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Abstract—Remote sensing satellite sensors feature a tradeoff
between the spatial, temporal, and spectral resolutions. In this pa-
per, we propose an integrated framework for the spatio—temporal—
spectral fusion of remote sensing images. There are two main
advantages of the proposed integrated fusion framework: it can
accomplish different kinds of fusion tasks, such as multiview
spatial fusion, spatio—spectral fusion, and spatio—temporal fusion,
based on a single unified model, and it can achieve the inte-
grated fusion of multisource observations to obtain high spatio—
temporal-spectral resolution images, without limitations on the
number of remote sensing sensors. The proposed integrated fusion
framework was comprehensively tested and verified in a variety of
image fusion experiments. In the experiments, a number of dif-
ferent remote sensing satellites were utilized, including IKONOS,
the Enhanced Thematic Mapper Plus (ETM+), the Moderate Res-
olution Imaging Spectroradiometer (MODIS), the Hyperspectral
Digital Imagery Collection Experiment (HYDICE), and Systéeme
Pour I’ Observation de la Terre-5 (SPOT-5). The experimental
results confirm the effectiveness of the proposed method.

Index Terms—Image fusion, integrated framework, remote sen-
sing, spatial resolution, spectral resolution, temporal resolution.

I. INTRODUCTION

ITH the rapid development of remote sensing sensor

networks, massive volumes of remote sensing images
can be now obtained every day. However, due to the technical
limitations of the sensors and other factors, the existing optical
remote sensing sensors have to make a fundamental tradeoff
between the spatial, temporal, and spectral resolutions, which
greatly limits the potential applications of remote sensing im-
ages [1]-{3]. Fortunately, remote sensing image fusion is an
effective way to obtain superior high spatio—temporal—spectral
resolution images by merging the complementary information.
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It is defined as the synergic combination of two or more
image data sets, which is aimed at producing a knowledge
of phenomena under investigation better than the knowledge
achievable from individual data sets [4].

To date, a variety of remote sensing image fusion methods
[5]H{10] have been proposed. In general, the existing image
fusion methods are performed at three different processing
levels, i.e., data level, feature level, and decision level [6], [11].
In this paper, we focus on the data-level fusion of remote sens-
ing images. According to the different aims, there are several
categories of remote sensing image fusion, such as multiview
spatial fusion, spatio—spectral fusion, and spatio-temporal fu-
sion. However, on one hand, most of the existing methods
have been developed independently, and few studies have been
dedicated to studying the relationships between them, and thus,
the fusion frameworks lack versatility. On the other hand, most
of the existing fusion methods can be only applied to integrate
two of the spatial, temporal, and spectral resolution indexes, and
thus, they cannot obtain the highest spatio—temporal-spectral
resolution fused images. In addition, they are designed to merge
the complementary information from one or two sensors, and
thus, they cannot take full advantage of the useful complemen-
tary information from more sensor observations.

Therefore, in this paper, we propose an integrated frame-
work for the spatio—temporal-spectral fusion of remote sens-
ing images. In the proposed fusion framework, the maximum
a posteriori (MAP) theory is utilized to describe the inverse fu-
sion problem. The spatial, temporal, and spectral relationships
between the desired image and the multisource remote sensing
observations are then thoroughly analyzed to construct an inte-
grated relationship model. Finally, the fused image is solved
by the classical conjugate gradient optimization algorithm.
The proposed integrated fusion framework can simultaneously
accomplish multiview spatial fusion, spatio—spectral fusion,
spatio—temporal fusion, etc., based on a single unified model. In
addition, it can obtain high spatio—temporal-spectral resolution
fused images by taking full advantage of the useful complemen-
tary information from multisource observations. Furthermore, it
does not have any limitation on the number of sensors.

The rest of this paper is organized as follows. Section II
presents the related work about the existing remote sensing im-
age fusion methods. Section III presents the proposed integrated
fusion framework. The optimization solution and the parameter
determination are presented in Section IV. In Section V, the
experimental results and analysis are provided. Finally, the
conclusion is drawn in Section VI.
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II. RELATED WORK

A. Multiview Spatial Fusion

Multiview spatial fusion refers to the process of combining
a sequence of multiview low-spatial-resolution remote sensing
images, generally acquired by one imaging system, to produce
a higher spatial resolution image. It is also known as multiframe
superresolution reconstruction [12]-{15]. Multiview spatial fu-
sion was first proposed by Tsai and Huang [16] in the frequency
domain, and it has since been successfully applied to improve
the hardware performance of remote sensing sensors. For
example, it has been successfully applied to the Systéme Pour I’
Observation de la Terre-5 (SPOT-5) satellite system to produce
a 2.5-m “THR” (a French acronym that stands for “very high
resolution”) panchromatic (PAN) image with two 5-m half-
pixel shift images delivered by the double charge-coupled de-
vice linear array [17]. To date, multiview spatial fusion has been
focused on the fusion of multitemporal and multiangle image
sequences [18], [19]. To the best of our knowledge, Shen er al.
[20] and Merino and Nunez [21] earlier proposed multiview
spatial fusion methods for multitemporal images. Li et al. [22]
subsequently presented a MAP-based method with a universal
hidden Markov tree model for use with Landsat-7 PAN images
of different dates. Dually, Zhang et al. [19] and Ma et al. [23]
proposed fusion methods for multiangle remote sensing data
sets. It is noteworthy that most of the existing multiview
spatial fusion methods are based on an observation model
considering the imaging process of the remote sensing sensors.
In addition, a notable feature is that they take advantage
of the complementary information of multiframe degraded
observations to improve the spatial resolution. However, due to
the lack of auxiliary higher spatial resolution images, the effect
of the spatial resolution improvement is not significant.

B. Spatio—Spectral Fusion

Spatio—spectral fusion [7]-{9] is an important approach in
remote sensing image fusion. It is aimed at obtaining a fused
image with both high spatial and spectral resolutions. The clas-
sical spatio—spectral fusion methods include PAN/multispectral
(MS) fusion [7], [8], PAN/hyperspectral (HS) fusion [9], [24],
and MS/HS fusion [9], [25].

PAN/MS fusion, which is popularly referred to as “pan-
sharpening,” is a particular case of the spatio—spectral fusion
methods. It is used to fuse the high-spatial-resolution PAN
image (a single band) and several bands of the low-spatial-
resolution MS image simultaneously acquired over the same
area [8]. PAN/MS fusion originated in the 1980s [26]-{28];
since 1986, the Systeme Pour 1’ Observation de la Terre-1
(SPOT-1) system has provided two MS images together with
one PAN image; thus, PAN/MS fusion methods have got
rapid development over a period of nearly 30 years. In gen-
eral, most of the existing PAN/MS fusion methods can be
grouped into four categories: 1) component substitution (CS)-
based approaches; 2) multiresolution analysis (MRA)-based
approaches; 3) model-based optimization (MBO) approaches;
and 4) sparse reconstruction (SR)-based approaches. Among
them, the CS-based [29]-{31] and MRA-based [32]-{34] fusion
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methods are the most popular due to their simplicity and high
efficiency, and they have been formulated as general image
fusion frameworks [29], [35]. The MBO fusion approach [36] is
another important category. These methods regard the solution
of the fused image as an ill-posed problem, and they mainly rely
on constructing a relationship model between the desired fused
image and the observed PAN/MS images. In general, the MBO
fusion method has higher precision than the CS-based and
MRA-based fusion methods; however, it is a relatively complex
and time-consuming approach. The SR-based PAN/MS fusion
approaches [37]-{40] have attracted increasing attention in
recent years, and they are considered to be a promising new
generation of fusion methods [41]. Their basic idea is that the
reconstructed signal is sparse and it can be represented as a
linear combination of a few base elements. This category of
fusion methods mainly relies on dictionary construction. More
detailed comparisons and discussions of the pansharpening
methods can be found in [4], [7], [8], and [42]-{44].

In addition to PAN/MS fusion, PAN/HS fusion and MS/HS
fusion are another two essential spatio—spectral fusion cate-
gories. To date, many different PAN/MS fusion methods have
been applied and extended to PAN/HS fusion [9], [24] and
MS/HS fusion [9], [45], [46]. In addition, a large number of
model-based or unmixing-based PAN/HS [47], [48] and MS/HS
fusion methods [25], [49]{51] have been developed. On the
whole, PAN/HS fusion and MS/HS fusion are more challeng-
ing than PAN/MS fusion because of the increased number of
spectral bands and the more extensive spectral wavelength [52].

C. Spatio—Temporal Fusion

Spatio—temporal fusion is another fundamental approach to
remote sensing image fusion. It can make use of the com-
plementary spatial and temporal information of multisource
remote sensing observations to obtain a fused image with
both a high spatial resolution and a frequent temporal cov-
erage [53]. Most of the spatio—temporal fusion methods can
be classified into three categories: 1) filter-based methods;
2) unmixing-based methods; and 3) learning-based methods.
Among them, the filter-based methods [3], [53]-[56] are the
most popular. This category of methods utilizes the weighted
sum of the neighboring similar pixels of the input observations
to reconstruct the fused image [10]. Gao et al. [53] proposed
the spatial and temporal adaptive reflectance fusion model
(STARFM) to fuse Landsat and Moderate Resolution Imag-
ing Spectroradiometer (MODIS) observations. Subsequently, a
number of popular spatio—temporal fusion methods have been
further developed, including the enhanced STARFM [56] and
the extended spatio—temporal fusion method considering sensor
observation differences [54]. In addition, the unmixing-based
methods [57], [58] and the learning-based methods [59], [60]
have been attracting ever-increasing attention.

D. Integrated Fusion Framework

Although many different kinds of image fusion methods have
been proposed, they have all been developed independently,
and there have been few studies exploring the relationships
between them. In addition, the aforementioned fusion methods
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Fig. 1. Schematic of the proposed integrated fusion framework.

are dedicated to fusing two of the spatial, temporal, and spectral
resolution indexes, and they are also only focused on one or
two sensors. Therefore, in this paper, we propose an integrated
fusion framework.

In this paper, we define the integrated fusion framework as
taking full advantage of the multicomplementary spatial, tem-
poral, and spectral information to obtain superior fused images,
such as images with high spatial, high temporal, and high
spectral resolutions. In general, it has two meanings. On one
hand, it is dedicated to explore the relationship among different
types of image fusion methods to formulate the unified fusion
framework. On the other hand, it aims at fusing more comple-
mentary information from multisensor observations to obtain
better fused results than one-sensor or two-sensor fusion. To
the best of our knowledge, Shen [61] was the first to attempt to
formulate an integrated fusion framework for multiple spatio—
temporal—spectral remote sensing images; however, the method
was only tested on simulated data sets. Huang et al. [62] pro-
posed an extended version of the model in [61] by exploring the
relationship between the spatio—spectral and spatio—temporal
fusion methods. This method was tested in real-data ex-
periments; however, it was only performed on two sensors.
Wu et al. [3] and Meng et al. [63] proposed integrated fusion
frameworks for multiple sensors, but they did not consider the
simultaneous fusion of multiple spatial, temporal, and spectral
features. Therefore, as an extension of [64], this paper presents
a unified framework for the integrated fusion of complemen-
tary spatial, temporal, and spectral information in multisource
observations.

III. PROPOSED FUSION FRAMEWORK
A. Framework Description

In this paper, we propose an integrated framework for the
spatio—temporal-spectral fusion of remote sensing images. It
aims to obtain fused images with the highest spatial, temporal,
and spectral resolutions among the input multisource remote

TABLE 1
PROPOSED FUSION FRAMEWORK AS A UNIFIED MODEL
FOR DIFFERENT KINDS OF FUSION TASKS

Fusion tasks
Multiview spatial
fusion

Input observations

Only multiview degraded images Y

One image in Y and the corresponding image in
Z . It may be MS/HS fusion, PAN/HS fusion, or
PAN/MS fusion, etc.

One image in Y at the target time, and one or more
pairs of images in 'Y and Z at other times

All the useful observations of Y and Z with
multiple spatial, temporal, and spectral features

Spatio-spectral
fusion

Spatio-temporal
fusion

Spatio-temporal
-spectral fusion

sensing observations. In ideal conditions, it is expected to pro-
duce time series of high spatio—spectral resolution images si-
multaneously. However, difficulties in model establishment and
computation load make this infeasible. Therefore, the proposed
fusion framework is designed to obtain a fused image with high
spatial and spectral resolutions for a specific time k, as shown
in Fig. 1. The prerequisite for the fusion process is that there
is an observation yy, at the given time k. The multiview (multi-
temporal or multiangle) images Y = {y1,..., ¥k, ...,¥x } of
yi may be also used in the fusion process, with k being the
total number of images. In general, the images Y have higher
spectral and temporal resolutions, but with a lower spatial res-
olution. Therefore, we regard Y as the spatially degraded im-
ages. As the enhanced counterpart of yj, by the fusion process,
x is the desired image with the higher spatial resolution. For
a better solution of x, auxiliary multisource observations Z =
{z1,.. .,z } are often necessary. Here, z,, represents
the nth image, and it is generally a PAN or an MS image with a
higher spatial resolution, but with a lower spectral or temporal
resolution. [V is the total number of auxiliary images.

As aforementioned, the proposed integrated fusion frame-
work can accomplish different kinds of fusion tasks, in-
cluding multiview spatial fusion, spatio—spectral fusion,
spatio—temporal fusion, and spatio—temporal-spectral fusion,
based on a single unified model. Table I shows the different
input requirements of the different fusion tasks.

iy -
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B. Relationship Model

The integrated relationship model is constructed to build the
relationship between the desired image x and the multisource
remote sensing observations Y, Z. It includes the spatial degra-
dation model and the spatio—temporal-spectral relationship
model.

1) Spatial Degradation Model: The construction of the
relationship between the desired image x and the observed
degraded observations Y requires a comprehensive analysis of
the integrated fusion problem to formulate a suitable spatial
degradation model. It is assumed that the observed degraded
images can be obtained by warping, blurring, downsampling,
and noise operators performed on the desired image [12], [13],
[15], [65], and it is denoted by the following expression:

Yo = DSk o Mixy 4+ vip (1<k<K) (1

where yrp denotes the bth band of the kth image in the
collection of degraded observed images Y. x; represents the
bth band of the desired fused image x, M, denotes the motion
matrix, Sy, ; represents the point spread function blurring [25],
[48], D is the downsampling matrix, and vy, ; is the zero-mean
Gaussian noise [9], which is caused by sensors and the external
environment. For convenience, (1) can be expressed as

Vo = Ay Xy + Vi (1<k<K) 2

where Ay,k,b = DSkJ,Mk.

2) Spatio-Temporal-Spectral Relationship Model: The
spatio—temporal—spectral relationship model relates the de-
sired image x to the multisource high-spatial-resolution
observations Z. The multisource images in the collection Z
may have different spatial scales, different spectral resolu-
tions and spectral ranges, and different temporal resolutions
and imaging times. Therefore, the relationship between x
and Z should be comprehensively analyzed to construct the
spatio—temporal—spectral relationship model. For convenience,
the model in terms of z,, , is represented as follows:

Zng = ¥nqCnqAzngX+ Tng

+v,,(1<q¢<B,, 0<n<N) (3)

where z,, , denotes the gth band of the nth image z,, in the
collection of multisource high-spatial-resolution observations
Z, the total number of spectral bands of z,, is B ,,, and A, ,, 4
denotes the spatial degradation matrix between the desired
image and the multiscale high-spatial-resolution images; it is
similar to Ay 15 in (2). C,, 4 denotes the spectral correlation
matrix, ¥,, , is the temporal correlation matrix considering the
temporal features between the desired image and z,, 4, T4, 4 1S
the offset, and v,, , denotes the noise.

C. Integrated Fusion Model

1) MAP Formulation: The MAP theory has been widely
applied in the description of ill-posed inverse problems such
as denoising [66], destriping and inpainting [67], and image
fusion [68]. In this paper, the MAP theory is used to describe the
proposed integrated fusion problem, and the aim is to estimate
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the desired image x based on the multisource observed images
Y and Z. We can write this as

% = argmax p(x|Y,Z). 4

Applying Bayes’ rules, (4) becomes

Y, Z
% = arg max P00 ZXIPX)

5
max TN Z) ®

Since p(Y, Z) is independent of x, it can be thus considered as
a constant to be removed in (5), and hence, we can write (5) as

x = argmax p(Y, Z[x)p(x)
= argmax p(Y[x)p(Z[x, Y)p(x)
= arg max p(Y |x)p(Z|x)p(x). (6)

Since Y and Z are known quantities, it is therefore tenable that
P(ZIx,Y) = p(ZIx) in (6).

2) Fusion Model: 1t can be seen that there are three probabil-
ity density functions involved in (6). The first function p(Y|x)
provides a measure of the coherence between the desired image
x and the degraded observed images Y, as given by the spatial
degradation model (2), and it is determined by the probability
density function of the noise in (2). The noise is assumed to
be Gaussian, independent and identically distributed [69], [70];
hence, p(Y|x) can be written as

p(Y|x) = HH P(¥ib|Xp) @)
Y
(27ray7k7b)®1¢2/2

exp {—[|yks—AyrpXs|3/2ay 60} (8)

P(Ykblxp) =

where ay 1 p is the variance of the noise vy 3, B; is the number
of spectral bands, ®;®, denotes the spatial dimension of yy, p,
and || - ||2 denotes the {2-norm.

The second probability density function p(Z|x) pro-
vides a measure of the accordance of Z and x to the
spatio—temporal-spectral relationship model (3). It is deter-
mined by the probability distribution of the noise in (3), and
we can argue the expression in

N B:n
p(Z]x) = H H P(Zn, q|%) 9)
n g=1
(20, 4I%) :
D(Zn, ¢|X) =
" ra g T
eXp{_Hzn,q_‘I’n,qcn,qu,n,qx_Tn,qu/QOCZ,n,q}

(10)

where a, , , denotes the variance of the noise, and H,, 1 H,, 2
denotes the spatial dimension of z,, 4

The third probability density function p(x) is the image
prior term. Inspired by [71], an adaptive weighted 3-D spatio—
spectral Laplacian prior is introduced, which is represented as

H

b1 (2mag.p)

LW exp {—[Qxs[3/2a.5}  (11)
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B,
[VF(xb)a]” [VF(xs)d]
64 = — (18)
B, K N B:n
= [eb,d]T kzl Ag y k,b + /\1 Z ) W, z n chq b ‘I’n,qcn,qu,n,q + )\QQTQ [eb,d]
= = n q=

where «, ; is the variance of the noise, L;Lo denotes the
spatial dimension of x, and Q indicates the adaptive weighted
3-D Laplacian matrix. For convenience, we write this as the
expression

QXb(i,j) = Qspaxb(i;j) + ﬁ@spexb(iaj)
:Xb(l'f‘].,])"‘Xb(Z_].,])
+xp(6, 5+ 1) +xp(2,5 — 1)
5( 1]l xp11(4, J)
[ Zp+1]]2

| &b+

- 4xb(iaj)

1Zs|]2
1 Zp-1]2

Xb_l(i,j) — 2Xb(i,j)> (12)

where X is the initial estimate of the fused image obtained
by resampling of the corresponding observation, and [ is the
parameter, which is adaptively determined as

’ |V53b||2/L1L2Bm> , By>u

exp (—%
“b=1
0, B, <u

Bil‘

8= (13)

where u is the threshold parameter. It is assumed that, when
the desired image has only a few spectral bands, their spectral
curves are discontinuous; therefore, it is tenable and more
robust to set S = 0. Conversely, if the desired image is a
hyperspectral image, the spectral curve can be assumed to
be approximately continuous, and thus, the adaptive weighted
prior term can effectively preserve the shape of the spectral
curve to decrease the spectral distortion. It is assumed that the
smaller the difference between spectral bands, the stronger the
spectral constraints. VX; denotes the gradient in the spectral
dimension of the bth band. Here, the parameter u is set to 8,
with the spectral band number of WorldView-2 multispectral
images as a reference.

Substituting (7)—«(11) into (6), through the implementation of
the monotonic logarithm function and the simplification, many
parameters can be safely dropped, and the final energy function
can be expressed as the regularized minimization problem in

X = arg min[F'(x)] (14)
1
F(x) = B ZZ lye—Ay k bXb||2
; B
1
72 an,qHan n,gCn,qAzn,qX— T”‘ZHQ
n
Ay o
+ 23 Q3 s)
b=1

where the first term denotes the coherence between x and Y,
the second term represents the relationship between x and Z,
and the third term denotes the image prior. wy, , denotes the
relative contribution of z,, , to the desired image x, and it is
adaptively calculated as w,, , = /\’qun. U, is calculated by
the correlation [72] between the degraded version of z, and
the observed image corresponding to x, and it is assumed
that the greater the correlation, the greater the contribution
of the observation z,. The auxiliary parameter X, . is used
to adaptively adjust the balance of the spatial details to
each band of the fused image, and it is expressed as /\/n,q =
f(qu,X)/min[f(ZLl,X), EER) f(zl,qvx)v St f(zn,qax); .- ']’
where f(z, 4,x) denotes the number of spectral bands to be
fused by z, 4. A1 and A2, which are related to the variance
of the noise, are the parameters used to control the relative
contribution of the three terms. Because there are parameters
in the second and third terms, there is no need to add extra
parameters in the first term.

IV. OPTIMIZATION SOLUTION AND
PARAMETER DETERMINATION

A. Optimization Procedure

The fused image is solved by the conjugate gradient algo-
rithm [73], differentiating the energy function (15) with respect
to Xp, as

K
_Z Ag,k,b()’k,b — Ay kpXp)

N B:n

—M) Z wn oA
n

- ‘I’n’qcn’qAZ’n’qX—Tn’q)+>\2QTQXb,

T
q,b‘Iln

,q(z’ﬂvq
(16)

The desired fused image can be then solved by successive
approximation iterations, i.e.,

Xp,d+1 = Xb,d + 0a€pq (17
where e;, 4 denotes the search direction of the dth iteration, and
the initial value is negative of the gradient VF'(x;), i.e., €1 =
—VF(xp)1. 04 is the step size of the dth iteration, as in (18),
shown at the top of the page.

The next search direction is then relevant to the current
iteration and the previous search direction and is represented as

ey i1 = —VF(Xp)at1 + Vi€, , (19)

with (20) and (21), shown at the bottom of the next page.
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The fused image is updated in each iteration, and it is
terminated when

[&a41 — Zall3/|Eall3 < < (22)

where ¢ is a predetermined threshold value.

B. Determination of the Spectral and Temporal Correlations

The spatial, temporal, and spectral relationships between the
desired image and the multisource remote sensing observations
are comprehensively considered in the integrated relationship
model. In the model, two issues need to be solved, i.e., the de-
termination of the spectral correlation matrix and the temporal
correlation matrix in (3).

1) Spectral Correlation C: The spectral correlation matrix
plays an important role in the integrated relationship model.
In general, the images in the collection of multisource high-
spatial-resolution observations Z have a relatively wider band-
width than the desired image x. Therefore, a popular approach
is to relate x and the images in Z by linear band combinations
[36]-38], [61]63], [68]. For convenience, we take PAN/MS
fusion [68] as an example, which is written as

B

2(i,5) = > axp(i, ) + 7+ v(i, )
b=1

(23)

where z(4,7) is the brightness value of the wideband PAN
image, with (¢, 7) being the pixel position, and {c¢; } is the linear
combination coefficients.

To date, a variety of fusion methods have been involved in
searching for the solution of the linear combination coefficients
{¢p}, and most of them employ the spectral response functions
of the sensors to calculate the linear coefficients [68], [74].
However, in fact, the spectral response functions of the sensors
may differ from the responses of the observed data sets due to
the atmospheric effects, illumination conditions, etc. [51], [75].
Furthermore, if we cannot easily obtain the spectral response
functions, then the image fusion methods will not work. In this
paper, it is assumed that the linear coefficients {¢,} are not only
about the fitting between z and x; furthermore, they also play
an important role in assigning the relative weight of the spatial
structure information to each band of the fused image. Inspired
by this idea, a novel and simple solution for {c; } is proposed by
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Fig. 2. Schematic for determination of the temporal correlation.

considering the internal correlation between the spectral bands.
This is represented as

o = cov(Zp, Lsyn) (24)
var(Isyn)

where cov(-) denotes the covariance, and var(-) denotes the
variance. X;, is the resampled bth band of the observed narrow-
band image, and Iy, denotes the intensity by the general-
ized intensity—hue—saturation [29], [76] transformation of the
corresponding spectral bands. Finally, the linear combination
coefficients are obtained by normalization as ¢, /sum({cp}).

2) Temporal Correlation ¥: It is assumed that the rela-
tionship between the multitemporal scenes can be expressed
by a linear model [62], [77]{79]. To improve the robustness,
a space-varying multitemporal linear relationship model is
adopted by comprehensively analyzing the integrated fusion
problem. The schematic for the determination of the temporal
relationship is shown in Fig. 2. It is shown that the temporal
relationship W can be approximately obtained by the corre-
sponding multitemporal low-spatial-resolution remote sensing
images y'', 2 [62], [79]. To ensure the effectiveness of the
relationship mapping, the spectral range of ', ¥*2 should be
consistent with z; for example, in the case of spatio—temporal—
spectral fusion, y'', y*2 should be first obtained by band
combination of the corresponding observations. Here, x’ has
the same spatial scale and spectral range as z, and it can be
approximately represented as x’ = CAx, where A denotes the
spatial degraded matrix, and C represents the spectral correla-
tion matrix, as shown in (3), and when it is a case of spatio—
temporal fusion, A and C are generally the identity matrices.

K N Bz,n

VEp)ar1 =VE)a+0a | Y AL Ayrs+ MY Y wng Al CF @l W, CoiAL . +2Q7Q| ea (20)
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TABLE II
QUANTITATIVE EVALUATION RESULTS OF THE MULTIVIEW
SPATIAL FUSION EXPERIMENTS

Nearest neighbor Bilinear Proposed method
CcC 0.9342 0.9428 0.9763
SSIM 0.5544 0.5570 0.7930
RMSE 19.9851 18.8745 12.1370
PSNR 22.1166 22.6132 26.4485

The space-varying temporal relationship is solved with the
aid of neighboring similar pixels. The initial similar pixel
locations are determined in the high-spatial-resolution image
z, and they are selected based on a nonlocal strategy [80]. The
selection rule is

SR 0.0)I3

= )Zn, jew, (@5

where O.(i) denotes the 3-D patch at the central pixel
position i, and O,(j) denotes the 3-D neighboring patch at
pixel position j within a window W;. G is the kernel function
with inverse distance weighting, & is the standard deviation of
the central pixel patch, and 7 is the threshold value.

After the initial similar pixel locations are determined, an
additional filtering process is applied to the candidates to im-
prove the accuracy. The basic rule is that the more consistent
the temporal change between the similar pixels and the central
pixel, the greater the probability of the similar pixels’ selection.
This is expressed as

E = {y!'-3?j € Qi},=abs(E; — E;) < j € i (26)

where E denotes the temporal change of the similar pixels,
Q; denotes the collection of initial similar pixel locations for
the central pixel position 4, abs(+) represents the absolute value
function, and o is the standard variation of E.

After the similar pixels are finally selected in y*', 2, robust
regression analysis using iteratively reweighted least squares
with a Huber weighting function [81] is utilized to solve the
multitemporal correlation.

V. EXPERIMENTS
A. Data Sets and Experimental Settings

To comprehensively test the performance of the proposed
integrated fusion framework, a variety of image fusion exper-
iments were implemented with both simulated and real data.
The experiments consisted of the following: 1) multiview spa-
tial fusion experiments; 2) spatio—spectral fusion experiments;
3) spatio—temporal fusion experiments; and 4) spatio—temporal—
spectral fusion experiments. Furthermore, the proposed
method was comprehensively tested and verified using data
from multiple different remote sensing satellites, including
IKONOS, Landsat Enhanced Thematic Mapper Plus (ETM+),
MODIS, Hyperspectral Digital Imagery Collection Experiment
(HYDICE), and SPOT-5.

There are several parameters in the experiments. However, it
is noteworthy that most of the parameters are not sensitive to
the fusion model for different fusion tasks, and hence, most of
them were empirically set to be fixed values. The parameter A\
was the sole tunable parameter in the experiments. Unless

Fig. 3. Experimental results in multiview spatial fusion. (a) Nearest neighbor
interpolation. (b) Bilinear interpolation. (c) Result of the proposed method.
(d) Original image.

otherwise specified, the parameter Ay was empirically set to
0.001, and the iterative threshold value ¢ was empirically set
to le-7. In the spatio—temporal and spatio—temporal—spectral
fusion experiments, the patch size in (25) was set to 7 x 7,
the window size of W was set to 23 x 23, and the threshold
value 1 was set to le-3 empirically. In addition, the motion
and the blurring of (3) have little influence to the experiments,
considering the efficiency and effectiveness; they are hence set
to be identity matrix.

B. Experimental Results and Analysis

1) Multiview Spatial Fusion Experiments: The multiview
spatial fusion experiments were implemented with simulated
data, and a 256 x 256 pixel subarray of the blue band of the
original IKONOS MS image [see Fig. 3(d)], which was acquired
in Hubei Province, China, on September 4, 2009, was used
to generate four simulated low-spatial-resolution images with
subpixel displacements. The subpixel shifts were (0, 0), (0.5, 0),
(0, 0.5), and (0.5, 0.5), respectively; and the spatial dimension
size of each degraded image was 64 x 64. The popular quanti-
tative indexes of the correlation coefficient (CC) [20], [68], the
structural similarity index (SSIM) [82], [83], the peak signal-to-
noise ratio (PSNR) [82], [84], and the root-mean-square error
(RMSE) [68] were utilized to evaluate the fused results.

Fig. 3(c) shows the fused result obtained by the proposed in-
tegrated fusion framework with A\; = 0. Fig. 3(a) and (b) shows
the results of the nearest neighbor and bilinear interpolation
algorithms, respectively, for comparison. It can be observed that
the result of the proposed fusion framework has more detailed
information and a better visual quality than the traditional
interpolation methods. A more detailed visual comparison can
be made from the subregions of the images. The quantitative
evaluation results in Table II also show that the proposed fusion
framework produces results that are superior to the results of
the traditional methods. Therefore, it is demonstrated that the
proposed integrated fusion framework can make full use of
the redundancy and complementary information to improve the
spatial resolution of the degraded images.
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Fig. 4. Experimental results in spatio—spectral fusion (displayed as false color: near infrared, green, and blue). (a) HS image. (b) MS image. (c) PAN image.
(d) MS/HS fusion result. (e) PAN/HS fusion result. (f) PAN/MS/HS fusion result. (g) Original HS image.

TABLE III
QUANTITATIVE EVALUATION RESULTS OF
THE SPATIO-SPECTRAL EXPERIMENTS

MS/HS PAN/HS PAN/MS/HS
CcC 0.9355 0.9479 0.9731
SSIM 0.6084 0.6499 0.7557
PSNR 16.7513 17.0602 17.8347
ERGAS 9.8455 9.6495 8.8213
SAM 7.2499 10.7833 8.4942
Q.ave 0.7300 0.7490 0.8101

2) Spatio-Spectral Fusion Experiments: In the spatio—
spectral fusion experiments, three fusion cases were imple-
mented by the proposed integrated fusion framework: 1) PAN/
HS fusion; 2) MS/HS fusion; and 3) PAN/MS/HS fusion.

The experiments were performed on the simulated data sets
based on an original HYDICE HS image [85] acquired over the
Washington DC Mall. The simulated HS image was obtained by
low-pass filtering using Gaussian modulation transfer function
blurring and downsampling by a factor of 4 in the spatial
domain. The spatial resolution of the simulated degraded HS
image was 4 m, and it had 79 bands with the spectral range
of 450-1750 nm. The MS image was obtained by degrada-
tion in both the spatial and spectral domains. In the spatial
dimension, it was downsampled by a factor of 2, and its spatial
resolution was 2 m; in the spectral dimension, it was produced
according to the spectral characteristics of Landsat-7 ETM+
bands 1-5, which cover the 450- to 515-nm, 525- to 605-nm,
630- to 690-nm, 750- to 900-nm, and 1550- to 1750-nm
regions, respectively. The PAN image with a 1-m spatial res-
olution was degraded in the spectral dimension, and it was pro-
duced according to the spectral characteristics of a Landsat-7
PAN image covering 520-900 nm. In the experiments, several
widely used quality indexes were applied for the quantitative
evaluation: CC, SSIM, PSNR, the dimensionless global error in
synthesis (ERGAS) [39], [68], the spectral angle mapper (SAM)
[39], [68], and Q_, [8], [72].

(a) (b) (© (d) (e
Fig. 5. Local zoomed-in areas of the fusion results. (a) Resampled HS image
with bilinear interpolation to the spatial scale of the original HS image.
(b) Resampled MS/HS fusion result with bilinear interpolation to the spatial

scale of the original HS image. (c) PAN/HS fusion result. (d) PAN/MS/HS
fusion result. (e) Original HS image.

Fig. 4 shows the experimental results. The PAN/MS/HS
fusion result is shown in Fig. 4(f), and the MS/HS and PAN/HS
fusion results are shown in Fig. 4(d) and (e), respectively. For a
more detailed comparison, local zoomed-in areas are shown in
Fig. 5. It is noteworthy that we set the same parameter \; = 1
for all three fusion cases, for a fair comparison. It can be seen
that all three fusion cases can improve the spatial resolution
of the HS image. However, there is still a distinct difference
between the three fusion results. On one hand, in the aspect
of spatial resolution enhancement, the MS/HS fusion can only
improve the spatial resolution of the HS image from 4 to 2 m,
whereas the PAN/HS and PAN/MS/HS fusion cases can im-
prove the spatial resolution of the HS image from 4 to 1 m.
Relatively speaking, the PAN/MS/HS fusion result has slightly
better spatial details than the PAN/HS fusion result because
of the incorporation of the MS images. On the other hand, in
the aspect of spectral fidelity, the PAN/MS/HS fusion and the
MS/HS fusion can effectively enhance all the spectral bands
of the HS image; however, the PAN/HS fusion with a single
PAN image cannot enhance all the spectral bands due to the
incomplete spectral coverage between the PAN (520-900 nm)
and HS (450-1320 nm) images. In addition, the PAN/MS/HS
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Fig. 6. Experimental results in spatio—temporal fusion (displayed as band combination: red, green, blue). (a) MODIS image on October 8, 2001. (b) ETM+ image
on October 8, 2001. (c) MODIS image on November 2, 2001. (d) ETM+ image on November 2, 2001. (¢) MODIS image on October 17, 2001. (f) Predicted result
on October 17, 2001 by the STARFM method. (g) Predicted result on October 17, 2001 by the SPSTFM method. (h) Predicted result on October 17, 2001 by the
EBSPTF method. (i) Predicted result on October 17, 2001 by the proposed fusion framework. (j) Observed ETM+ image on October 17, 2001.

fusion result shows better spectral information preservation
than the other two fusion cases. Table III shows the quantitative
evaluation results. It should be noted that the MS/HS fusion
was evaluated by bilinear resampling to the spatial scale of the
original HS image, for a fair comparison. It can be seen that
most of the evaluation indexes of the PAN/MS/HS fusion result
are the best. On the whole, the PAN/MS/HS fusion result is the
best in terms of both the spatial enhancement and the spectral
fidelity. This is because the PAN/MS/HS fusion can make full
use of the complementary spatial and spectral information of
the PAN and MS groups.

3) Spatio-Temporal Fusion Experiments: The spatio—
temporal fusion experiments were implemented on Landsat-7
ETM+ and MODIS terra MODO9GA image pairs [86], with
spatial resolutions of 25 and 500 m, respectively. The images
were from southern New South Wales (NSW, Australia;
34.0034° E, 145.0675° S). Fig. 6(a)—(d) shows two pairs
of ETM+/MODIS observations on October 8, 2001 and
November 2, 2001, respectively. Fig. 6(e) shows the MODIS
image on October 17, 2001. The task of the fusion was to pre-
dict a Landsat-like image on October 17, 2001 by making use
of Fig. 6(a)—(e). The observed ETM+ image shown in Fig. 6(j)
is for reference. Fig. 6(i) shows the result of the proposed
fusion framework with \; = 3, and Fig. 6(f)—(h) shows the
fusion results of the popular STARFM method [53], the SParse-
representation-based SpatioTemporal reflectance Fusion Model
(SPSTFM) [59], and the error-bound-regularized sparse
coding (EBSPTM) [87] method, respectively, for comparison.
Here, the default parameters consistent to the original published
papers are used. For a more detailed comparison, local zoomed-
in areas are shown. It can be observed that the proposed fusion
framework can effectively predict the ETM+ image on
October 17, 2001, and it is competitive compared with other
methods. The quantitative results are shown in Table IV. It also
demonstrates the good performance of the proposed fusion
framework.

TABLE IV
QUANTITATIVE EVALUATION RESULTS OF THE
SPATIO-TEMPORAL FUSION EXPERIMENTS

STARFM SPSTFM EBSPFM Proposed
cC 0.8912 0.8833 0.9052 0.9074
SSIM 0.9625 0.9583 0.9650 0.9683
PSNR 41.1070 39.6698 40.9760 42.3954
ERGAS 2.2305 2.4208 22222 1.9979
SAM 2.1420 2.1860 1.9119 1.8270
Quave 1.4925 1.4922 1.4936 1.4935

4) Spatio-Temporal-Spectral Fusion Experiments: In the
spatio—temporal—spectral fusion experiments, a SPOT-5 PAN
image (5 m), a SPOT-5 MS image (10 m, band numbers: 1-4),
an ETM+ PAN image (15 m), an ETM+ MS image (30 m, band
numbers: 1-5, 7), and MODIS images (MODO02 1 km, band
numbers: 1-12, 17-19, 26) were used. The spectral bands of
the MODIS images were arranged according to the spectra of
the SPOT-5 and ETM+ images. Fig. 7(a)—(g) shows the ex-
perimental data sets with multiple spatial, temporal, and spec-
tral features. The main task of these spatio—temporal—spectral
fusion experiments was to obtain high spatial-spectral reso-
Iution images on October 6, 2011. To comprehensively test
the performance of the proposed integrated fusion framework,
three groups of fusion experiments were implemented: 1) two-
sensor fusion; 2) three-sensor fusion; and 3) five-sensor fusion.
Table V shows the input data sets of the three experimental
groups. The parameter A; was set to 1 for all three cases.

The experimental results of the two-sensor fusion, the
three-sensor fusion, and the five-sensor fusion are shown in
Fig. 7(h)-(j), respectively. For a detailed comparison, local
zoomed-in areas are shown. It can be clearly seen that all three
fusion cases can effectively predict the result on October 6,
2011. In comparison, the five-sensor fusion result has the
highest spatial resolution of 5 m, the three-sensor fusion result
has a spatial resolution of 15 m, and the two-sensor fusion
result has a spatial resolution of 30 m. Furthermore, although
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Fig. 7. Experiments in spatio—temporal—spectral fusion (displayed as false color). (a) MODIS image on September 4, 2011. (b) MODIS image on October 6,
2011. (c) MODIS image on September 22, 2011. (d) ETM+ MS image on September 4, 2011. (¢) ETM+ PAN image on September 4, 2011. (f) SPOT-5 MS image
on September 22, 2011. (g) SPOT-5 PAN image on September 22, 2011. (h) Fusion result on October 6, 2011 by two sensors, where the inputs are observations
(a), (b), and (d). (i) Fusion result on October 6, 2011 by three sensors, where the inputs are observations (a), (b), (d), and (e). (j) Fusion result on October 6, 2011

by five sensors, where the inputs are all the observations (a)—(g).

TABLE V
THREE GROUPS OF SPATIO-TEMPORAL-SPECTRAL
FUSION EXPERIMENTS

Experimental

Input observations Sensors
groups
Twp—sensor F¥g. 7 (a), Fig. 7 (b), and ETM+ MS and MODIS
fusion Fig. 7 (d)
Three-sensor Fig. 7 (a), Fig. 7 (b), Fig. 7 ETM+ PAN, ETM+ MS,
fusion (d), and Fig. 7 (e) and MODIS

SPOT-5 PAN, SPOT-5 MS,
ETM+ PAN, ETM+ MS,
and MODIS

All observations of Fig. 7
(a)-Fig. 7 ()

Five-sensor
fusion

the spatial resolution of the five-sensor fusion result has been
greatly improved, the spectral information is preserved very
well, which can be clearly seen in the local zoomed-in areas
in Fig. 7. In addition, this can be also seen in the spectral
profiles in Fig. 8. On the whole, all the spectral profiles of the
three fusion cases are consistent with the MODIS observations.
However, there is a slight difference in the spectral profiles of
the 13th and 14th bands between the fusion results and the

Data Value
=
=3
&

——MODIS observation

0.04 - —Two-sensor fusion 1
~Three-sensor fusion

0.02 - — Five-sensor fusion 1

S T P O S
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Band Number

Fig. 8. Spectral profiles of the original MODIS observation on October 6, 2011
and the fusion results of the three experimental groups, i.e., two-sensor fusion,
three-sensor fusion, and five-sensor fusion.

MODIS observations. This is because the wavelength of the
13th spectral band is far from the relevant spectral bands of
the SPOT-5 and ETM+ images. Thus, it causes slight spectral
distortion of the 13th and 14th bands.
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Fig. 9. Performance verification of multisensor fusion. (a) Fusion result on October 6, 2011 by two sensors with only the highest and lowest spatial resolution
observations, i.e., Fig. 7(b), (c), and (g). (b) Fusion result on October 6, 2011 by five sensors using Fig. 7(a)-(g). (c) Bilinear interpolated ETM+ MS on
October 6, 2011 with the consistent spectral display for the spectral feature validation.

To further verify the effectiveness of the multisensor fu-
sion, a two-sensor fusion experiment with only the highest
and lowest spatial resolution observations was implemented,
i.e., the observations in Fig. 7(b), (c), and (g). A compar-
ison between the two-sensor and five-sensor fusion results
[i.e., Fig. 7(j)] is shown in Fig. 9. The bilinear interpolated
ETM+ MS image with consistent spectra on the same day, i.e.,
October 6, 2011, is shown in Fig. 9(c) for the identification of
the spectral features. Visually, it can be clearly seen that both
the two-sensor and five-sensor fusion results have promoted the
spatial structure; however, some regions of the two-sensor
fusion result are too homogenized. In addition, the two-sensor
fusion result shows a serious loss of spectral information.
This can be clearly seen by a comparison with Fig. 9(c), and
it can be also seen in the spectral profiles in Fig. 10. This
is because the difference in spatial resolution between the
SPOT-5 PAN (5 m) and MODIS observations (1000 m) is
too great, and the complementary information is not enough
for such a challenging fusion process. Conversely, the five-
sensor fusion can make full use of the complementary informa-
tion of the multisource observations, which fully demonstrates
the advantage of the proposed integrated fusion framework.
However, this does not mean that more sensors will always
lead to better fusion results. Several factors are involved, in-
cluding the redundancy, the complementarity, and the image
quality.

oy
0.16f
0.14
0.12}
G)
= 0.11
; ;
£ 0.08}
a
0.06f
0.04| —MODIS observation 1
0.02} —Two-sensor fusion (Fig.16(a)) |
: —Five-sensor fusion (Fig.16(b))
00 1 23 4 5 6 7 8 9 1011 12 13 14 15 16
Band Number

Fig. 10. Spectral profiles of the two-sensor fusion result with only the highest
and lowest spatial resolution observations, the five-sensor fusion result, and the
original MODIS observation on October 6, 2011.

VI. CONCLUSION

This paper has presented an integrated framework for the
spatio—temporal—spectral fusion of remote sensing images. The
proposed integrated fusion framework was comprehensively
tested and verified by a variety of image fusion experiments in-
volving multiple remote sensing satellites, including IKONOS,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ETM+, MODIS, HYDICE, and SPOT-5. The experimental
results confirm the good performance of the proposed fusion
framework.

In conclusion, there are two main advantages of the proposed
integrated fusion framework. First, the proposed integrated
fusion framework can accomplish different kinds of image
fusion tasks based on a single unified model, including mul-
tiview spatial fusion, spatio—spectral fusion (PAN/MS fusion,
PAN/HS fusion, and MS/HS fusion), and spatio—temporal fu-
sion. Second, the proposed integrated fusion framework can ob-
tain promising high spatio—temporal—spectral resolution fused
images by taking full advantage of the complementary infor-
mation from multisource observations. Furthermore, it does not
have limitations on the number of remote sensing sensors.

However, it is noteworthy that there is still room for the
proposed fusion framework to be further improved. The first
limitation is the efficiency of the algorithm, particularly when
there are quite a few sensor images to be fused. Therefore, a
faster optimization algorithm and acceleration strategies such
as parallel computing could be incorporated into the integrated
fusion framework. Second, the proposed integrated fusion
framework can be only used for homogenous optical remote
sensing images. Fusion of multisource heterogeneous data (op-
tical, thermal infrared, radar, etc.) is a more challenging task.
Furthermore, new computation frameworks, including sparse
representation, low-rank approximation, and tensor analysis,
could be considered to further improve the robustness of the
proposed fusion framework.
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