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Abstract— As a new earth observation tool, satellite video has
been widely used in remote-sensing field for dynamic analy-
sis. Video super-resolution (VSR) technique has thus attracted
increasing attention due to its improvement to spatial resolution
of satellite video. However, the difficulty of remote-sensing
image alignment and the low efficiency of spatial–temporal
information fusion make poor generalization of the conventional
VSR methods applied to satellite videos. In this article, a novel
fusion strategy of temporal grouping projection and an accu-
rate alignment module are proposed for satellite VSR. First,
we propose a deformable convolution alignment module with
a multiscale residual block to alleviate the alignment difficulties
caused by scarce motion and various scales of moving objects in
remote-sensing images. Second, a temporal grouping projection
fusion strategy is proposed, which can reduce the complexity
of projection and make the spatial features of reference frames
play a continuous guiding role in spatial–temporal information
fusion. Finally, a temporal attention module is designed to adap-
tively learn the different contributions of temporal information
extracted from each group. Extensive experiments on Jilin-1
satellite video demonstrate that our method is superior to current
state-of-the-art VSR methods.

Index Terms— Deformable convolution, satellite video, super-
resolution (SR), temporal attention (TA), temporal grouping
projection.

I. INTRODUCTION

H IGH-RESOLUTION (HR) remote-sensing image with
rich detailed information has been widely used in object

tracking [1] and land-cover classification [2]. However, due
to the limitation of sensors and the degradation of data
transmission, the spatial resolution of satellite video will be
decreased to some extent, which hinders the application of
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satellite video. Therefore, super-resolution (SR) technique is
urgently needed to recover HR images from the corresponding
low-resolution (LR) images [3]–[5]. SR can be understood as a
post-processing technology, which breaks through the sensor’s
resolution limitation and algorithmically obtains a higher-
resolution image. According to the number of LR images used
to reconstruct the HR image, SR is divided into single-image
SR (SISR) [6]–[10], multiimage SR (MISR) [11], [12], and
video super-resolution (VSR) [13]–[15].

SR is a typical ill-posed inverse problem [16] because one
LR image may correspond to multiple HR images, which does
not satisfy the uniqueness of the solution. To constrain the
solution space, many SISR methods have been proposed and
are divided into three categories: interpolation-based meth-
ods, reconstruction-based methods, and learning-based meth-
ods. Interpolation-based methods include nearest interpolation,
bicubic interpolation, and the Lanczos resampling. They are
fast in the calculation, but may exhibit fuzzy and jagged
artifacts on the edges of the object. The reconstruction-based
method constrains the solution space of the HR images by
adding external constraint information (such as total variation,
gradient prior, and sparse prior) and then solves the SR
problem iteratively. A typical reconstruction-based method is
to incorporate both SR and regularization parameters into
the Bayesian framework [17]. It converts the SR problem
into maximizing the probability of obtaining HR image under
the condition of the existence of LR image. Although the
reconstruction-based method can obtain sharper texture infor-
mation, their computational complexity is very high. The
learning-based method constructs a large number of LR–HR
image pairs and learns the mapping relationship between LR
images and HR images from the sample database. A typical
method is sparse coding [18], [19]. LR images are sparsely
coded on the LR dictionary to obtain sparse coefficients. Based
on the assumption that the manifold space of LR and HR
images is consistent, the sparse coefficients learned from the
LR dictionary are applied to the HR dictionary to reconstruct
an HR image. With the rise of deep learning, convolutional
neural networks (CNNs) are widely used in remote-sensing
image processing [20], such as cloud removal [21], image
denoising [22], hyperspectral image (HSI) restoration [23],
[24], anomaly detection [25], and classification [26]. For the
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SR tasks, the CNN has brought SR performance to new heights
due to its powerful ability of fitting nonlinear relationships.
By building a dataset with a large number of LR–HR image
pairs, the neural network can learn the complex nonlinear
mapping relationship between LR and HR images from the
training set.

Compared to SISR, video SR (VSR) is more complex. The
information used by the SISR method is limited to the spatial
domain of the LR image, while the VSR needs to consider both
spatial and temporal information. Therefore, the key to VSR is
how to use the redundant information among frames. Specif-
ically, given an LR frame which needs to be super-resolved
(reference frame) and its surrounding LR neighboring frames
(supporting frames), the VSR methods need to model the
spatial–temporal relationship between frames simultaneously.
In particular, accurately modeling the temporal relationship
between the reference frame and the supporting frames is crit-
ical for the success of the VSR. Thus, the primary task of VSR
is to align the supporting frames to the reference frame such
that the redundant information in the supporting frames can be
fully exploited. Currently, the state-of-the-art (SOTA) methods
employ optical flow to achieve explicit [27]–[30] alignment
and deformabale convolution (DConv) to achieve implicit [4],
[31]–[33] alignment. Specifically, explicit alignment performs
at the image level. The optical flow between a supporting
frame and the reference frame is first calculated to complete
the motion estimation. Then the optical flow is used to warp
the supporting frames to complete the motion compensation.
Implicit alignment performs at the feature level. Sampling
parameters are learned from the features of supporting frames
and the reference frame and then are fed into DConv together
with the features of supporting frames to achieve adaptive
alignment.

Despite the current VSR methods have achieved significant
results in natural videos, they are still not suitable for direct
application on satellite video. First, due to the limitation of
sensor resolution, the resolution of satellite video frames is
lower compared to natural video. The satellite video frame
lacks sufficient texture and detail information, making feature
extraction more difficult. Second, the remote-sensing image
has a larger width. The frame is of higher complexity due
to moving objects with various scales. Finally, the satellite
video contains scarce motion information. Moving objects
only occupy very few pixels in remote-sensing images, result-
ing in the difficulty of capturing motion information. These
three points make it difficult to achieve precise alignment
and effective spatial–temporal information fusion in satellite
VSR. Specifically, optical flow still suffers from large motion
or motion with various scales due to the requirement of
small motions as a hypothesis. Also, optical flow calculation
is computationally intensive and sometimes independent of
network parameters, such as PyFlow [30] used in RBPN [29].
In this case, the misalignment caused by incorrect optical
flow estimation will affect the subsequent fusion. To a certain
extent, DConv can solve the alignment of multiscale moving
objects through adaptive alignment. But existing DConv-based
methods adopt convolution with a limited receptive field to
generate sampling parameters or a pyramid structure with a

large amount of computation to increase the receptive fields.
The sampling parameters learned in these way is either not
accurate enough to model the temporal relationship between
supporting frames and the reference frame or computation-
ally excessive. In addition, the strided convolution used by
the pyramid structure will further lose detailed information
of object boundaries [34], thus reducing the performance
of alignment. Therefore, conventional VSR methods suffer
severe performance drop when directly applying to satellite
video. Besides, most of the current methods directly fuse
the aligned features to achieve spatial–temporal information
fusion. But in remote-sensing images, due to the small number
of pixels occupied by moving objects, the complementary
information provided by supporting frames is limited and
difficult to be extracted. Thus, spatial information of the
reference frame should play a leading role in the fusion of
spatial–temporal information. If the aligned features are simply
fused, the guiding role of the reference frame will be weakened
with the deepening of the network, which is not conducive
to the effective integration of spatial–temporal information in
satellite video.

To solve the problems mentioned above, this article pro-
poses a VSR network for satellite video based on multiscale
deformable (MSD) convolution alignment and temporal group-
ing projection. The main contributions of this article are as
follows:

1) A fusion strategy of temporal group projection (TGP) is
proposed. Through the projection, the network focuses
on learning temporal information and constantly sup-
plements the spatial information of the reference frame,
realizing the efficient fusion of spatial–temporal infor-
mation. Our temporal grouping strategy helps the
network learn more complementary information from
supporting frames while reduces the complexity of the
projection.

2) An MSD convolution alignment module is proposed.
We designed a multiscale residual block (MSRB) as the
generator of sampling parameters of deformable convo-
lution kernels to learn more complex motion information
for precise alignment of satellite video frames. Finally,
we adopted a temporal attention (TA) module to take
into account the different contributions of the temporal
information.

The remaining part of this article is arranged as follows.
In Section II, we introduce the existing works related to SR.
The details of our proposed network will be presented in
Section III. In Section IV, we present the experimental results
on the satellite video data of Jilin-1 and make a meticulous
analysis of the results. Finally, we summarize the work of this
article in Section V.

II. RELATED WORK

A. Deep Learning-Based Single-Image SR

The earliest SR work based on deep learning was inspired
by sparse coding. Dong et al. [35] proposed the first end-to-
end CNN named SRCNN. Subsequently, to solve the difficult
training problem brought by the deepening of network depth,
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Kim et al. [36] proposed VDSR inspired by the residual
network of He et al. [37] and introduced residual learning into
SISR for the first time, increasing the number of layers of the
network to 20. Both SRCNN and VDSR used interpolated
LR images as the input of the network. In order to avoid
such preprocessing operations to train an end-to-end model
directly, Shi et al. [16] put forward ESPCN by adding a
subpixel convolution at the end of the network to complete the
up-sampling operation. Since feature calculations perform in
an LR space, ESPCN greatly reduces the computational cost.
Lim et al. [38] combined the advantages of residual learning
and subpixel convolution further proposed an enhanced deep
SR network EDSR. The authors improved the structure of
the traditional residual block by removing the batch nor-
malization (BN) layer and proved that the presence of BN
would reduce the reconstruction performance in SR tasks.
Based on EDSR, Yu et al. [39] proposed a WDSR using
a wide activation strategy, which increases the width of the
feature map (the number of channels) before the activation
operation, to learn more feature information after the activation
operation. In addition to the residual network, the dense
network is also an effective structure in SR tasks. The RDN
network [40] combined the structure of a residual block and
dense block to form a residual dense block. The output of
each residual dense block would eventually be concatenated
and fused. However, densely connected networks will bring
a huge amount of parameters and computational burden. For
this reason, Jiang et al. [41] proposed a hierarchical dense
connection network by designing a hierarchical dense residual
block (HDB) to enhance feature representation while saving
computational memory. At present, DBPN [42] using back
projection and RCAN [43] using residual channel attention
have achieved SOTA performance in SISR. DBPN came up
with a back projection network, which provides an error
feedback mechanism during each iterating up-down sampling.
Each up-down sampling module represents the different SR
and degradation components of the image. Compared with the
traditional feedback network, the back projection mechanism
is more in line with human vision law. RCAN proposed a
novel residual in the residual structure and introduced channel
attention into SR. For more details about these methods, refer
to [44].

The SISR method only considers the spatial information
of the LR image. Thus, the rich temporal information in the
sequence of frames cannot be utilized. In addition, due to the
failure to consider the temporal relationship between frames,
the recovered video would suffer from the temporal inconsis-
tency problem, which indicates video content flickering across
different frames [34]. To make better use of spatial–temporal
information, VSR method has been developed gradually.

B. Deep Learning-Based VSR

The early VSR method is based on the optical flow method
to achieve explicit motion estimation and motion compensa-
tion. Based on ESPCN, VESPCN [28] calculated the optical
flow between supporting frames and the reference frame in a
coarse-to-fine manner and used optical flow to warp supporting

frames to achieve motion compensation. The compensated
frames were sent to a series of convolutional layers for feature
extraction and fusion, and finally, an HR reference frame is
obtained through subpixel up-sampling. Inspired by DBPN,
Haris et al. [29] put forward a kind of recurrent back pro-
jection network named RBPN, which concatenates supporting
frames with reference frames and their optical flow and then
completes adaptive alignment through residual blocks. Then
HR features are obtained through the back projection module.
Each supporting frame participates in a projection process
once, and finally, the results of each projection are aggregated
to obtain an HR reference frame. Considering that the optical
flow calculation usually occurs between LR frames, and the
resolution conflict between LR optical flow and HR output
hinders the restoration of details, Wang et al. [45] super-
resolve optical flow and LR frames simultaneously. With HR
optical flow, alignment happens in HR space, making the
alignment more accurate.

Dai et al. [46] propose the concept of deformable convolu-
tion for the first time, which is introduced into VSR tasks by
Tian et al. [32]. Specifically, TDAN [32] first concatenates
the features of the reference frame and supporting frame
to learn the offset through several convolutional layers. The
offset is used to guide the deformable convolution to perform
implicit alignment on the supporting frame features. Inspired
by TDAN, Wang et al. [33] proposed an alignment module
with Pyramid, Cascading, and Deformable convolution (PCD)
to learn multilevel offsets through the pyramid structure and
performing a coarse alignment on supporting frame fea-
tures in three levels. Finally, EDVR cascades a deformable
convolution operation in supporting frame features in the
first level for fine alignment. After alignment, the authors
designed a temporal–spatial attention (TSA) module to fully
consider the contribution of the aligned features and finally
fuses the aligned features to reconstruct a HR reference
frame. Apart from deformable convolution, Yi et al. [4]
proposed a PFNL that uses a nonlocal structure for implicit
alignment. They also proposed a progressive fusion strat-
egy to merge spatial–temporal information more effectively
rather than directly fuse the aligned features. A similar
idea is also used in the multistage feature fusion network
proposed by Song et al. [34]. Lin et al. [47] proposed a
flow-guided deformable module (FDM) to integrate optical
flow into deformable convolution, thus solved the problem that
deformable alignment methods suffer from fast motion and
lack explicit motion constraints. Most of the above methods
rely on accuracy motion estimation. Thus, Zhu et al. [48]
proposed a method named STMN which works in the wavelet
domain to reduce the dependence on motion estimation.

Recently, Chen et al. [49] begun to study the essential
components of VSR framework and proposed the BasicVSR
that adopts bidirectional propagation with feature align-
ment to effectively exploit information from the entire input
video. On the basis of this work, they further proposed the
BasicVSR++ [50] which adopts second-order grid propagation
and flow-guided deformable alignment. At present, the vast
majority of methods use either a iterative structure or a
recurrent structure to process LR frames, to consider the two
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structures simultaneously, Yi et al. [51] proposed an hybrid
omniscient framework to not only utilize the preceding SR
output, but also leverage the SR outputs from the present and
future, thus achieved SOTA performance.

C. Satellite VSR

Satellite video not only has high temporal redundancy like
the natural video, but also has the wide scene characteristics
of traditional remote-sensing imaging. The difficulty of data
acquisition and the higher complexity of the scene make the
research of SR on satellite video still in its infancy. Satellite
video contains multitemporal images with abundant informa-
tion, and it provides a novel data source and application
scenario for VSR.

Early work [52] usually just retrained the VDSR model on
remote-sensing images. Inspired by SRCNN, Xiao et al. [53]
proposed a five-layer end-to-end network without any pre-
processing and post-processing and used Jilin-1 satellite video
for training. Subsequent methods began to take more account
of the characteristics of remote-sensing images. To finely
learn the structural information and low-level features in wide
scenes, Jiang et al. [54] proposed a PECNN network, which
learns features at different levels through two subnetworks.
Zhang et al. [8] proposed a scene-adaptive strategy to learn
the features of different scenes and realized multilevel fea-
ture extraction through a multiscale activation feature fusion
module. Jiang et al. [55] used a GAN-based network to
enhance high-frequency edge information in satellite video.
First, an intermediate result with noise is generated through a
subnetwork and then the second subnetwork is used to filter
the noise and enhance the edge contour information. Finally,
the results of the two subnetworks are merged to obtain
a result with sharper edge information. Recently, Lei and
Shi [56] proposed a hybrid-scale self-similar network HSENet
that simultaneously considers the similarity of single-scale
and cross-scale targets in remote-sensing images. Although
these methods have made remarkable success, most of them
are SISR methods that rely on the constraints of spatial
information. Thus, it is necessary to carry out collaborative
modeling of spatial–temporal information and develop a VSR
method for satellite video. Liu et al. [57] proposed a traditional
VSR method based on the prediction of nonlocal similarity in
the adaptive spatial–temporal domain. By adaptively using the
spatial–temporal domain to represent local prior knowledge,
implicit motion estimation is completed. The local spatial
similarity is integrated into the SR framework to enhance the
texture details, and finally, it is solved by iterative reweighted
least squares. He and He [58] proposed a network for arbi-
trary scale SR. First, the feature extracting module accepts
multiple LR frames. Then, they use numerous 3-D residual
blocks to extract features of these frames and finally use
subpixel convolution to enhance the spatial resolution. This
method utilizes 3-D convolution to realize the modeling of the
spatial–temporal relationship adaptively. Once the input frames
are not well aligned, the direct fusion of the spatial–temporal
information of multiple frames can easily introduce excessive
noise and affect the performance. Therefore, simply stacking

3-D convolution is not sophisticated enough in modeling
spatial–temporal relations.

At present, there are still few works in the literature about
satellite VSR. The SISR method does not make good use
of the highly redundant information in the temporal dimen-
sion. The existing VSR method cannot accurately model the
spatial–temporal relationship. Thus, it is significant to design
a VSR network to precisely realize satellite video frame align-
ment and spatial–temporal information fusion. In this article,
accurate alignment can be achieved by an MSD convolution
alignment module, and effective spatial–temporal information
fusion can be completed by temporal grouping projection.

III. METHODOLOGY

A. Overview of the Proposed Framework

Given continuous 2N + 1 LR frames I =
{I LR

t−N , . . . , I LR
t−1, I LR

t , I LR
t+1, . . . , I LR

t+N }, we define the center
frame I LR

t ∈ R
h×w×c as the reference frame which needs to

be super-resolved, and the remaining 2N frames as supporting
frames. Here, c = 3 represents the RGB channels, and h
and w represent the height and width of the LR frame,
respectively. The goal of our network fOurs is to obtain an
HR reference frame I SR

t ∈ R
(h×r)×(w×r)×c = R

H×W×c for the
input I so that it is close enough to the ground-truth I HR

t ,
where r is the scale factor. It can be expressed as

I SR
t = fOurs(I). (1)

Our network structure diagram is shown in Fig. 1. Take
continuous input of five frames as an example and define the
center frame I LR

t as the reference frame (marked by a red box).
First, we divide the frame sequence into two groups according
to the temporal distance from the reference frame. The first
group contains the reference frame I LR

t and two supporting
frames I LR

t−1 and I LR
t+1 (marked by green boxes) closest to I LR

t ,
and the second group contains I LR

t and the two supporting
frames I LR

t−2 and I LR
t+2 (marked by blue boxes) that are farthest

from I LR
t .

After feature extraction, the features in each group are
aligned through our MSD alignment module. Then the
aligned features are merged to obtain the LR features M =
{M1, . . . , Mn}, n ∈ [1, N ] that encode the multiframe infor-
mation.

Subsequently, the network integrates spatial–temporal infor-
mation through projection module. Each projection will get a
projection result Tn . Finally, the HR temporal feature T =
{T1, . . . Tn}, n ∈ [1, N ] and the HR spatial feature SHR

N
obtained from the last projection will be sent to a TA module
for modulation. Finally, the modulated features S̃N , T̃ are
fused through a convolutional block to obtain the final HR
reference frame, which is expressed as

I SR
t = Conv

(
S̃N , T̃

)
. (2)

The configuration details of each module in our network
are shown in Table I, and the algorithm of our network is
described in Algorithm 1.
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Fig. 1. Overall structure of our proposed network, take N = 2 as an example.

TABLE I

CONFIGURATION DETAILS OF OUR NETWORK ARCHITECTURE. 2N + 1 REPRESENTS THE NUMBER OF FRAMES INPUT, AND h AND w ARE THE HEIGHT

AND WIDTH OF LR FRAMES, RESPECTIVELY. H AND W ARE THE HEIGHT AND WIDTH OF HR FRAMES, RESPECTIVELY

B. Temporal Grouping Strategy

For the more general case, 2N + 1 input frames will be
regrouped into N groups {G1, . . . , G N }, each group Gn =
{I LR

t−n, I LR
t , I LR

t+n} consists of a reference frame I LR
t and two

supporting frames I LR
t−n and I LR

t+n , which have the same temporal
distance n from I LR

t .
Supporting frames at different temporal distances contain

different types of motion information. A simple case is shown
in Fig. 2, where we observed that supporting frames with
the same temporal distance have more similar attributes.
The two supporting frames closest to the reference frame
have similar motion blur, and the whole fuselage has notice-

able ghosting, while the two frames farthest from the target
frame have ghosting only at the wings. Obviously, when
restoring the tail of the aircraft, the two supporting frames
farthest from the reference frame can provide richer infor-
mation. In this case, the motion pattern in supporting frames
shows symmetry on both sides of the reference frame. This
inspired us to group supporting frames with similar motion
information.

In addition to the observed symmetry, our idea of temporal
grouping is inspired by the following two evidence:

1) A similar symmetric phenomenon is also confirmed
in [59]. The author claims that symmetry can be used
as an intrinsic property to make the problem better
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Fig. 2. Example illustrates that there is a case where the motion information
is symmetrical about the reference frame (marked by red box) during motion.

constrained, thus improving the quality of SR recon-
struction.

2) The idea of grouping has been proved effective in the
field of HSI SR. In [23], the author first grouped spectral
bands according to their similarity and then performed
SR reconstruction. By grouping spectral bands into
different groups, the spatial–spectral information can be
explored more effectively and ultimately improve the
performance of SR. Since the number of frames used in
VSR is not as large as the number of bands used in HSI
SR, there is no need for complex grouping strategies.
We have done ablation experiments (see Table V) for
all possible grouping situations and proved that group-
ing frames according to temporal distance is the most
effective.

Generally speaking, the supporting frames closest to the
reference frame have higher structural similarity (SSIM) with
the reference frame. With the increase of motion time, more
motion information will be introduced, and the difference
between the supporting frame and the reference frame will
become more prominent.

More fundamentally, each group corresponds to a subvideo
sequence at a different frame rate. The group containing the
frame farthest from the reference frame represents the high
frame rate subvideo and the group containing the closest
frame to the reference frame represents the low frame rate
subvideo. Rearranging the frames in a simple way of grouping
by temporal distance, putting together the frames with the
same type of complementary information makes it easier for
the network to learn these motion patterns from each group.
Note that we have added the reference frame to each group
to guide the network learn the information which is pivotal to
restore the reference frame. We prove the effectiveness of our
temporal grouping strategy in Section IV.

C. Feature Extraction

Take the reference frame I LR
t ∈ Rh×w×3 as an example.

The feature extraction module completes the initial feature
extraction by a 3 × 3 convolution and then three residual
blocks [37] further complete the deeper feature extraction.
We adopt parametric rectified linear unit (PReLU) as the
activation function. After feature extraction fFE(·), we obtain
FLR

t ∈ Rh×w×64.
Feature extraction is performed for frames in each group.

Finally, the features F1 = {FLR
t−1, FLR

t , FLR
t+1} of G1 and

F2 = {FLR
t−2, FLR

t , FLR
t+2} of G2 will be sent to the MSD

alignment module for feature alignment. The parameters of
feature extraction module are shared.

Fig. 3. Schematic of MSD alignment module. The feature FLR
t−i of the

supporting frame and the feature FLR
t of the reference frame are first

concatenated on the channel dimension and then fused through a convolutional
layer. The sampling parameters �t−i is learned through the proposed MSRB
block.

Fig. 4. Projection module used in RBPN [29]. It consists of two parts:
encoder and decoder. The MISR process super-resolves multiframe feature Mn
obtained from each group into an HR feature. The SISR process super-resolves
the LR spatial feature of reference frame into an HR spatial feature. Here SISR
is DBPN and it can be replaced by other advanced methods. The residual block
in the encoder enhances the residual information. The decoder is responsible
for downsampling Tn back to Sn for the next projection.

D. MSD Alignment Module

Unlike natural video, remote-sensing video scenes often
contain moving objects with various scales. Therefore, the cap-
ture of motion information is complicated. Conventional align-
ment method based on deformable convolution such as TDA
used in TDAN uses a series of single-scale convolutions to
learn sampling parameters �t−i from the concatenated refer-
ence feature FLR

t and supporting feature FLR
t−i . It is difficult

to learn complex motion information containing more scale
motion objects only by relying on a limited receptive field.

For this reason, we propose an MSD alignment module that
utilizes MSRB as the generator of sampling parameters. The
task of our MSD alignment module is to align the features in
each group to the feature of the reference frame to complete
the spatial–temporal modeling, thus the spatial–temporal infor-
mation can be better exploited. Specifically, the task of MSRB
is to learn sampling parameters from multiscale features, while
the task of DConv is to carry out deformable convolution
operation on features within each group to complete alignment.

As shown in Fig. 3, we use 3 × 3, 5 × 5, and 7 × 7
convolution in MSRB to extract features of different scales
and then concatenate features of different scales. After a
convolutional layer, we can learn the offset parameters from
these multiscale features. Furthermore, through a residual
skip connection, the offset learned under the initial receptive
field is added to the offset learned under the multiscale
structure to obtain the final sampling parameters. The process
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is expressed as

�t−i = fMSRB
(
Conv

[
FLR

t , FLR
t−i

])
(3)

where [·] represents the concatenation operation.
�t−i = {�pk,�mk}, k = 1, . . . , K , where K =
|pk ∈ {(−1,−1), (−1, 0), . . . , (0, 1), (1, 1)}| = 9 represents
the nine sampling positions pk in the grid of a conventional
3 × 3 convolution kernel. �pk ∈ R2 represents the learned
extra offset. �mk ∈ R is the modulation coefficient. Under
the guidance of the sampling parameters, we introduce the
modulation DConv [60] to perform deformable convolution
operations on FLR

t−i to obtain the aligned feature Fa
t−i , which

can be written as the following formula:
Fa

t−i = fDConv
(

FLR
t−i ,�t−i

)
. (4)

The value of Fa
t−i at position p0 is determined by

Fa
t−i (p0)=

K∑
k=1

ωk · FLR
t−i (p0 + pk + �pk) · �mk (5)

where ωk represents the weight of the kth sampling position.
Since (p0 + pk + �pk) may be a decimal, we use the same
bilinear interpolation strategy as [32].

The features F1 and F2 are sent to our MSD alignment
module and finally we get two sets of aligned features Fa

1 =
{Fa

t−1, Fa
t , Fa

t+1}, Fa
2 = {Fa

t−2, Fa
t , Fa

t+2}n ∈ [1 : N ].
After MSD alignment module, Fa

1 and Fa
2 are, respectively,

merged through a convolutional block to obtain the LR fea-
tures M = {M1, . . . , Mn}, n ∈ [1, N ], which can be expressed
as follows:

Mn = Conv
([

Fa
t−n, Fa

t , Fa
t+n

])
(6)

where Conv(·) represents a 3 × 3 convolution, which maps
the concatenated feature [Fa

t−n, Fa
t , Fa

t+n ] ∈ Rh×w×(64×3) to
Mn ∈ Rh×w×256, preparing for the following projection.

E. Projection Module

Our work is built upon [29]. This kind of projection idea is
very suitable for remote-sensing images because of the spatial
information of the LR reference frame, which is the most
critical for restoring the reference frame, will participate in
the projection process every time, thus continuing to play a
guiding role in the entire network.

The task of projection module is to complete the
spatial–temporal information fusion. Specifically, the MISR
module fuses the aligned features of each group to obtain HR
temporal features. The task of SISR module is to super-resolve
the reference frame to obtain HR spatial features. By supple-
menting the temporal features to the spatial features, the fusion
of spatial–temporal information is completed.

Since the vast majority of remote-sensing images are in
static areas. For areas that do not contain motion information,
the use of MISR methods not only increases the amount
of calculation but may also introduce additional interference
information due to the misalignment. In fact, an SISR method
may be sufficient to achieve good results without the need
for complex spatial–temporal modeling. As shown in Fig. 1,

the features Mn (see the blue arrows) that encode the temporal
information in each group are continuously added to the spatial
information (see the red arrows) of the reference frame I LR

t .
One projection result Tn as well as LR spatial features SLR

n
will be obtained after projection. The projection process can
be expressed as(

SLR
n , Tn

) = fprojection
(

SLR
n−1, Mn

)
. (7)

The structure of the projection module is shown in Fig. 4,
which composes of an encoder and a decoder. The task of the
encoder is to fuse the spatial features of the reference frame
with the temporal features of each group to get the projection
output, while the decoder is to downsample the HR projection
output back to the LR spatial features for the next projection.
Specifically, the encoder receives Mn and the spatial features
SLR

n−1 of reference frame. First, Mn is mapped to HR features
through a NetMISR(·), which consists of five residual blocks
Netres−1 and a deconvolution. At the same time, HR spatial
features can be obtained by an SISR method DBPN [42].
By predicting the residual, the network will be forced to
learn the temporal information that is missing in the result
of an SISR. Then the residual information en enhanced by
Netres−2 is added to the result of an SISR and we will get the
projection output Tn. In the decoding part, HR output Tn will
be down-sampled back to the LR spatial feature SLR

n through
a NetDecoder for the next projection. The residual block in the
decoder named Netres−3 consists of five residual blocks and
the downsampling uses an 8 × 8 convolution with stride = 4
and padding = 2. The previously mentioned process can be
represented as

en = Netres−2
(
NetSISR

(
SLR

n−1

)− NetMISR(Mn)
)

(8)

Tn = en + NetSISR
(

SLR
n−1

)
(9)

SLR
n = NetDecoder(Tn). (10)

Considering the characteristics of remote-sensing images,
our method is different from RBPN in the following three
aspects:

1) We abandon the PyFlow alignment method which is
not suitable for remote-sensing images and independent
of the RBPN network. Instead, we introduce the MSD
alignment module to provide more accurate alignment
features for the projection. Experiments in Section IV
prove that the proposed MSD alignment module is
superior to the method using optical flow.

2) RBPN allows each supporting frame to participate in
a projection once, so the number of projections is
2N . However, our model adopts the temporal grouping
strategy, where each group participates in projection
once, so the number of projections is reduced to N ,
which greatly alleviates the computational complexity
of the model. It can be clearly reflected in the testing
time results and floating point of operations (FLOPs)
comparison in Section IV.

3) In the last projection, RBPN abandons the spatial fea-
tures of reference frame which are the most important
for the recovery of the reference frame and simply
fused the results of each projection. In order to make
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Fig. 5. Proposed TA module. The features enter the embedding space through
simple 3 × 3 convolution filters and then the dot product is used to calculate
the similarity. Finally, the attention map is restricted to (0, 1) by the sigmoid
function.

the spatial information of the reference frame play a
guiding role in the network continuously, we repass the
LR spatial features SLR

N through DBPN to obtain the
HR spatial features SHR

N and sent it into the final fusion
process together with the results of each projection. That
means

SHR
N = NetSISR

(
SLR

N

)
. (11)

In addition, we also introduce a TA mechanism that takes
into account the different contributions of different groups to
the recovery of the reference frame. Experiments in Section IV
demonstrate the effectiveness of the TA mechanism.

F. TA Module

Temporal features that encode different temporal informa-
tion from supporting frames in each group are not informative
in the contribution of reconstructing the reference frames,
so they should not be treated equally. Based on this, we adopt a
TA module, in which the HR temporal features T that integrate
temporal information in each group and the HR spatial features
SHR

N obtained from the last projection are fed into a TA module
to obtain the modulated HR features S̃N , T̃ , that is,[

S̃N , T̃
] = fTA

(
SHR

N , T
)
. (12)

As shown in Fig. 5, SHR
2 and T1 are converted into the

embedding space through two convolutional layers α and β
and then carry out dot product operation to obtain features
DT1 ∈ RH×W×1 that measures similarity between SHR

2 and T1

DT1 = α
(

SHR
2

)⊗ β(T1). (13)

Finally, the sigmoid function limits DT1 to (0, 1) to stabilize
the back propagation of the gradient. So, the attention map dT1

that measures the difference between spatial features SHR
2 and

temporal features T1 is

dT1(x, y) = 1

1 + eDT 1(x,y)
(14)

where (x, y) represents a position in dT1 . We use the attention
map to modulate the feature T1, and the modulated feature T̃1

is expressed as

T̃1 = T1 � dT1 (15)

Algorithm 1 Algorithm of Our Network
Input: 2N + 1 LR frames:

I = {I L R
t−N , · · · , I L R

t , · · · , I L R
t+N

}
Output: SR result I S R

t of LR reference frame I L R
t

1 Temporal Grouping: G1, · · · , G N = {I L R
t−N , I L R

t , I L R
t+N

}
;

2 Denote n ∈ [1 : N ], i = [−n, 0, n];
3 Feature Extraction:
4 foreach I L R

t+i ∈ Gn do
5 F L R

t+i = fF E
(

I L R
t+i

)
;

6 end
7 Return F1, · · · , FN = {F L R

t−N , F L R
t , F L R

t+N

}
;

8 MSD Alignment Module:
9 foreach F L R

t+i ∈ Fn do
10 �t+i = fM S RB

(
Conv

[
F L R

t , F L R
t+i

])
;

11 Fa
t+i = fDConv

(
F L R

t+i ,�t+i
)
;

12 end
13 Return Fa

1 , · · · , Fa
N = {Fa

t−N , Fa
t , Fa

t+N

}
;

14 foreach Fa
n do

15 Mn = Conv Block1
([

Fa
t−n, Fa

t , Fa
t+n

])
;

16 end
17 Return M1, · · · , MN ;
18 S0 = Conv Block2

(
I L R
t

)
;

19 Projection Module:
20 for n ∈ [1 : N ] do
21

(
SL R

n , Tn
) = f projection

(
SL R

n−1, Mn
)
;

22 end
23 Return T1, · · · , TN , SL R

N ;
24 SH R

N = NetSI S R

(
SL R

N

)
;

25 TA:
26 for n ∈ [1 : N + 1] do
27 DTn = α

(
SH R

N

)⊗ β(Tn);
28 T̃n = Tn � dTn ;
29 end
30 DSN = α

(
SH R

N

)⊗ β
(

SH R
N

)
;

31 S̃N = SH R
N � dSN ;

32 Return T̃ ={T̃1, · · · , T̃N

}
and S̃N ;

33 I S R
t = Conv Block3

([
S̃N , T̃

])
.

where � denotes the element-wise multiplication. The same
method can be used to obtain T̃2 and S̃2.

The modulated features are fused through a 3 × 3 convolu-
tion to obtain the final HR reference frame I SR

t ; note that this
convolution layer has no activation function

I SR
t = Conv

([
S̃N , T̃

])
. (16)

IV. EXPERIMENT AND DISCUSSION

A. Dataset Setting

We have ten scenes of video data from Jilin-1 satellites,
which have a resolution of 1m, a frame rate of 25 frames
per second, and a video duration of 20–30 s. The video name
is shown in Table II. Due to the large area of reflection and
cloud occlusion in the videos of San Diego-USA and Adana
01-Turkey, the image quality is poor. Therefore, these two
videos do not participate in the construction of the training
set but only serve as the test set.
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TABLE II

JILIN-1 SATELLITE VIDEO DATA THAT WE USED TO CONSTRUCT THE
DATASET

The original frame size of the video is 4096 × 2160 except
3840 × 2160 in San Francisco-USA. We crop the video into
scenes with a size of 640 × 640, and the overlap rate between
each scene is 25%. For each video, we only take the first
100 frames. In the end, we are able to get 189 video clips as
our training set. Five scenes are randomly cropped from San
Diego-USA and Adana 01-Turkey, respectively, as test sets,
and finally, ten test video clips (000–009) are obtained.

B. Implementation Details

We only focus on ×4 SR in this article and use the imresize
function in MATLAB to downsample the frames through
bicubic interpolation to get the LR frames. The network takes
five consecutive frames as input. The batch size of each epoch
is 8, and in each batch, the LR patch is cropped to 32 × 32
from LR images with size 160 × 160. We also apply data
augmentation by rotation and flipping. We use the way in [61]
to initialize our network and choose L1 = �I SR

t − I HR
t �1 as our

loss function to measure the difference in pixel level between
the predicted HR reference frame I SR

t and the ground-truth
I HR
t . As for optimization, we use the Adam optimizer with

the momentum β1 = 0.9 and β2 = 0.999. The initial learning
rate is set to 8e − 5 and decay to 1/10 of the previous one
when the epochs reach half of the total 50. It took 35 h to
train our model on a single NVIDIA RTX 2080Ti GPU. The
deep learning environment is CUDA10.0 with Pytorch1.2.

C. Comparison With SOTAs

We compared the method with several SOTA VSR
methods, including TDAN [32], DUF [31], RBPN [29],
EDVR-L [33], and SOF-VSR [45]. The quantitative metrics
used in the simulation experiment are peak signal-to-noise
ratio (PSNR), SSIM [62], root mean square error (RMSE),
correlation coefficient (CC), and naturalness image quality
evaluator (NIQE) [63]. Note that NIQE is a no-reference
indicator, which can be adopted to assess the image quality of
real-world SR reconstruction without HR reference images.
The rest metrics give a comprehensive comparison of different
methods by requiring HR references. Since DUF does not
provide training codes, we use the official pretrained model

provided by the author for testing. We carefully retrain the
rest of the models using our training set mentioned before,
and the specific training settings are consistent with those in
the corresponding official articles. We calculate the average
metrics of all the video frames for each test video clip as
the final result. Note that SOF-VSR cannot handle the first
and last frames of a video, so only the average of 98 frames
is calculated. Besides, DUF has serious edge defects, so in
order to ensure the fairness of comparison, we cut off eight
pixels [27], [29] on each edge of the frame when calculating
PSNR and SSIM on the luminance channel (Y).

1) Quantitative Evaluation: We adopt PSNR, SSIM,
RMSE, CC, and NIQE [63] as the evaluation metrics. The
average PSNR/SSIM calculated on the ten test clips are
shown in Table III and the other three metrics are shown
in Table IV. It can be seen that our method has achieved
the best performance on all test sets. Since DUF cannot be
retrained, it achieved the worst results. The PSNR result of our
model on the 000 test clip is 0.32 dB higher than SOF-VSR
and 0.48 dB higher than EDVR. In the final average result of
all test sets, our model leads second place by 0.19 dB and
leads RBPN by 0.31 dB.

Both RBPN and SOF-VSR adopt optical flow to realize
motion estimation. The performance of RBPN is lower than
that of SOF-VSR, mainly because optical flow cannot capture
the motion information that only occupies a small number of
pixels in remote-sensing images, which leads to inaccurate
alignment. Since SOF-VSR first super-resolves the optical
flow, it can provide more accurate optical flow results, so as
to achieve accurate alignment. However, our method is still
superior to SOF-VSR, which fully demonstrates that the
proposed MSD alignment module can provide more accurate
alignment in remote-sensing images compared with the optical
flow-based method.

It is noted that TDAN and EDVR also use deformable con-
volution for alignment, but the performance of TDAN is lower
than that of RBPN, which indicates that directly applying con-
ventional deformable convolution in remote-sensing images is
not suitable either. In addition, the EDVR using the pyramid
structure alignment module PCD achieves results comparable
to RBPN, which shows that increasing the receptive field
of the deformable convolution helps improve the alignment
performance. However, the pyramid structure introduces too
many parameters and also loses the edge information that is
originally scarce in the remote-sensing image, which makes
the performance improvement limited. With the designed
MSRB, our MSD alignment module can not only learn multi-
scale contextual information which is essential to preserve the
texture details, but can also effectively capture small motion
information in remote-sensing images. While it solves the
problem of alignment difficulty in remote-sensing images,
the best results are achieved.

2) Qualitative Results: In the part of qualitative results,
we mainly focus on the reconstruction of objects with various
scales, such as aircraft and vehicles running on the road,
as well as some stationary scenes, such as buildings. Fig. 7
shows the aircraft in the scene of test clip 001. We partially
enlarge the details for better observation. Also, we place
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Fig. 6. Dataset we built based on Jilin-1 satellite video. (a) Some samples of the training set. (b) Some samples of the test set.

TABLE III

QUANTITATIVE RESULTS ON 10 TEST VIDEO CLIPS (000–009). TAKE THE AVERAGE RESULT OF ALL FRAMES FOR EACH VIDEO. RED AND BLUE

INDICATES THE BEST AND THE SECOND BEST PSNR/SSIM PERFORMANCE, RESPECTIVELY

Fig. 7. Qualitative results on 001 for ×4 scaling factor. We cropped out the area marked by green box and zoomed-in view on the details for better viewing.
The best performing PSNR and SSIM are shown in bold.

the corresponding method at the top of the image, and the
quantitative results are displayed at the bottom. The method
with the highest quantitative index is shown in bold. This is
shown in Fig. 7 that all of these methods have a significant

improvement over bicubic interpolation. The wings recovered
by TDAN and RBPN have obvious contortions. In particular,
in the fuselage near the tail of the aircraft, our method
has recovered the most complete fuselage. The edge of the
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Fig. 8. Qualitative results for ×4 scaling factor. The scene at the top belongs to test clip 002 and the scene below belongs to test clip 004.

landmark under the aircraft should be straight, but neither
RBPN nor SOF-VSR is able to recover the edge information
properly. Our method obtains the sharpest edge information,
which is closest to the ground truth.

In Fig. 8, similar results can be obtained. In the yellow box
marked scene, DUF does not even recover the correct shape
of the aircraft. Noting the edges of the aircraft’s wings, our
method produces less artifacts and distortions and has more
detailed information. In the green box marked scene, the wing

end recovered by RBPN is bent. The result of our recovery
alleviates this situation and gets a sharper texture edge. SOF-
VSR failed to handle the tail of the aircraft well and mixed it
with the fuselage.

In Fig. 9, we show the road scene from test clip 006 in
Fig. 9(a) and zoomed-in view on a single moving object on
the road. Even in scenes with dense buildings, our method can
recover small-scale moving objects well. The result recovered
by EDVR has a serious mix of foreground and background.
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Fig. 9. Qualitative results for ×4 scaling factor. (a) Zoomed-in view on a single moving object in test clip 006. (b) Zoomed-in view buildings in test clip
000. (c) Zoomed-in view multiple moving objects in test clip 001.

This demonstrates the high performance of our method when
dealing with multiscale moving objects. Fig. 9(b) shows the
buildings in test clip 000. The building has many strips of edge
information, which cannot be recovered using interpolation
methods. Due to the density of buildings in the scene, RBPN

cannot correctly recover the shape of the building, resulting in
distortion. In contrast, our method has yielded a clearer visual
effect. In Fig. 9(c), two scenes marked by yellow and green
boxes are intercepted for display. The dense vehicle area on
the road is partially enlarged. It can be seen in the scene of
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Fig. 10. Training processes for (a) models with different grouping strategy, (b) models with different alignment module, (c) models with different attention
module, and (d) models with different number of input frames.

Fig. 11. Function of MSRB and SSRB.

Fig. 12. Function of MSRB and SSRB.

the green box, RBPN fails to recover the small-scale vehicle,
while the large-scale vehicles also have poor recovery results.
The foreground of small moving objects and the background
are not well distinguished. Our method recovers more precise
edge information on both small- and large-scale vehicles, and
the foreground and background do not mixed. In the scene
of the yellow box, the situation is more challenging with a
more significant density and smaller scale of moving vehicles.
We can see that RBPN only recovers the four vehicles with
a slightly larger scale, while the smallest car fails to recover
again. Our method recovers the total number of vehicles and
results in a more refined result, which further demonstrates the
effectiveness of our MSD alignment module. Even for dense
small moving objects, our method can cope well and achieve
the best visual effect.

D. Ablation Studies

1) Temporal Grouping Strategy: To verify the effectiveness
of our temporal grouping strategy, we set up different grouping
strategies, leaving the rest of the network unchanged. First,

TABLE IV

AVERAGE RESULTS OF RMSE, CC, AND NIQE ON 10 TEST CLIPS

TABLE V

COMPARE DIFFERENT GROUPING STRATEGIES ON TEST CLIP 002.
T-GROUPING MEANS TEMPORAL GROUPING STRATEGY

TABLE VI

COMPARE DIFFERENT ALIGNMENT MODULES. PSNR IS CALCULATED ON

TEST CLIP 002

a baseline is set, that is, as the conventional VSR method
does not use any grouping strategy but directly aligns all the
four supporting frames to the reference frame by our MSD
alignment module. Since there is no grouping, it only needs
to be projected once. The next three experiments adopt the
idea of grouping, but the strategy of grouping was different.
Group1 regroups the supporting frames before the reference
frame into one group and the frames after the reference frame
into another group, that is, {(1, 3, 2), (4, 3, 5)}. Group2 selects
one supporting frame before and after the reference frame, but
does not group them according to the temporal distance, that
is, {(1, 3, 4), (2, 3, 5)}. Finally, we use our temporal grouping
strategy (named T-Grouping) to rearrange the input frames,
that is, {(1, 3, 5), (2, 3, 4)}. The results on test clip 002 are
shown in Table V.
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Fig. 13. Visualized features of the target frame before MSD alignment.

It can be seen that the baseline achieves the worst results
without grouping. Besides, the performance of Group2 is
almost as bad as not grouping. That is because the motion
information contained in the supporting frames before and
after the reference frame is too different, and it is difficult
for the network to align them to the reference frame simul-
taneously. Although Group1 is not regrouped according to
temporal distance, our network can still learn the complemen-
tary information provided by the supporting frames in differ-
ent groups. However, using our temporal grouping strategy,
the result obtained is nearly 0.1 dB higher than the second
place, indicating that grouping according to temporal distance
is more conducive to the network to learn valuable temporal
information in different groups.

2) MSD Alignment Module:
a) Multiscale versus single-scale: The task of this experi-

ment is to show that the multiscale structure can generate more
accurate sampling parameters than the single-scale structure,
thereby obtaining more accurate alignment results. As shown
in Fig. 12, we additionally design a single-scale residual
block (SSRB) by replacing the convolution of 5 × 5 and 7 × 7
in our MSRB with the convolution of 3 × 3. The results show
that the performance of MSRB (35.265 dB) is better than that
of SSRB (35.048 dB). The training process is shown in Fig. 11.

b) Compare with SOTA alignment modules: Next,
we prove that our MSD alignment module performs better
than other SOTA alignment methods. The ablation experiment
for the alignment module also keeps the rest parts unchanged,
and only the setting of the alignment module is changed.
We also set a baseline, that is, the alignment is not performed.
To make a fair comparison, we chose to replace the alignment
module with two convolution blocks with a similar number
of parameters. Second, we chose several SOTA alignment
methods, including the optical flow-based method named
PyFlow and deformable convolution-based methods named
TDA and PCD. Specifically, we use PyFlow [30] to estimate

Fig. 14. Visualized features of the target frame after MSD alignment.

Fig. 15. Select representative feature. (a) The sixth feature map. (b) Their
corresponding activation intensity map.

the optical flow between frames to complete motion estimation
and then use the optical flow to warp supporting frames to
realize motion compensation. TDA is the alignment module
used in TDAN. It uses four 3 × 3 convolution layers as
the generator of sampling parameters. After each convolution
layer, it uses DConv to carry out a rough alignment. To be fair
in comparison, we remove the last convolution layer of TDA,
which is denoted as TDA-1, making it close to the number
of parameters of our MSD alignment module. Note that the
complete TDA module, denoted as TDA-2, is also involved in
the experiment. PCD (Pyramid, Cascading and Deformable
Convolution) is an alignment module used in EDVR that
introduces a pyramid structure to increase the receptive field.
The experimental results are shown in Table VI.

It can be seen that if the alignment between frames
is not carried out, the network cannot learn enough tem-
poral information from the supporting frames, resulting in
poor performance. PyFlow has nearly the same performance
as TDA-1, which illustrates that the proper alignment of
supporting frames and reference frames helps the network to
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TABLE VII

COMPARE MODELS WITH DIFFERENT ATTENTION MODULES. PSNR IS
CALCULATED ON TEST CLIP 002

TABLE VIII

COMPARE THE NUMBER OF INPUT FRAMES USED IN OUR MODEL.
PSNR/SSIM ARE CALCULATED ON ALL TEN TEST CLIPS

TABLE IX

FLOPS ARE CALCULATED ON AN LR IMAGE OF SIZE 64 × 64. THE TEST
TIME IS THE TOTAL TIME TAKEN TO COMPLETE THE TESTS FOR TEN

TEST CLIPS DIVIDED BY THE TOTAL NUMBER OF FRAMES. PSNR
IS CALCULATED ON ALL TEN TEST CLIPS

learn complementary information. Note that after removing a
convolutional layer, TDA-1 has a 0.1 dB drop compared to
TDA-2. The PCD module only achieves better performance
than the baseline, because the use of strided convolution
may lose the texture information of the objects [34]. Our
MSD alignment module still achieves 0.23 dB higher than
TDA-2 and 0.376 dB higher than PCD while the number
of parameters is less. With the same number of parameters,
our model is 0.33 dB higher than TDA-1, which further
proves that our MSD alignment module can achieve more
accurate alignment on remote sensing images, providing richer
information for subsequent fusion.

In addition, we visualize the feature maps of the reference
frame before and after the MSD alignment module in Figs. 13
and 14. Select the representative 6th feature map as shown
in Fig. 15, the aligned features are clearer and cleaner in
detail, which demonstrates the validity of our MSD alignment
module.

3) TA Module: The predicted HR reference frame should
have a high degree of consistency in the spatial structure with
the LR reference frame. Therefore, the spatial features of the
reference frame should play a leading role in the network.
Temporal features learned from different groups have different
contributions to reconstruct the reference frame. Based on the
above two points, we adopt a TA module to enable the network
to adaptively learn the most favorable information to recover
the reference frame. Suppose our TA module is removed, and

Fig. 16. Compare the number of input frames used by different methods.
The PSNR was calculated on all ten test clips.

Fig. 17. Performance versus testing time on all ten test clips. PSNR was
calculated on all ten test clips. The test time here is the total time.

Fig. 18. Comparison of the number of parameters in different methods.

SN
HR, T1, T2 are simply fused through a convolution layer

like RBPN. In that case, we can see that the performance
is reduced by 0.45 dB compared with the addition of the
TA module. Besides, we add a widely used Squeeze-and-
Excitation building block (channel attention) as comparison.
The result shows that our TA exceeds the channel attention
by 0.347 dB. Through our TA module, the network can
eliminate the unimportant information in the temporal features
and improve the quality of SR.

4) Input Frame Number: We explored the performance of
the model in the case of three, five, and seven frames as input,
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Fig. 19. FLOPs of different models, calculated on an LR image of size
64 × 64. PSNR was calculated on all ten test clips.

which are denoted as Ours-3,Ours-5, and Ours-7, respectively.
The average quantitative results on all test sets are shown
in Table VIII. Experiments show that Ours-5 achieves the
best results. Actually, as shown in Fig. 16, Ours-3 has already
achieved performance that surpasses all the SOTA methods
and used fewer frames than the seven frames of RBPN and
the seven frames of DUF, TDAN, and EDVR. Fewer frames
are used to achieve better results, demonstrating the high
efficiency of our network.

E. Model Efficiency Analysis

We compare the parameters of all methods in Fig. 18. The
test time on all test sets is also taken into account. In addition,
FLOPs [64] is introduced as a more intuitive manifestation of
model complexity. The quantitative results of test time and
FLOPs are shown in Table IX. The visualization results are
shown in Figs. 17 and 19, respectively.

As shown in Fig. 17, EDVR takes the shortest time and
RBPN takes the longest time. The test time of our model
gradually increases with the increase of the number of input
frames. Ours-3 achieves superior results when its efficiency
is comparable to that of SOF-VSR. Ours-7 has the same
efficiency as TDAN and DUF, but it achieves higher per-
formance. Our final model Ours-5 has made a good tradeoff
between performance and running speed. In Fig. 18, compared
to EDVR, our model reduces the amount of parameters by
31.5%, but the performance is improved by 0.31 dB. The
same conclusion can be obtained from Fig. 19. Compared to
RBPN, Ours-3 improves performance by 0.14 dB with a 75%
reduction in complexity and achieves the best performance
of all methods. A good balance is reached between model
complexity and performance.

F. Further Discussion

1) Generative Adversarial Training for Our Method: The
task of training our network with GAN is to show that our
method can work in other training strategies. In this part,
we use adversarial training strategies to train our methods,
as shown in Fig. 20. Specifically, we make the network frame-
work shown in Fig. 1 as a generator. The generator receives
a sequence of LR frames and generates a fake image SR.

Fig. 20. Adversarial training framework for our method.

TABLE X

QUANTITATIVE RESULTS ON 10 TEST CLIPS. OURS-GAN STANDS FOR

TRAINING OUR MODEL WITH GAN FRAMEWORK

Then we use the discriminator in ESRGAN [65] to distinguish
between ground-truth images and fake images. Following the
settings in ESRGAN, our discriminator can be expressed as

DRa
(

I HR
t , I SR

t

) = σ

(
C
(

I HR
t

)− 1

N

N∑
i=1

C
(

I HR
t

))
(17)

where I HR
t represents the ground-truth HR image, and I SR

t
represents the fake HR image obtained by the generator. C(·) is
the standard discriminator used in SRGAN [6], σ(·) represents
the sigmoid activation function, and N is mini-batch.

The adversarial loss of the discriminator LRa
D and generator

LRa
G can be expressed as

LRa
D = − 1

N

N∑
i=1

[
log
(

DRa
(

I HR
t , I

))+log
(
1 − DRa

(
I SR
t , I HR

t

))]
(18)

LRa
G = − 1

N

N∑
i=1

[
log
(
1 − DRa

(
I HR
t , I

))+log
(

DRa
(

I SR
t , I HR

t

))]
(19)

where I represents the LR frames input, I SR
t = G(I), and G(·)

represents the generator.
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Fig. 21. Qualitative results. Ours-GAN can produce more realistic results.

Fig. 22. Qualitative results of real-world experiments.

Then, the total loss of the generator is

LG = Lpercep + λLRa
G + ηL1. (20)

Among them, Lpercep is the perceptual loss, which can be
expressed as

Lpercep = 1

N

N∑
i=1

∥∥φ(I SR
t

)− φ
(

I HR
t

)∥∥
1 (21)

where φ(·) is the 4th convolution before the 5th maxpooling
layer in pretrained VGG19 [66], and L1 = �I SR

t − I HR
t �1 is

the content loss. We followed the settings in [65] and set λ =
5 × 10−3 and η = 1 × 10−2.

The results after training with GAN are shown in Table X.
The average PSNR and SSIM have dropped by −1.53 dB
and −0.0183, respectively. The qualitative results are shown
in Fig. 21. Although the perception-driven training strategy
loses a certain amount of PSNR/SSIM, the generated image
is not as over-smooth as the PSNR-driven result and is closer
to the ground truth.

2) Real-World Experiment: The task of adding experiments
in real world is to show that our method has good generaliza-
tion ability. In real-world experiments, we do not downsample
the video and super-resolve it directly. However, the degrada-
tion in real-world is more challenging. The model trained by
using bicubic to simulate the degradation cannot achieve as
good results as in the simulation experiment. The qualitative
results are shown in Fig. 22. Pay attention to the markings on
the ground, our method can produce clearer details.

V. CONCLUSION

This article proposes a deep learning network for satellite
VSR using MSD convolution alignment and temporal group-
ing projection. First, a simple but effective temporal grouping
strategy regroups the continuously input frames into different

groups according to the temporal distance from the reference
frame. Subsequently, we use our proposed MSD convolution
alignment module to align the frames in each group to the
reference frame to realize implicit motion estimation and
motion compensation. Finally, in order to ensure that the HR
results maintain a high degree of consistency with the LR
reference frame in terms of spatial features, we adopt a TA
module. The projection results of each group and the spatial
features of the reference frame are sent into the TA module
to adaptively learn the most valuable information for restoring
the reference frame. Our experiment on Jilin-1 proves that our
method is superior to SOTA methods and achieves the best
tradeoff between performance and model efficiency.

In the future work, more works should be done to simplify
the network while ensuring high performance. The projection
module brings out a large number of parameters. Although
the FLOPs of our model are significantly reduced and the
running speed has been greatly improved, the number of
model parameters is still large. In addition, the performance
in real-world experiment is severely degraded, and we will try
our best to explore the SR problem in real-world.
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