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A fast two-step algorithm for large-area thick cloud removal 
in high-resolution images
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ABSTRACT
Clouds are inevitable in optical satellite images, and affect the 
subsequent processing and application of the images. Thick cloud 
removal in high-resolution imagery is challenging due to the com-
plex spatial and radiometric variations. In this letter, we present 
a two-step thick cloud removal method based on fast radiometric 
adjustment and residual correction (FRARC), which is effective for 
large-area thick cloud removal in high-resolution images. 
Compared with other thick cloud removal methods, the proposed 
FRARC method achieved both satisfactory results and a high effi-
ciency in simulated and real-data experiments. In addition, as the 
area covered by clouds in the imagery increases, FRARC shows 
a more significant improvement in efficiency compared to the 
other methods. The proposed FRARC method can be applied to 
generate cloud-free images to support seamless mapping with 
high-resolution images.
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1. Introduction

With the rapid development of sensor technology, the acquisition of high-resolution 
images and multi-temporal images is now possible. However, clouds and the accompany-
ing shadows are inevitable contaminants in high-resolution satellite images. The clouds 
and cloud shadows result in missing information, and thus affect the processing and 
precise application of satellite images. Therefore, cloud and cloud shadow removal in 
high-resolution satellite images is of great significance.

Thick cloud removal in satellite images is essentially a process of reconstructing the 
missing information (Shen et al. 2015). The thick cloud removal methods can be grouped 
into two main categories, according to the source of the complementary information (Li 
et al. 2019).

One category is the spatial-based methods which use the cloud-free areas in the 
images to reconstruct the cloud-contaminated areas (Lin et al. 2013). However, the 
spatial-based methods are not suitable for reconstructing large-area clouds under com-
plex land cover, due to the lack of information in the cloud-contaminated areas (Zeng, 
Shen, and Zhang 2013). Another category is the temporal-based methods which are 
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based on the use of complementary information from adjacent temporal images to 
reconstruct the cloud-contaminated areas (Xu et al. 2016). Time-series methods are 
common methods that are utilized for normalized difference vegetation index (NDVI) 
data (Jonsson and Eklundh 2002). Furthermore, many temporal-based methods are based 
on the use of complementary information from one or more auxiliary images to recon-
struct the cloudy areas (Cheng et al. 2014), which can acquire satisfactory results if the 
land-cover changes are not significant between the target image and auxiliary image 
(Duan, Pan, and Li 2020). Recently, deep learning has been widely applied in image 
processing, due to its strong representation ability (Gao et al. 2020). Many data-driven 
deep learning frameworks have been proposed for the reconstruction of cloud- 
contaminated areas (Zhang et al. 2020), which can skip some of the steps of the traditional 
algorithms, such as the detection and segmentation of clouds (Meraner et al. 2020).

However, many thick cloud removal methods are aimed at medium- and low- 
resolution images, and are not suitable for use with high-resolution images. Significant 
radiometric differences and complex spatial details exist in high-resolution images, which 
result in visual disruption and the actual ground details being hard to recover. At present, 
there are some problems with the thick cloud removal methods for high-resolution 
images. Some methods can acquire a satisfactory result but have a low efficiency in 
removing large-area clouds. Other methods have a high efficiency but the accuracy is low.

In this letter, we propose a fast two-step algorithm for large-area thick cloud removal 
based on fast radiometric adjustment and residual correction (FRARC). The FRARC method 
can acquire high-accuracy reconstruction results with a high degree of efficiency when 
removing large-area thick clouds in high-resolution images.

2. Methodology

2.1. FRARC method

The inputs of the FRARC method are a target image covered by thick clouds, an auxiliary 
image that covers the same area as the target image, and cloud masks of the target image 
and auxiliary image. The cloud masks can be generated by cloud detection techniques or 
manual labelling. The cloud-contaminated regions in the target image can be recon-
structed when the cloud-contaminated regions in the target image are cloud-free in the 
auxiliary image.

The FRARC method consists of two main steps. Firstly, fast radiometric adjustment 
based on the localized linear histogram match (LLHM) method (Scaramuzza and Barsi  
2005) method is undertaken to fill the cloud-contaminated areas. Fast residual correction 
through global optimization is then utilized to further eliminate the radiometric incon-
sistencies between the recovered regions and the cloud-free areas. Figure 1 shows the 
flowchart of the FRARC method.

2.2. Fast radiometric adjustment

Fast radiometric adjustment based on the LLHM method is conducted on each cloud- 
contaminated region of the target image. For each cloud pixel in a cloud-contaminated 
region, the gain and bias are calculated based on the valid cloud-free pixels in local 
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windows of the cloud-free regions of the target and auxiliary images. The recovery result 
for a cloud pixel in each cloud-contaminated region can be calculated as follows: 

T 0ði; jÞ ¼
σT

σR
Rði; jÞ þ μT �

σT

σR
μR (1) 

where T 0ði; jÞ is the recovery result for the cloud pixel ði; jÞ; Rði; jÞ is the cloud-free pixel of 
the auxiliary image; σT and σR are the standard deviations of the valid cloud-free pixels in 
windows of the target and auxiliary images, respectively; μTand μR are the mean values. 
Noted that the standard deviations and the mean values are calculated based on the DN 
values of the pixels in the local window.

To accelerate the calculation of the mean and standard deviation in the local window, 
a box filter (Pires, Singh, and Moura 2011) is utilized in the FRARC method. In addition, to 
improve the efficiency and applicability of the LLHM method, the local window sizes are 
self-adaptive according to the cloud-contaminated region sizes, which are set to the 
minimum height or width of the expanded enclosing rectangle of each cloud- 
contaminated region. The expanded enclosing rectangle is expanded by the minimum 
enclosing rectangle of each cloud-contaminated region, where the expansion size is 120 
pixels. The local window sizes are chosen to ensure that each pixel has enough auxiliary 
information, which is an approach that has better adaptability for cloud-contaminated 
regions of different sizes.

2.3. Fast residual correction

Due to the limitation of the LLHM method, some visual inconsistencies may exist between 
the recovered regions and the cloud-free areas. Therefore, fast residual correction is 
utilized to further eliminate the slight radiometric differences. The fast residual correction 
consists of two main parts.

Firstly, the FRARC method applies a standard deviation threshold based on local 
windows to distinguish homogeneous and heterogeneous areas, where the standard 
deviation is calculated based on the DN values of the near-infrared (NIR) or red band of 
the auxiliary image. Empirically, the local window radius for computing the standard 
deviation is set to 5, and the standard deviation threshold used to distinguish homo-
geneous and heterogeneous areas is set to 0.025 in 2-m resolution images.

Secondly, the FRARC method uses residual correction to further eliminate the radiation 
differences (Pérez, Gangnet, and Blake 2003), where the FRARC method refers to the 
method of residual correction in the stepwise radiometric adjustment and residual 
correction (SRARC) method (Li et al. 2019). The result of the adjusted image after residual 

Figure 1. Flowchart of the FRARC method.
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correction (T 00) and the residual term (~T 0) can be calculated according to Equations (2) and 
(3), respectively: 

T 00¼T 0 þ ~T 0 (2) 

~T 0 ¼ arg min
ðð

Ω
ð Ñ~T 0
�
�

�
�2 þ λ ~T 0

�
�
�
�2Þ (3) 

where Ω is the corrected region; T 0 is the recovered image produced by radiometric 
adjustment; Ñ is the gradient operator; and λ is the weight used to balance the fidelity of 
the gradient and intensity.

For heterogeneous areas, to reduce the huge calculation cost of residual correction, 
fast residual correction is undertaken, which can achieve a high efficiency at the loss of 
some accuracy. Empirically, the residual term in both heterogeneous and homogeneous 
areas is smooth, and the loss of accuracy is slight when performing downsampling or 
upsampling to a smooth image. Therefore, in the fast residual correction, a downsampled 
residual term (~T 0D) can be generated by applying the residual correction to 
a downsampled recovered image (T 0D). Upsampling is then performed for the down-
sampled residual term (~T 0D) to generate the upsampled residual term (~T 0U). The result of 
the adjusted image after fast residual correction (TF

00) can be calculated by the recovered 
image (T 0) and the upsampled residual term (~T 0U). Figure 2 shows the process of fast 
residual correction.

Due to the homogeneous areas being sensitive to radiometric inconsistencies, slight 
visual inconsistencies may still exist if the fast residual correction is utilized in homo-
geneous areas. Generally, the homogeneous areas that need to be corrected are relatively 
small. Therefore, the residual correction is utilized to eliminate the visual disruption in 
homogeneous areas.

Figure 2. The process of fast residual correction.
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3. Experimental results and analysis

3.1. Experimental design

We tested the FRARC method in both simulated-data and real-data experiments. The 
experimental data were Beijing-2 Panchromatic and Multi-Spectral (PMS) images with 
a 4-m resolution, and Gaofen-1 PMS images with a 2-m spatial resolution, which were 
obtained by panchromatic and multispectral image fusion. The experiments were per-
formed on the fused multispectral images. The compared methods were the LLHM 
(Scaramuzza and Barsi 2005), the modified neighbourhood similar pixel interpolator 
(MNSPI) (Zhu et al. 2012), and the SRARC (Li et al. 2019). All these methods need auxiliary 
images to reconstruct the cloud-contaminated areas in the target image, and only the 
SRARC and FRARC methods can remove large-area clouds in high-resolution images 
effectively. Note that the first simulated-data experiment was conducted on a desktop 
computer (Windows system, Intel Core i7–10700 CPU, 32-GB RAM), while the second 
simulated experiment and the real-data experiment were conducted on a workstation 
(Linux system, Intel Xeon Gold 6248 R CPU, 250-GB RAM), due to the requirements of 
large-size image processing.

3.2. Simulated-data experiments

In the simulated-data experiments, the clouds extracted from other images were applied 
to the cloud-free images as the target images, and the cloud-free images were considered 
to be the ground truth in the accuracy evaluation. The metrics used for the accuracy 
evaluation in this letter are the correlation coefficient (CC), the root-mean-square error 
(RMSE), the universal image quality index (UIQI) (Wang and Bovik 2002), and the time 
consumption (Time). Note that the UIQI can be used to evaluate the spatial structure 
similarity between the reconstructed image and the ground truth in areas where cloud 
has been removed, and the metrics were calculated based on the recovered cloud- 
contaminated areas. Table 1 lists the quantitative evaluation results for the two simulated 
experiments, and Figures 3 and 4 show the results of the simulated experiments. Note 
that the window size of the LLHM method in the experiments was set to 117 pixels, 
referring to the image resolution and the corresponding window size setting in the 
original paper (Scaramuzza and Barsi 2005). In addition, the MNSPI method was from 
a publicly available tool released by the authors of the original paper (Zhu et al. 2012), and 
the images were processed entirely, instead of block by block, to ensure that the MNSPI 

Table 1. Quantitative evaluation results for the simulated cloud removal experiments. The up arrow 
means the higher the value the better the result, the down arrow is opposite.

Method CC (↑) RMSE (↓) UIQI (↑) Time (s)

Scene 1 
(1000×1000×4)

LLHM 0.604 0.082 0.597 17436
MNSPI 0.410 0.198 0.365 18906
SRARC 0.755 0.055 0.754 41
FRARC 0.753 0.054 0.753 15

Scene 2 
(21512×18936×4)

LLHM N/A N/A N/A N/A
MNSPI N/A N/A N/A N/A
SRARC 0.921 0.027 0.919 33068
FRARC 0.907 0.028 0.906 5243
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method could obtain the best possible results. Since both the LLHM and MNSPI methods 
cannot generate results on a Linux system workstation, which was selected to perform 
cloud removal for the extremely large-size images in the second simulated experiment, 
the LLHM and MNSPI methods were not applied in the second simulated-data 
experiment.

In the first simulated-data experiment (Figure 3), 4-m resolution Beijing-2 PMS images 
with a size of 1000-pixel width, 1000-pixel height and 4 bands and 83.8% thick cloud cover 
were utilized as the experimental images. The target and auxiliary images were acquired in 
October 2017 and October 2016, respectively, and are located at 108.3° E and 22.8° N. From 

Target image  Auxiliary image      LLHM             MNSPI            SRARC           FRARC        Ground truth 

(a)                  (b)                  (c)                  (d)                 (e)                   (f)                  (g) 

Figure 3. The first simulated experiment on 4-m resolution Beijing-2 PMS images with a size of 1000 × 
1000 × 4. (a) Target image. (b) Auxiliary image. (c)–(f) Cloud removal results of LLHM, MNSPI, SRARC, 
and FRARC, respectively. (g) Ground truth.

Target image          Auxiliary image                SRARC                    FRARC                   Ground truth 

Figure 4. The second simulated experiment on 2-m resolution Gaofen-1 PMS images with a size of 
21,512 × 18936 × 4. (a) Target image. (b) Auxiliary image. (c)–(d) Cloud removal results of SRARC and 
FRARC, respectively. (e) Ground truth. (a1)–(e1) and (a2)–(e2) Zoomed images of areas marked in blue 
and red, respectively. .
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the results shown in Figure 3, it can be seen that the result of LLHM has some colour 
distortion in the recovered areas, and the result of MNSPI is affected by the produced noise 
and artefacts. The results of SRARC and FRARC show good spatio-spectral consistency. As 
can be seen in Table 1, FRARC obtains a higher CC (0.753) and UIQI (0.753) than LLHM and 
MNSPI, and performs similarly to SRARC. However, FRARC requires much less time con-
sumption (15 s) than the other methods. Overall, the results show that FRARC can obtain 
a high degree of efficiency while maintaining an accuracy that is as high as that of SRARC.

In the second simulated-data experiment (Figure 4), 2-m resolution Gaofen-1 PMS 
images with a size of 21,512-pixel width, 18936-pixel height and 4 bands and 
extremely thick cloud cover of 50.3% were utilized as the experimental images. The 
target and auxiliary images were acquired in November 2020 and December 2020, 
respectively. The images are located at 115.2° E and 29.4° N and cover both homo-
geneous and heterogeneous landscapes. It can be seen from the results shown in 
Figure 4 that both SRARC and FRARC maintain a good spatio-spectral consistency, 
and the quantitative evaluations of the two methods are close. Due to the slight 
land-cover changes that occurred between the two images, SRARC and FRARC both 
acquire a high quantitative evaluation accuracy, as shown in Table 1. However, 
FRARC costs less time (5243 s) than SRARC (33068 s), which shows that FRARC is 
more efficient than SRARC.

3.3. Real-data experiment

The real-data experiment was conducted on Gaofen-1 PMS images with a 2-m resolution. 
The images were acquired in August and October of 2020, with 11.8% and 31.1% cloud 
cover, respectively. The images are located at 115.2° E and 30.5° N and the overlap area 
between the two images is 20,935-pixel width, 15632-pixel height and 4 bands. In this 
case, the images were reconstructed based on the complementary information in each 
image. As shown in Figure 5, SRARC and FRARC can remove the clouds and cloud 
shadows, and the results are seamless. Although the result generated by FRARC shows 
slight radiometric differences between the cloud-free and recovered areas, both FRARC 
and SRARC acquire visually satisfactory results. In addition, FRARC (1659 s and 2541 s) 
consumed much less time than SRARC (8900 s and 10,997 s) in the real-data experiment, 
which suggests that FRARC is more efficient in removing large-area clouds in high- 
resolution images.

The results of the first simulated-data experiment showed that the results of the LLHM 
method usually contain significant radiometric inconsistencies and colour distortion, and 
the results of the MNSPI method are easily affected by noise, which was also observed in 
our previous study (Li et al. 2019). The results of both the simulated and real-data 
experiments conducted in this study showed that the SRARC method can achieve 
a good performance but the efficiency is low in removing large-area clouds. In compar-
ison, the FRARC method can obtain high-accuracy reconstruction results with a high 
degree of efficiency, and can also keep the radiometric consistency and spatial details 
in different landscapes.

REMOTE SENSING LETTERS 7



4. Discussion and conclusion

In this letter, we have described how we developed the FRARC method for large-area thick 
clouds removal in high-resolution images. Compared with the other thick cloud removal 
methods, the proposed method shows a significant efficiency improvement, of over 60%, 
and with the increase of the cloud-covered area, the efficiency can be increased by more 
than 80%. The FRARC method contains two main steps. Firstly, LLHM is used to fill the 
cloud-contaminated areas, in which a box filter and localized self-adaptive window sizes 
are used to improve the efficiency. Secondly, the FRARC method applies a standard 
deviation threshold to distinguish between homogeneous and heterogeneous areas. For 
the heterogeneous areas, FRARC utilizes fast residual correction to eliminate the slight 
visual inconsistency which can reduce the huge calculation required for residual correction. 
For the homogeneous areas, residual correction is undertaken to eliminate the radiometric 
differences with a high degree of accuracy. In the future, the proposed thick cloud removal 
method will be applied to generate high-resolution seamless maps of the areas of interest.
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