NDVI, SRTM DEM and CLDAS DGT data, for which gapless 
data are easily acquired. To validate the performance of the NRN model 
in a regional experiment, the time-series results were compared with the 
ground-based 0-cm LST data from the China Meteorological Adminis
tration. Data from four ground stations were selected for the verification 
in homogeneous areas. 

4.3.1. Regional LST mapping 
The spatial distribution pattern of the daily missing LST and the 

reconstructed LST products of the study area in different seasons in 2019 
are shown in Fig. 13. The left side shows the daily LST missing images in 
winter, spring, summer and autumn, respectively, and the right side 
shows the reconstruction results of Combination 1. Obviously, the 
Combination 1 can be reconstructed to seamless LST of the proposed 
method. If there were more optional auxiliary data, a more accurate 
reconstructed LST is available. A more accurate evaluation of the 
regional reconstruction results was done later using ground 0-cm LST 
data. 

4.3.2. Accuracy validation 
Fig. 14 shows the scatter plot distribution of the 0-cm LST and 

MODIS LST at four ground stations for the time-series data in 2019, 
where the orange and blue dots represent the original and the recon
structed LST, respectively. The correlation between the 0-cm LST and 
MOD11A1 before and after reconstruction is very close, and the absolute 
bias value is less than 0.9976 K. Excluding their systematic error, the 
data distribution before and after reconstruction maintains a good 
consistency using the proposed method, with no abnormal values, 
proving that the proposed NRN model has good stability and reliability. 

5. Discussions 

5.1. Advantages of the proposed method 

To address the problem of the missing pixels caused by cloud 
coverage of MODIS LST data, based on the analysis of multi-source data 
correlation and missing rate, four data combinations are established to 
provide complementary information in this paper. A nonlocality- 
reinforced network is constructed to mine the complex nonlinear com
plementary mapping of multi-source data to achieve high-precision 
reconstruction of LST. The advantages of the proposed method 
compared with existing methods are mainly reflected in the following 
three aspects: 1) Compared with the traditional time-series (Xu et al., 

Fig. 11. The error distributions of the four combinations.  

Table 6 
Quantitative statistics for the reconstruction results of the four methods.  

Indicator Improved-ESTARFM HANTS MFCTR-CNN Proposed (Com 1) 

MAE/K  3.3695  1.8134  0.8013  0.7767 
RMSE/K  4.9385  2.3825  1.1455  1.0950 
R2  0.4683  0.7238  0.7630  0.7828  
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2013) and spatio-temporal fusion reconstruction methods (Long et al., 
2020), the reconstruction accuracy of the proposed method in this paper 
is significantly improved due to the introduction of multi-source data 
and deep learning methods, as shown in Table 6. And the analysis of 
different data combinations also makes the proposed method more 
practical. 2) Compared with the LST reconstruction methods using the 
assimilated data, the accuracy of our method can reach the RMSE of 
0.7622 K, which is more accurate compared with the annual/diurnal 
temperature cycle-based framework (Hong et al., 2021; Ma et al., 2022). 
Because the convolutional neural network can deeply mine the spatial 
features of the auxiliary data and learn the nonlinear relationships 
among multi-source auxiliary data. 3) Compared with existing deep 
learning methods, the proposed method introduces nonlocality- 
reinforced module, which enables the network to better take into ac
count the spatial distribution characteristics of LST, and the recon
struction accuracy is higher. As shown in Fig. 12, the proposed method 
in this paper is more accurate in RMSE, that the MAE and R2 are the 
highest with the same data combination as input. 

5.2. Extensions of the proposed method 

It is known that deep learning networks are highly dependent on 
datasets, resulting in limited generalization and extension. To testify the 
generalization of the proposed method, the trained model with 2019 
data is used for the LST reconstruction in the other spatial areas and 
captured in the other years. In this case, spatial adaptation analysis was 
tested using data from other regions (36.08◦N, 125.11◦E–43.58◦N, 
96.81◦E) in 2019, and temporal adaptation analysis was tested using 
data from the study area in spring 2018, both using 500 pairs of test 
data. 

The results of the comparative experimental test accuracy of the four 
combinations are shown in Table 7. It can be seen that the NRN model 

has the highest test accuracy on the original data set. The test accuracy 
decreases in other times and spaces, but acceptable results can be ob
tained. In the construction of the training dataset, we have tried to make 
the data pairs cover various land cover types and various seasons as 
much as possible, so that NRN can be applied to more regions and times. 

5.3. Limitations of the proposed method 

Datasets are of great significance to deep learning methods. Only one 
year’s data of the study area was used to establish a dataset in this paper. 
Although data from other regions and time can also be processed, the 
accuracy still needs to be further improved. In order to improve the 
spatio-temporal generalization ability of the NRN method, future work 
should expand the temporal domain of the dataset and make the dataset 
balanced across land cover types. To make full use of the auxiliary data 
with gaps and introduce more assimilation data at different time may be 
an effective method, which is what we will discuss further in the future. 

Moreover, the temporal difference of the auxiliary data used in this 
study might bring uncertainty to the final result. The merging of TIR- 
and passive microwave (PMW)-based LST is regarded as the most 
promising option to solve this problem and develop an all-weather LST 
product (Li et al, 2023), even though the thermal sampling depths of 
these two types of data are not equal. In addition to that, there exist large 
scale differences between TIR- and PMW-based LST. Deep learning 
models have the ability to learn complex nonlinear correlations, which 
may benefit the exploration of the physical mechanisms and spatial 
patterns, and support the merging of these two different sourced tem
perature data. It is a challenging and very valuable direction which 
worth further studying in the future. 

Fig. 12. Quantitative statistics for the LST reconstruction of the three networks during four combinations.  
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6. Conclusions 

In this paper, we have described how assimilation data and remote 
sensing data can be combined through the proposed nonlocality- 
reinforced deep learning network to achieve cloudy-sky LST recon
struction. Four specific data combinations were proposed according to 
the data grading criterion, by considering both the significance and 
acquisition of the data. The results showed that the NRN model can yield 
good results even using the basic data combination (Com 1), indicating 
that the combination of assimilation data and remote sensing data is 

very effective for LST reconstruction. Quantitatively, the reconstruction 
accuracy was the highest when using the full data combination (Com 4), 
owing to the injection of more effective information. The proposed 
method was compared to the traditional the harmonic analysis of time 
series method, the improved ESTARFM method and some other deep 
learning methods. A multi-source dataset was shown to be more effec
tive than only using remote sensing data. The comparison with other 
deep learning networks proved the superiority of the nonlocality- 
reinforced structure and its insertion position. In the practical regional 
LST reconstruction, the reconstructed monthly average LST with a 1-km 

Fig. 13. Spatial distribution pattern of the daily missing LST and the reconstructed LST products of the study area in different seasons in 2019.  
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resolution was consistent with the official monthly MOD11B3 LST with a 
6-km resolution, in both the spatial and temporal domains. This vali
dated the practicability and efficiency of the proposed method. The 
proposed method actually represents an open framework that can be 
used to combine more data from other sources, and the subsequent 
performance in LST reconstruction needs further investigation. 
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