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Abstract
Fine particulate matter (PM2.5) is widely concerned for its harmful impacts on global environment
and human health, making air pollution monitoring so crucial and indispensable. As the world’s
first open, real-time, and historical air quality platform, OpenAQ collects and provides
government measurement and research-level data from various channels. However, despite
OpenAQ’s innovation in providing us with ground-measured PM2.5 worldwide, we find significant
data gaps in time series for most of the sites. The incompleteness of the data directly affects the
public perception of PM2.5 concentration levels and hinders the progress of research related to air
pollution. To address these issues, a two-step hybrid model named ST-SILM, i.e. spatio-temporal
model with single exponential smoothing-inverse distance weighted (SES-IDW) and long
short-term memory (LSTM), is proposed to repair the missing data from PM2.5 sites worldwide
collected from OpenAQ from 2017 to 2019. Both spatio-temporal correlation and neighborhood
fields are considered and established in the model. To be specific, SES-IDW were firstly used to
repair missing values, and secondly, the LSTM network was employed to reconstruct the time
series of continuous missing data. After the global ground-measured PM2.5 was reconstructed, the
light gradient boosting machine model was applied to remote sensing estimation of the original
ground-measured PM2.5 and of the reconstructed ground-measured PM2.5 to further verify the
performance of ST-SILM. Experiment results show that the estimation accuracy of the
reconstructed dataset is better (R2 from 2017 to 2019 increased by 0.02, 0.02, and 0.01 compared
with the original dataset). Therefore, it is concluded that the proposed model can effectively
reconstruct data from PM2.5 sites worldwide.

1. Introduction

The Earth has been suffering from atmospheric
pollution for a long time. Outdoor air pollu-
tion was in the list of first-class carcinogens in
the World Health Organization’s International
Agency for Research on Cancer List of carci-
nogens for reference published on 27 Octo-
ber 2017 (https://monographs.iarc.who.int/list-of-
classifications). Among all the outdoor air pollution,

PM2.5 (i.e. particulate matter with aerodynamic equi-
valent diameter less than 2.5 µms) has caused par-
ticularly serious damage to human health, with a
high mortality (Kim 2004, Neidell 2004, Kampa
and Castanas 2008, Eze et al 2014, Guo et al 2017,
Mannucci and Franchini 2017, Hamanaka andMutlu
2018, Hime et al 2018, Nhung et al 2018, Glencross
et al 2020). Studies have confirmed that PM2.5 also has
an impact on human psychology (Dolan and Laffan
2016, Pun et al 2017, Wang et al 2017, Liu et al 2018,
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Liu and Salvo 2018), economy (Chang et al 2016, Li
and Peng 2016, Aragón et al 2017, He et al 2019) and
society (Fehr et al 2017, Younan et al 2018, Shi and
Guo 2019, Burkhardt et al 2020). Monitoring PM2.5

concentrations is therefore crucial and indispensable.
At present, an important way to monitor PM2.5 is

site monitoring, but monitoring sites mostly concen-
trate in a local area, such as a city or a country. Innov-
atively, the OpenAQ (https://openaq.org/#/about)
platform collects and provides government meas-
urement and research-level data from various chan-
nels (Hasenkopf et al 2015). Some studies have been
carried out based on OpenAQ. Manning et al used
aggregate data from OpenAQ to study daily pat-
terns of global PM2.5 (Manning et al 2018). Berman
and Ebisu obtained air pollution measurements from
OpenAQ and studied the changes in air pollution
in the United States during COVID-19 (Berman and
Ebisu 2020). DespiteOpenAQ’s innovation in provid-
ing us with ground-measured PM2.5 worldwide, we
find significant data gaps in time series for most of
the sites, as it is usually unrealistic to obtain continu-
ous, uninterrupted, and fully consistent data due to
communications, equipment, and electrical failures
or cyberattacks (Yu et al 2020). Therefore, we lack an
effective global monitoring site dataset. The incom-
pleteness of the data directly affects the public per-
ception of PM2.5 concentration levels and hinders the
progress of research related to air pollution. To mit-
igate the damage caused by air pollution and to bet-
ter serve research related to air pollution, we need a
more complete and accurate global ground-measured
PM2.5 dataset to overcome the challenges posed by
data gaps.

Several interpolation and machine learning mod-
els have been used to repair the missingness in spatio-
temporal data, which can be broadly divided into
spatial, temporal, and spatio-temporal repair. Spa-
tial repair refers to the reconstruction of missing data
through the spatial correlation between the known
data, where the most widely used method is Kriging.
As early as 1994, Rossi et al applied Kriging to remote
sensing geostatistical interpolation (Rossi et al 1994).
Moreover, inverse distance weighting (IDW) is also a
widely usedmethod. In 2016, Shareef et al applied this
technology to optimize air quality monitoring net-
works (Shareef et al 2016). Temporal repair refers to
the reconstruction of missing data through the dis-
tribution of historical data at a given location. The
autoregressive integrated moving average (ARIMA)
model (Velicer and Colby 2005) and simple expo-
nential smoothing (SES) model (Gardner 2006) are
both commonly used in it. However, it is difficult to
obtain a satisfactory reconstruction result if only the
spatial dimension or the temporal dimension is con-
sidered. Therefore, some studies have extended repair
approaches to those which can consider both dimen-
sions. For example, Chen et al rebuilt the continu-
ous cloud-free Landsat images by spatio-temporal

weighted regression (Chen et al 2016). Ng et al (2017)
and Zhang et al (2018) reconstructed the missing
data in remote sensing images by learning both spa-
tial and temporal information. Chen et al used the
random forest model to improve the coverage rate
of ocean color data (Chen et al 2019). Wang et al
developed the SSRBF method for gap filling, which
used GLHM as preprocessing and considered spec-
tral information in characterizing the relationship
between pixels, and produced promising results com-
paredwith other existingmethods (Wang et al 2021a).
They also identified Sentinel-2MSI images, for Land-
sat 7 ETM+ SLC-off images gap-filling through the
SSRBF method (Wang et al 2021b).

Although many ways were proposed to repair the
missing spatio-temporal data, there were few studies
on the reconstruction of the data fromPM2.5 sites. Bai
et al proposed the diurnal-cycle-constrained empir-
ical orthogonal function to reconstruct data from
PM2.5 sites across China (Bai et al 2019). Samal et al
proposed themulti-directional time convolution arti-
ficial neural network to interpolate the PM2.5 charac-
teristic matrix (Samal et al 2021). Xu et al repaired
the air pollution data of 61 monitoring sites in Guilin
based on Gaussian diffusion and gate recurrent unit
(Xu et al 2021). There is no denying that research-
ers have provided us with valuable working ideas
andmethods andmade contributions to the scientific
community. However, these studies still have limita-
tions. Firstly, they only focus on the reconstruction
in local areas but have not extended it to a global
scale. Secondly, these reconstruction algorithms have
strict requirements for observation data. They will
not work well if the target monitoring sites are far
away from other monitoring sites, or there are lots
of continuous missing values in the temporal dimen-
sion of the target sites. Therefore, it is difficult to apply
them to global data reconstruction.

The global PM2.5 dataset provided by OpenAQ
is not only uneven in site distribution but also has
lots of continuous missing values in the temporal
dimension. To address this problem,we created a two-
step hybrid model called ST-SILM (spatio-temporal
model with single exponential smoothing-IDW(SES-
IDW) and long short-term memory (LSTM)) to
reconstruct data from PM2.5 sites worldwide. In the
1st step, we considered the correlation of data in the
temporal and spatial dimension, and used SES and
IDW respectively. A certain sliding window and an
appropriate distance range were set for SES and IDW
respectively. We combined them to conduct a pre-
liminary reconstruction of the global PM2.5 spatio-
temporal missing data. In the 2nd step, LSTM, with
excellent time series learning ability, was used to
repair the values that were not repaired in the 1st
step, and finally the reconstruction data of PM2.5 was
obtained.

To verify the validity of the reconstructed data,
we conducted comparative experiments on PM2.5
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estimation, and the experiments showed that the
reconstructed dataset has better performance. The
contributions of our paper can be concluded as fol-
lows:

(a) aiming at the problem of data missing in
global PM2.5 sites, the ST-SILM(spatio-temporal
model with SES-IDW and LSTM) was proposed,
and LSTM, which was usually used for predic-
tion, was innovatively integrated into the model
to reconstruct data from PM2.5 sites worldwide.

(b) We applied the original ground-measured PM2.5

and the reconstructed ground-measured PM2.5

to remote sensing estimation. And the remote
sensing estimation results of PM2.5 after recon-
struction were improved compared with those
before reconstruction, which proved the effect-
iveness of the proposed method.

2. Materials andmethods

2.1. Datasets
We collected PM2.5 data around the world from 1
January 2017 to 31 December 2019 on OpenAQ.
There are 2820 sites in 2017, 4713 in 2018, and 4957
in 2019.

The distribution of the monitoring sites is badly
uneven. The sites in Asia, Europe and North Amer-
ica are densely distributed, while the sites in other
regions are very sparse. Specifically, there are 206
monitoring stations in Asia, 905 in Europe and 1519
in North America in 2017. They account for 93.3%
of the total number of monitoring sites. In 2018,
there are 1808 monitoring stations in Asia, 994 in
Europe and 1702 in North America. They account
for 95.6%. In 2019, there are 1872 stations in Asia,
892 in Europe and 1955 in North America, account-
ing for 95.2% of the total number of monitoring
sites. In addition, the density of the sites in China has
an obvious difference in the temporal dimension on
OpenAQ, with very sparse sites in 2017 and intensive
sites in 2018 and 2019 (figure S1 available online at
stacks.iop.org/ERL/17/034014/mmedia).

Figures 1(a)–(c) show the missing situation of
each site from 2017 to 2019. The missing quantity
refers to the number of hours of invalid PM2.5 con-
centration data in each site in a year. Figures 1(d)–(f)
are the missing rate histograms of PM2.5 at global air
qualitymonitoring sites from 2017 to 2019. Themiss-
ing rate refers to the missing quantity divided by the
total number of hours in a year.

Compared with 2017 and 2019, there was an
abnormal phenomenon in the range of 70%–80%
missing rate in 2018. By observing figure 1(b), we
found that this abnormal phenomenon was likely to
be attributed to the air quality monitoring sites in
China. As we mentioned before, sites in China went
from sparse to dense in 2018.

2.2. Methodology
According to the characteristics of global PM2.5 mon-
itoring data, we proposed a two-step hybrid model
considering the spatio-temporal dimension of the
data. Figure 2 shows our proposed research frame-
work.

Firstly, for a PM2.5 missing value at site p on date
t, we define its temporal neighborhood field as Xm

p,t,
and its spatial neighborhood field as Xn

p,t. That is, 2m
hours near the missing moment of this site (before
and after m hours) constitute its temporal neighbor-
hood field, and n sites near themissing site at the same
hour constitute its spatial neighborhood field. There-
fore, for such a missing value, its temporal and spatial
neighborhood fields can be expressed as:

Xm
p,t =

{
xt−m
p , ..., xt−1

p ,xt+1
p ,xt+2

p , ..., xt+m
p

}
(1)

Xn
p,t =

{
x p1
t ,x p2

t ,x p3
t , ...,x pn

t

}
. (2)

Secondly, we apply the temporal neighborhood field
of missing data to SES and get its repaired value in
the temporal dimension. The spatial neighborhood
field of missing data is applied to IDW to obtain its
repaired value in the spatial dimension. The arith-
meticmean of these two values is then used as the final
repaired value.

Thirdly, for those time series with continuous
missing values which we failed to repair, we fur-
ther adopted LSTM to estimate the missing values
by learning the historical data of each site and the
repaired data of SES-IDW. It is worth mentioning
that, however, in the global air quality monitoring
sites, a part of sites have an extremely high miss-
ing rate. It is impossible to reconstruct them when
the surrounding values are unavailable. Therefore, for
this kind of sites, we only use the original observed
data in the remote sensing estimation of PM2.5 and
do not fully repair the data. The specific steps are
described as follows.

2.2.1. Temporal interpolation
SES (Gardner 2006) believes that there is a tem-
poral correlation between the data, and the correl-
ation becomes stronger as the sample data and the
missing data get closer. The SES model used in this
paper is set with a sliding window 2m, so the model
can be expressed as:

xtp =

2m∑
i=1

xip ×α× (1−α)
σi−1

2m∑
i=1

α× (1−α)
σi−1

(3)

where xtp is the estimate for missingness, σi is a time
interval between the sample and themissing data, and
α is a smoothing parameter with a range of (0, 1).

Figure S2 shows how to use the temporal
neighborhood field of missing data for numerical

3
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Figure 1. The missing situation of PM2.5 concentration. Blue to red indicates a gradual increase in missing quantity. Figures
(a)–(c) represent the missing quantity at each site in 2017, 2018, and 2019, respectively. Figures (d)–(f) represent the histogram of
missing rates in 2017, 2018, and 2019, respectively.

repair in the temporal dimension. Assuming that
Xt
p is a missing value that needs to be repaired,

represented by a red square, and m is set to 3. Then{
xt−3
p ,xt−2

p , xt−1
p ,xt+1

p ,xt+2
p , xt+3

p

}
is the sample data

used for interpolation.

2.2.2. Spatial interpolation
IDW is faster than other spatial interpolation meth-
ods (such as Kriging), and it also has a high accur-
acy. Therefore, we use IDW in the spatial dimension.
IDWuses the observed data of adjacent sites to estim-
ate missing values. It believes that there is a spatial
correlation between the data of adjacent sites, and the
correlation becomes stronger as the sample data and
themissing data get closer. Its model can be expressed
as:

x p
t =

n∑
j=1

γjx
pj
t (4)

γj =
d−β
j∑n

j=1 d
−β
j

(5)

where dj is the distance between target points and
observed points and β represents the decay weight
rate, and the greater the β is, the faster decay by the
distance will be.

Figure S3 shows how to use the spatial neigh-
borhood field of missing data for numerical

reconstruction in the spatial dimension. Assuming
that Xt

p is a missing value that needs to be repaired,
represented by a red square, and n is determined by
the number of sites within 100 km of the target site.

Then
{
x p1
t ,x p2

t ,x p3
t , ..., x pn

t

}
is the sample data used

for interpolation.

2.2.3. Combination of temporal and spatial
interpolation
After SES and IDW, we need to combine the results
of the two methods. If both SES and IDW methods
can get a repaired value, then the mean value of the
two methods is taken as the final repaired result. If
only one of the two methods obtains repaired value,
then this value is taken as the final repaired result.
If neither of them gets the repaired value, then the
missing value cannot be repaired and another model,
LSTM, is needed.

2.2.4. Reconstruction of time series of continuous
missing data with LSTM
LSTM network was proposed by Hochreiter and
Schmidhuber (1997). Generally, LSTM has three
inputs at time t, namely, the input value X t at the
current moment, the output value ht−1 at the previ-
ous moment, and the cell state Ct−1 at the previous
moment. There are two outputs of LSTM, namely,
the output value ht at the current moment, and the

4
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Figure 2. Flowchart of the proposed ST-SILM method. Red squares represent missing values of target sites, blue squares represent
other missing values, white squares are observed values, and green squares are reconstructed values.

cell state Ct at the current moment. The long-term
stateC is controlled by three control switches, namely
the forgetting gate, the input gate, and the output
gate. For more details, please refer to the supporting
information (SI) (text S1).

A large number of missing values can be recon-
structed after conducting SES-IDW. However, if the
missingness is continuous in the time dimension,
whichmeans the data 3 h before and after the missing
value are invalid (unable to use SES), there is no way
to repair it when all surrounding data is unavailable
(unable to use IDW). In this case, the LSTM network
is needed.

Take site p as an example. Firstly, we find out the
position of the missing time series that failed to be r
repaired in the whole year. If it is in the back part of
the whole year of this site, wewill start the reconstruc-
tion from the first missing value in the missing time
series. All the data of this site before the missing value
will be used as the input of LSTM in order. LSTM can
obtain a PM2.5 concentration at the missing moment
of this site by learning the input time series. Then,
we update the missingness into the estimated value
to prevent LSTM from learning the null value. In the
same way, all estimates of the missing time series for
this site can be obtained (figure S4(a)).
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Figure 3. Bar charts of R2 and RMSE of simulation experiment with different missing rates in different years.

On the contrary, if themissing time series is in the
front part of the whole year of the site, we will start
the reconstruction from the last missing value in the
missing time series. All the data after themissing value
of the site will be used as the input of the LSTM in
reverse order. Again, we update the missingness into
the estimated value. In the same way, all estimates of
the missing time series for this site can be obtained
(figure S4(b)).

The combination of sequential and reverse learn-
ing and the real-time updates of estimates aim to
make the network learn historical data as deeply as
possible to improve the accuracy and robustness of
the network.

3. Experiment results and discussions

3.1. Simulation experiment results
In order to investigate the performance of the pro-
posedmethod, we selected 1500× 1046, 1500× 1853,
and 3000 × 1645 data blocks (time × locations)
as simulation experiment matrices in 2017, 2018,
and 2019, respectively. The simulation experiment
matrices require nomissing values to verify the accur-
acy of the simulation experiment using the observed
values. We define ω as the missing rate and set its
value to {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. Then, we ran-
domly remove data from each simulation experiment
matrix at the missing rate of ω. With the increase of
the missing rate, the frequency of continuous missing
time series will also increase.

3.1.1. Model validation
In this study, four different indexes, root mean square
error (RMSE), determination coefficient (R2), nor-
malized mean bias (NMB) and fractional error (FE)
were used to evaluate the performance of the method
proposed in this paper. Calculations of these indexes
are shown in equations (6)–(9) respectively:

RMSE=

√√√√ 1

N

N∑
i=1

(yi − y ′i )
2 (6)

R2 = 1−

N∑
i=1

(yi − y ′i )
2

N∑
i=1

(yi − avg(y))2
(7)

NMB=

N∑
i=1

(y ′i − yi)

N∑
i=1

yi

(8)

FE=

N∑
i=1

|y ′i − yi|

N∑
i=1

y ′
i +yi
2

(9)

where y ′i and yi represent the estimated and real value
of the ith PM2.5 concentration respectively, avg(y)
represents the average of the estimates, and N repres-
ents the number of study samples.

3.1.2. Results and discussions
Figure 3 shows the results of RMSE and R2 of the sim-
ulation experiment with differentmissing rates in dif-
ferent years. We found that with the increase of the
missing rate, the repair accuracy would decline, but
generally, the decline was small and the repair accur-
acy remained a high level, which indicated that the
method proposed by us had a stable and excellent per-
formance in the face of different missing rates. When
the missing rate increased from 0.05 to 0.5, the R2

decreased by 0.06 in 2017, 0.04 in 2018, and only 0.02
in 2019. In addition, the R2 and RMSE in 2019 con-
sistently showed the best results in the 3 years. The
reason for these may be that there were the most air
quality monitoring sites in 2019, while the least in
2017. The denser the site distribution, the stronger the
spatial and temporal correlation, the better the per-
formance of reconstruction.

As shown in table 1, the results of NMB and FE
of the simulation experiment with different missing
rates in different years are pretty close to zero, which
means that the repaired values are in high agreement

6
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Table 1. NMB and FE of simulation experiment with different missing rates in different years.

Missing rate 0.05 0.1 0.2 0.3 0.4 0.5

2017 NMB 1.87× 10−03 5.93× 10−03 3.42× 10−03 2.24× 10−03 3.97× 10−03 4.91× 10−03

FE 4.37× 10−06 2.21× 10−06 1.13× 10−06 7.64× 10−07 5.88× 10−07 4.82× 10−07

2018 NMB 1.87× 10−03 1.31× 10−03 3.15× 10−03 2.87× 10−03 2.44× 10−03 3.72× 10−03

FE 1.38× 10−06 6.91× 10−07 3.54× 10−07 2.43× 10−07 1.89× 10−07 1.57× 10−07

2019 NMB 1.24× 10−03 6.75× 10−04 3.07× 10−04 2.38× 10−04 6.55× 10−04 1.42× 10−03

FE 7.80× 10−07 3.95× 10−07 2.02× 10−07 1.39× 10−07 1.07× 10−07 8.94× 10−08

Figure 4. Comparison of missing quantities of global air quality monitoring sites before and after repair. Blue to red indicates a
gradual increase in the missing quantity. (a), (b) Missing quantity at each site of global air quality monitoring sites in 2017 before
and after repair respectively. (c), (d) Missing quantity at each site of global air quality monitoring sites in 2018 before and after
repair respectively. (e), (f) Missing quantity at each site of global air quality monitoring sites in 2019 before and after repair
respectively.

with the observed values. The proposed model can
successfully reconstruct the simulation experiment
matrices.

In addition, in order to show the validity of the
experiment results more comprehensively and intu-
itively, we also drew line charts using the observed
and the estimated value of simulation experiment res-
ults of the six corresponding levels of missing rates
from 2017 to 2019. For demonstration purposes, 200
sample points were randomly selected in each sim-
ulation experiment to draw the figures, as shown in
figure S5.

Through comparison, we found that when the
PM2.5 concentration was at the general level (not
the peak concentration), the repaired values of the
method we proposed were in high agreement with
the observed values. When there was a high concen-
tration of PM2.5, our method underestimated it to
some extent. Since it was difficult to learn peak val-
ues, themodel we proposed could only ensure that the
repaired value of the peak value was higher than the
general level, but it was not able to completely recon-
struct the original concentration of the peak value.We
will strive to address this problem in future studies.

7
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Figure 5. Detailed information on the comparison of missing quantities before and after repair in three areas. Blue to red
indicates a gradual increase in the missing amount.

3.2. Reconstruction of global PM2.5 concentration
data
After the simulation experiment verified the effective-
ness of our proposedmethod, we used this method to
reconstruct the global PM2.5 concentration data from
2017 to 2019.We quantitatively evaluated themissing
quantity of PM2.5 monitoring data before and after
reconstruction from 2017 to 2019. Figures 4(a)–(f)
show the comparison of missing quantity before and
after data reconstruction of global air quality monit-
oring sites from 2017 to 2019. It can be seen that the
missing quantity of PM2.5 concentration data of each
site decreased significantly. Meanwhile, the degree
of improvement was different in different regions,

which depended on the spatio-temporal characterist-
ics of each site.

We found that the performance of reconstruc-
tion in 2019 was the best (figures 4(e) and (f)), pos-
sibly because there were the most air quality mon-
itoring sites in 2019, and the density of sites greatly
affected the probability of success in missing data
reconstruction.

In addition, the repair result of the site data in
2017 was also very significant (figures 4(a) and (b)).
Aswe can see from the figure, themissing data ofmost
sites were successfully repaired, but the performance
of reconstructionwas not as good as that in 2019. This
was because the site distribution was relatively sparse

8
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Figure 6. Scatter plots of global estimation results of the original and the reconstructed data. The red line is the 1:1 reference
line. (a), (b) Scatter diagram of correlation coefficient of experiment results of the original and the reconstructed data in 2017.
(c), (d) Scatter diagram of correlation coefficient of experiment results of the original and the reconstructed data in 2018.
(e), (f) Scatter diagram of correlation coefficient of experiment results of the original and the reconstructed data in 2019.

in 2017, which increased the difficulty of missing data
reconstruction.

By comparing figures 4(c) and (d), we found that
the data of China in 2018 missed seriously in a large
area and in a long time series, and it was difficult to
reconstruct the data. The performance for China in
2018 was bad because there was too much missing-
ness, and it was impossible to repair data if all the
surrounding data is unavailable. The repair results of
other areas were considerable except China.

We also found that the performance of recon-
struction in India was remarkable. Before the recon-
struction, themissing rate ofmonitoring data in India
was so high that it was difficult to use the monit-
oring data in India for PM2.5-related studies. After
the reconstruction, almost all the sites in the figures

were blue, indicating that they were nearly completely
repaired.

To better show the missing condition of each site
after repair, we selected several enlarged areas (North
America,Western Europe and India) in figure 5. It can
be seen that the missing quantity of each site is sig-
nificantly decreased after the repair and almost all of
them can be controlledwithin the lowestmissing level
indicated by the blue dot.

3.3. Retrieval of global PM2.5 concentration data
After the reconstruction of the monitoring data,
we have two datasets. One is the original dataset
obtained directly through OpenAQ, and the other
is the repaired dataset based on the original dataset,
which is referred to as the reconstructed dataset. In

9
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order to verify the validity of reconstructed data, we
used these two datasets respectively to conduct the
remote sensing estimation of PM2.5.

In the experiments, ground-measured PM2.5 con-
centration and satellite-derived AOTs at 6 km spa-
tial resolution were utilized. Ground-measured PM2.5

concentration refers to the original dataset and the
reconstructed dataset. We processed both the original
data and the reconstructed data from 1 January 2017
to 31 December 2019 into daily averaged data. Also,
other auxiliary data were used, such asmeteorological
data, NDVI, and TIME (see table S1).

The study period was from 2017 to the end of
2019. The spatial resolution of the entire study area
was divided into 0.05◦ × 0.05◦ (≈5 km × 5 km).
Specifically, the study area is divided into 25 920 000
(3600× 7200) grids. We resampled all auxiliary vari-
ables to 5 km spatial resolution and daily temporal
resolution to achieve a uniform resolution. Then the
variables were mesh matched with the daily averaged
PM2.5 mass concentration of each monitoring site.
When there was more than one monitoring site in a
grid, we would use the average of themeasured values
of these monitoring sites to represent the mass con-
centration of PM2.5 in this grid. In this study, we used
the light gradient boosting machine (Ke et al 2017) to
estimate global PM2.5 concentrations.

We randomly extract 20% of the original data as
the test set and the remaining 80% as the training set.
For the reconstructed data, it is necessary to ensure
that its test set is the same as the test set of the original
data, and the rest part is the training set of the recon-
structed data. Therefore, the test set only contains the
truth values and no repaired values.

We verified the validity of the reconstructed
data through comparative tests, and we drew the
result scatterplots of the original data and the
reconstructed data from 2017 to 2019 to compre-
hensively verify the experiment results, as shown
in figures 6(a)–(f). The experiment results of the
reconstructed data from 2017 to 2019 are optimal,
with RMSE of 11.68 µg m−3, 12.45 µg m−3, and
13.30 µg m−3 respectively, which decreased by
0.27 µg m−3, 0.54 µg m−3, and 0.19 µg m−3 com-
pared with the original data. And R2 from 2017
to 2019 are 0.73, 0.84, and 0.84 respectively, which
increased by 0.02, 0.02, and 0.01 compared with the
original data. These results mean that under the con-
dition of the same test set, the estimation result of the
reconstructed data is better than that of the original
data. In other words, the repair of global PM2.5 mon-
itoring data is effective, and the reconstruction data is
reliable.

4. Conclusion

In this study, aiming at the problem of the miss-
ing values in the data of global air quality monitor-
ing stations, we proposed a two-step hybrid model

called ST-SILM to reconstruct the global PM2.5 mon-
itoring data collected from OpenAQ from 2017 to
2019. In the proposed model, SES-IDW and LSTM
were used in the 1st step and the 2nd step respect-
ively to achieve spatio-temporal data reconstruction.
We carried out the simulation experiment and the real
experiment respectively, and the experiments proved
that the proposed method showed its robustness and
stability under the condition of increasing missing
rate. At the same time, we applied the reconstructed
data to remote sensing estimation of PM2.5. The res-
ults were better than those of the original observed
data, proving the validity and reliability of the recon-
structed data.

The method proposed in this paper has achieved
satisfactory results. However, due to the limitation
of spatio-temporal dependence, the PM2.5 concen-
tration data from global air quality monitoring data
cannot be completely repaired at present. Moreover,
we underestimate peak pollution episodes because
they are hard to learn. In the future, we will strive
to break these limitations and achieve more compre-
hensive and higher quality reconstruction of global
monitoring data. In addition, the application of the
reconstructed data will be the direction of our fur-
ther research. It is a common problem that the applic-
ation of data cannot achieve good performance when
the monitoring stations are far away from each other.
Therefore, we will also construct virtual PM2.5 mon-
itoring stations in the future work to densify sites and
make the data application obtain better performance.
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