
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022 5612114

Deep-Learning-Based Super-Resolution of Video
Satellite Imagery by the Coupling of Multiframe

and Single-Frame Models
Huanfeng Shen , Senior Member, IEEE, Zhonghang Qiu, Student Member, IEEE, Linwei Yue,

and Liangpei Zhang , Fellow, IEEE

Abstract— Image super-resolution (SR) is an effective solution
to the limitation of the spatial resolution of video satellite images,
which is caused by the degradation and compression in the imag-
ing phase. For the processing of satellite videos, the commonly
employed deep-learning-based single-frame SR (SFSR) frame-
work has limited performance without using complementary
information between the video frames. On the other side, the mul-
tiframe SR (MFSR) can utilize temporal subpixel information
to super-resolve the high-resolution (HR) imagery. However,
although deeper and wider deep learning network provides
powerful feature representations for SR methods, it has always
been a challenge to accurately reconstruct the boundaries of
ground objects in video satellite images. In this article, to address
these issues, we propose an edge-guided video SR (EGVSR)
framework for video satellite image SR, which couples the
MFSR model and the edge-SFSR (E-SFSR) model in a unified
network. The EGVSR framework is composed of an MFSR
branch and an edge branch. The MFSR branch is used to extract
the complementary features from the consecutive video frames.
Concurrently, the edge branch acts as an SFSR model to translate
the edge maps from the low-resolution modality to the HR one.
At the final SR stage, the DBFM is built to focus on the promising
inner representations of the features of the two branches and
fuse them. Extensive experiments on video satellite imagery show
that the proposed EGVSR method can achieve superior perfor-
mance compared to the representative deep-learning-based SR
methods.

Index Terms— Deep learning, edge prior, super-resolution (SR),
video satellite.
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I. INTRODUCTION

W ITH the rapid development of satellite imaging tech-
nology, the need for remote sensing data with high

spatial and temporal resolutions has become more and more
urgent in geoscientific applications. Compared with traditional
satellite imaging techniques, video satellites (e.g., the SkySat
series [1], Jilin-1 series, and OVS-1 series) are new kinds of
earth observation remote sensing satellites that can perform
dynamic earth observation. Video satellites have a distinct
advantage in temporal resolution and, thus, play an important
role in monitoring dynamic objects, such as vehicles, aircraft,
and ships [2]. However, the spatial resolution and clarity of
video satellite imagery are degraded due to the influence of the
data acquisition and transmission process [3], [4]. Therefore,
it is necessary to apply super-resolution (SR) reconstruction
technology, which can maintain the high temporal resolution
of video satellite images and achieve a high spatial resolution.

The image SR refers to the technique of reconstructing
a high-resolution (HR) image by processing one or multi-
ple low-resolution (LR) images [5]. Reconstruction-based SR
methods that are developed from the frequency domain [6]
to the spatial domain [7]–[9] have advantages in recov-
ering clear details but encounter complicated calculations
and performance degradation when the scale factor is
large. Learning-based SR methods, such as neighborhood
embedding [10]–[12], random forest [13], and sparse cod-
ing [14]–[16] SR methods, introduce external training datasets
to capture image features and combine the acquired prior
knowledge to learn the mapping relationship between the LR
and HR images. Since Dong et al. [17] proposed an SR recon-
struction algorithm (denoted as SRCNN) based on a simple
three-layer convolutional neural network (CNN), which was
the pioneering work introducing a CNN into SR, many deep-
learning-based SR methods [18]–[24] have been proposed
and achieved advanced performances on various public SR
benchmark datasets compared with the traditional SR methods.
In addition to focusing on the network architecture and loss
functions, a number of methods [25]–[29] have embedded
prior knowledge of the images into the CNN network to
effectively assist with image SR reconstruction.

It should be noted that the first work in SR reconstruc-
tion originated from the processing of multitemporal Landsat
remote sensing images [30]. However, in the subsequent

1558-0644 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-4140-1869
https://orcid.org/0000-0001-6890-3650


5612114 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

development of SR technology, most of the aforementioned
SR methods have been designed for use with natural images,
and only a small number of methods have been designed
for remote sensing applications. In 2007, Shen et al. [31]
proposed a maximum a posteriori (MAP)-based SR method
with an edge-preserving Huber prior and L1 norm data fidelity
to super-resolve multitemporal MODIS images. Subsequently,
several multiframe SR (MFSR) methods [32], [33] have been
proposed for remote sensing images captured in different
angles and dates. More recently, studies have begun to address
MFSR problems with deep learning methods in the context of
remote sensing. For example, Kawulok et al. [34] adopted
several CNNs to perform SR on the multiple input satellite
images followed by a postfusion process. Recent promising
methods (e.g., DeepSUM [35] and HighRes-net [36]) have
also achieved excellent performances in super-resolving mul-
titemporal PROBA-V images.

Compared to the MFSR case, single-frame SR (SFSR)
algorithms benefit from requiring only a single image as the
input and have attracted increased attention in remote sensing
applications [37]–[39]. Among the existing studies, the frame-
works based on variational regularization [40], geostatistical
downscaling [41]–[44], and deep learning [45], [46] are the
most common solutions. As for the processing of video satel-
lite images with high resolution, most studies have focused
on edge enhancement and employed a deep-learning-based
SFSR framework. For instance, Jiang et al. [47] proposed an
edge-enhancement GAN that introduces an adversarial strategy
for dealing with the noise in satellite images. Moreover, several
SFSR methods [48]–[50] that consider the difference of the
scale and content between satellite images and natural images
have also been proposed to improve the resolution of video
satellite images. Although these methods have made progress
in the performance of video satellite image SR, the limited
spatial information in a single input image restricts their ability
to reconstruct more accurate textures. The MFSR approaches
proposed in [51]–[53] utilize temporal sequences of satellite
video frames with complementary information to super-resolve
the HR imagery and achieve superior performance, but few
studies focus on preserving and enhancing the boundaries of
small objects. Satellite videos provide sequential frames that
contain complementary spatial information and temporal infor-
mation. Furthermore, the reconstruction of the contours and
edges of ground features is of great concern in super-resolving
video satellite data as this is widely used in fine-scale earth
monitoring applications. To better reconstruct the natural tex-
tural information and high-frequency components, the efficient
fusion of the subpixel supplementary information among the
video sequences and paying special attention to the image
edges should be considered simultaneously.

In this article, to address the above issues, we introduce
an edge prior to guiding the MFSR reconstruction phase, and
we refer to the proposed method as the edge-guided video
SR (EGVSR) framework. The EGVSR framework consists of
two branches. On the one hand, a primary MFSR network
is constructed to capture the spatiotemporal features of the
input satellite video sequences. With a subpixel convolutional
layer, the intermediate features are upsampled to the HR space.

On the other hand, in the edge branch, we first utilize an
edge operator to extract the LR edge map from the central LR
video frame. Next, an edge-SFSR (E-SFSR) model, namely,
the edge-enhancement network, is constructed to reconstruct
the HR edge map from its LR version, and the HR edge
features from the edge branch are finally used as an edge
prior to guiding the SR process. Note that we integrate the
intermediate-level features of the MFSR branch, which are
pivotal to the recovery of edge maps, into the edge branch
by the developed dual-branch fusion module (DBFM). The
DBFM is again used at the end of the EGVSR framework to
better fuse the output features of the two branches. Finally,
visually pleasing and high-quality super-resolved results can
be obtained through the overall EGVSR framework.

In summary, the contributions of our work are threefold.

1) We propose a unified framework, namely, EGVSR for
video satellite imagery SR reconstruction by coupling
the MFSR and E-SFSR models. The MFSR model in
the MFSR branch mines the spatiotemporal information,
and the E-SFSR model in the edge branch enhances
the resolution of the coarse edge map. As a result,
the proposed model can achieve a better performance
than the representative deep-learning-based SFSR and
MFSR methods

2) We propose an edge branch to introduce edge priors to
guide the reconstruction of the main branch during the
training phase, which can help the network focus more
on the structure of ground objects and enrich the details
in the SR results.

3) We propose a DBFM that is used in the edge branch
and at the end of the EGVSR network to fuse the fea-
tures with different representations of the two branches.
A joint loss function that is made up of SR loss and
edge-preserving loss is also utilized to impose restriction
on the SR results.

The rest of this article is organized as follows. In Section II,
we describe the proposed EGVSR framework in detail. The
experimental results are given in Section III. Discussion and
an analysis of the proposed method are given in Section IV.
In Section V, we conclude this article.

II. METHODOLOGY

The overall framework of EGVSR is shown in Fig. 1.
Given 2N + 1 consecutive LR satellite video frames
(I LR

t−N , . . . , I LR
t , . . . , I LR

t+N ) as the input of EGVSR, our target
is to reconstruct the HR image of the central frame. First,
video SR is performed for the multiple video frames in the
MFSR branch. Adjacent LR frames are first fed into a feature
extraction module consisting of several residual blocks (RBs).
The Pyramid, Cascading, and Deformable (PCD) alignment
module is then applied to implicitly align the extracted fea-
tures. Next, spatial and temporal attention maps are calculated
for these features in the temporal and spatial attention (TSA)
fusion module, so as to better fuse the features. The fused
features are then passed through a stack of residual dense
blocks (RDBs) and subpixel convolutional layers. Meanwhile,
the central frame is fed into the edge branch to first obtain
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Fig. 1. The architecture of the proposed EGVSR framework. We use three input frames as an illustrative example. The MFSR branch contains three 
major functional modules: the PCD align model, the TSA fusion module, and the deep reconstruction module. The edge branch contains an edge extraction 
operation and an edge-enhanced network to generate the HR edge map. The DBFM in EGVSR is used to fuse the features of the two branches.

a rough edge map. The LR edge map is then passed into
the edge-enhanced network to generate a sharp and clear
edge map. In particular, during the edge reconstruction phase,
we use the DBFM to incorporate the intermediate-level fea-
tures of the MFSR branch that contains spatial information and
temporal information into the edge branch to further promote
the performance of the edge branch. The DBFM is also used
at the end of the network to fuse the features output by the two
branches. The SR features are then added to the upsampled LR
image to obtain the final SR reconstruction result. In the rest
of this section, the architecture of the EGVSR framework, and
the MFSR and SFSR coupled strategy are described in detail.

A. Multiframe Super-Resolution Branch

The MFSR branch is the primary network for super-
resolving multiple frames in the EGVSR architecture, which
can be roughly partitioned into three substructures, namely,
the PCD alignment module, the TSA fusion module, and
the deep reconstruction module, in which the PCD alignment
module and TSA fusion module are based on the excellent
work by Wang et al. [54] on a video restoration framework
with enhanced deformable networks (EDVRs). In the follow-
ing, the three major modules are further explained.

1) PCD Alignment Module: In video satellite imagery,
the subpixel displacement between different frames is not
very large. The main motion is in fact caused by moving
objects, such as vehicles and aircraft. Thus, it would be
suboptimal to use optical flow estimation for the alignment of
the satellite video frames. We, therefore, use the very effective
PCD alignment module from EDVR to align the satellite
video frames without explicit motion estimation. We define
the number of sampling locations in a convolutional kernel as
k, and the weight and offset for the kth location are denoted
as ωk and pk. Therefore, in a common 3 × 3 convolutional
kernel, k is 9, and pk ∈ {(−1,−1), (−1, 0), . . . , (0, 1), (1, 1)}.

Offsets are added to the conventional regular original sampling
grid in the deformable convolution [55], [56], which allows the
convolutional kernels to implement irregular sampling. The
operation of the deformable convolution is given as follows:

Falign
t+i (p0) =

K�
k=1

ωk Ft+i (p0 + pk + �pk) (1)

where Ft+i and Falign
t+i denote the input features and aligned

features, respectively, i ∈ [−N, N]. �pk is the learnable offset
for the kth location, which can be calculated from the features
of the reference feature and the neighboring frame

�Pi = fop
��

Ft+i , Ft
��

(2)

where �Pi is the set of �pk, [.,.] represents the concatenate
operation, and fop(·) represents the function consisting of
a convolutional layer to predict the offsets. In the PCD
module, all the operations are performed on features that are
extracted from a group of RBs at the beginning of the EGVSR
framework. Pyramidal processing and cascading refinement
are adopted in the PCD module. As shown in Fig. 2, there
are three-level pyramids of feature representation in the PCD
module, i.e., L = 3. The feature Fl

t+i at the lth level is
downsampled by the strided convolution filters with a factor of
2 to obtain the feature Fl+1

t+i at the (l+1)th level. The alignment
features and offsets at the (l+1)th level are, in turn, upsampled
for the prediction of the alignment features and offsets at the
lth level

�Pl
t+i = fo f

��
fop
��

Fl
t+i , Fl

t

��
,
�
�Pl+1

t+i

�↑2
	


(3)

�
Falign

t+i


l = fg

��
fDConv

�
Fl

t+i ,�Pl
t+i

�
,

�
Falign

t+i


l+1
�↑2
��

(4)

where fDConv is the deformable convolution described in (1),
[.,.] represents the concatenation operation, (·)↑2 refers to the
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Fig. 2. PCD alignment module with PCD convolution.

upsampling by a scale factor of 2, fo f (·) represents the func-
tion with a convolution layer to fuse the offsets at the lth level
with the upsampled offsets at the (l + 1)th level, respectively,
and fg(·) represents the function with a convolutional layer to
fuse the aligned features. Finally, the PCD module can achieve
image alignment with higher accuracy by this coarse-to-fine
approach.

2) TSA Fusion Module: Different neighboring frames have
different importances in restoring the reference frame. There-
fore, after aligning the features of each neighboring frame,
we adopt an attention mechanism to supply different weights
for the aligned features in the spatial and temporal dimensions.
The structure of the TSA fusion module is shown in Fig. 3. For
each aligned frame Falign

t+i , i ∈ [−N : N], a temporal attention
heat map is calculated to represent its similar distance d with
the reference frame feature

d
�

Falign
t+i , Falign

t



= σ


fc1

�
Falign

t+i


T
fc2

�
Falign

t


�
(5)

where fc1(·) and fc2(·) represent the operation of simple
convolutional filters, and σ(·) denotes the sigmoid activa-
tion function. We perform elementwise multiplication on the
temporal attention maps and the original aligned features
Falign

t+i . Next, we use an extra convolutional layer to fuse these
attention-modulated features F̃align

t+i

F̃align
t+i = Falign

t+i ⊗ d
�

Falign
t+i , Falign

t



(6)

Ffusion = Conv
��

F̃align
t−N , . . . , F̃align

t , . . . , F̃align
t+N

	

(7)

where ⊗ represents the elementwise multiplication and
Conv(·) denotes a convolutional layer.

Fig. 3. TSA fusion module with TSA.

Fig. 4. Architecture of the RDB.

We then calculate the spatial attention mask from the fusion
features and use a pyramid design to increase the range of
the receptive field of the attention map. Finally, we perform
elementwise multiplication and addition on the features and
the spatial attention mask to obtain the fused features.

3) Deep Reconstruction Module: The final fused feature
Ffusion output from the TSA module is then fed into the
following deep SR reconstruction module. The deep SR recon-
struction module mainly consists of stacked RDBs. It can be
seen in Fig. 4 that the RDBs combine residual networks and
dense connections [57]. Benefiting from this, the RDBs can
encourage feature reuse and strengthen feature propagation to
obtain a better restoration quality. Finally, the intermediate
features containing more representational information can be
obtained through the deep reconstruction module.

B. Edge Branch
The low-frequency component of the image describes the

main part of the image and is a comprehensive measure of the
intensity of the entire image. The high-frequency components
correspond to the sharply changing parts of the image, i.e., the
edges or noise and details of the image. In image restoration
tasks, the texture details corresponding to the high-frequency
components are often more difficult to recover. As one of
the most informative natural image priors, we introduce an
edge prior to regularizing the restoration process. Therefore,
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Fig. 5. Architecture of the DBFM: (a) AFB and (b) structure of the DBFM,
consisting of the AFB and three RBs.

we construct an SFSR subnetwork as a branch in EGVSR to
guide the modeling of the edge map of the image.

1) LR Edge Information Extraction: The Sobel operator,
which has low computational complexity and easy implemen-
tation, is utilized to extract the corresponding edge map from
image I . The calculation can be represented by the following
formula:

Sx =
⎡
⎣−1 0 1

−2 0 2
−1 0 1

⎤
⎦, Sy =

⎡
⎣−1 −2 −1

0 0 0
−1 2 1

⎤
⎦ (8)

Iedge = M(I ) =
�

(Sx ∗ I )2 + �Sy ∗ I
�2

(9)

where Sx and Sy stand for the Sobel template in the horizontal
and vertical directions, respectively, and M(·) represents the
operation to obtain the edge map, which can retain accu-
rate edge information. Note that the binarization strategy
is eliminated to avoid the appearance of false edges and
the loss of image features [33]. By setting the template of
the Sobel operator as the fixed kernel of the convolutional
layer, the structure information extraction operation becomes
a built-in component of the network.

At the head of the edge branch, we use M(·) in (9) to obtain
the LR edge map from the middle input frame I LR

t .
2) Dual-Branch Fusion Module: In the proposed EGVSR

framework, the edge branch encodes rich structural informa-
tion, while the MFSR branch contains spatial information
and temporal information. The output features of the two
branches contain different feature representations, so simply
concatenating them and then fusing them with a convolutional
layer would be suboptimal. Therefore, we designed a DBFM
consisting of an attention fusion block (AFB) and three RBs,
so as to pay more attention to the representative information
in the concatenated features of the MFSR branch and edge
branch.

As shown in Fig. 5(a), we first utilize the basic AFB
containing the channel attention (CA) and pixel attention (PA)
mechanisms to deal with the different types of features. The
features output by the MFSR branch and edge branch are first
concatenated in the channel direction and then passed through
an RB (denoted as FS). We then introduce the CA mechanism
to assign different weights to the channels in FS . The weights

Fig. 6. Architecture of the edge-enhanced network.

of the CA mechanism can be expressed as follows:
WCA = σ(Conv(ρ(Conv(P(FS))))) (10)

where P(·) represents the global average pooling operation
and ρ is the rectified linear unit (ReLU). We perform elemen-
twise multiplication on FS and WCA

Frw1 = FS ⊗ WCA. (11)

Considering that the edges and textures in the images are
uneven, the PA mechanism is used to make the model focus
on the high-frequency image region. We utilize a 1 × 1
convolutional layer to change the shape of Frw1 (the output
of the CA) from 2N × H × W to N × H × W , denote it
as F∗

rw1, and then feed it into the PA module. The PA module
can be expressed as follows:

WPA = σ
�
Conv

�
ρ
�
Conv

�
F∗

rw1

����
. (12)

We then elementwise multiply F∗
rw1 and WPA to obtain the

reweighted features

Frw2 = F∗
rw1 ⊗ WPA. (13)

Finally, the reweighted features pass through a cascade
of three RBs to obtain the final fused features. The overall
structure of the DBFM is shown in Fig. 5(b).

3) Edge-Enhanced Network: The edge map extracted from
the LR image does not have sharp details and may not serve
as an effective prior to guiding the SR process. Therefore,
we construct an edge-enhanced network to predict an edge
map that has accurate and clear outlines from the extracted
LR one. As shown in Fig. 6, the edge-enhanced network
contains three DBFMs, one RB, and several convolutional
layers. The well-designed MFSR branch is able to mine the
spatial information and temporal information, which can be
used to assist with the recovery of edges in the HR image.
In the MFSR branch, the features of multiple frames are
transferred from the shallow layers to the deep layers through
the PCD, TSA, and reconstruction modules. Therefore, the fea-
tures of different levels output from the three modules of the
MFSR branch are incorporated into the edge branch to further
improve the performance of the edge branch. The DBFM is
then adopted to fuse the features of the two branches. Finally,
the edge features generated by the next-to-last convolutional
layer serve as the edge prior and are integrated into the MFSR
branch. In addition, the SR edge map is output at the end of
the edge branch to calculate the loss. Since the edge branch
mainly performs the spatial distribution transformation of the
edges and textures in the LR and HR edge maps, the designed
lightweight edge-enhancement network can capture the struc-
tural dependency and generate accurate edge maps.
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C. MFSR and E-SFSR Coupled Mechanism

1) Integration of the MFSR and Edge Branches: In the pro-
posed EGVSR framework, we first utilize the MFSR branch
and edge branch to extract features from the input satellite
video frames, respectively. The feature extraction of the two
branches in the first stage can be expressed as

fMFSR = FMFSR
�

I LR
t−N , . . . , I LR

t , . . . , I LR
t+N

�
(14)

fedge = FEdge
�

I LR
t

�
(15)

where FMFSR(·) and FEdge(·) denote the MFSR and edge
enhancement process, respectively. fMFSR represents the deep
features output by the MFSR branch. fedge represents the
edge features output by the next-to-last layer of the edge
branch. At the end of the network, the two branches converge.
We utilize the DBFM with an attention mechanism to fuse
fMFSR and fedge for the final reconstruction

fSR = FDBFM
��

fMFSR, fedge
��

(16)

where FDBFM denotes the DBFM and fSR represents the
reconstructed features. We adopt global residual learning in
EGVSR to reduce the burden of network training. Thus, fSR

is added to the upsampled LR image to obtain the final SR
result

I SR
t = �I LR

t

�↑s ⊕ f SR (17)

where (·)↑s refers to the bicubic upsampling operation with a
scale factor of s,⊕ denotes the elementwise sum operation,
and I SR

t is the final SR reconstruction result for the input
central LR image I LR

t at time t .
2) Objective Function: Most of the previous methods learn

the nonlinear mapping between the LR image and the corre-
sponding HR image and use a common loss function (e.g.,
pixelwise L1 loss and L2 loss) to guide the model optimiza-
tion. As shown in Fig. 1, the EGVSR outputs an SR result
and an edge map. Therefore, we use two loss terms LSR

and Ledge for the SR reconstruction result and edge map,
respectively. First, to minimize the difference between the SR
reconstruction result and the corresponding HR image, we use
the robust Charbonnier loss function [58]

LSR =
���I HR

t − I SR
t

��2 + γ 2 (18)

where γ is set to 1 × 10−3, and I HR
t and I SR

t are the SR result
and HR ground truth, respectively.

Second, at the end of the edge branch, an HR edge map
that has the same dimension as the HR image is generated.
An L1 regularization term is constructed to constrain the
training of the edge branch so that it can generate an edge
map with more accurate details and provide an edge prior for
the super-resolving process. The edge-preserving loss Ledge is
defined as

Ledge = ��M
�

I HR
t

�− E
�

I LR
t

���
1 (19)

where M(·) represents the operation of extracting edge map,
M(I HR

t ) represents the ground-truth HR edge map extracted
from the HR image, E(·) denotes the edge branch, and E(I LR

t )
is the SR edge map reconstructed from I LR

t .

Finally, the SR loss LSR and edge-aware loss Ledge form the
complete loss L total and the coupled network composed of the
two branches can achieve end-to-end training. L total is defined
as follows:

L total = LSR + λ ∗ Ledge (20)

where λ is a tradeoff parameter to balance the two loss terms.

III. EXPERIMENTS

A. Data Preparation

In this study, we conducted experiments on two available
video image datasets, namely, Jilin-1 video satellite1 imagery
and OVS-1 video satellite2 imagery. For the Jilin-1 video
satellite datasets with a resolution of 0.92 m, we extracted
9000 video clips, each consisting of seven consecutive frames
with a fixed resolution of 160 × 160. These video clips
cover a variety of urban and natural scenarios with diverse
objects, 90% of which were used for the training, and the
remaining video clips were regarded as the validation data.
As shown in Fig. 7(a), several scenarios in the Jilin-1 datasets
with representative surface coverage types, such as airports,
industrial, and intersections, were used to build the test set.
The video clip of each scene in the test set was made up
of 30 consecutive frames with a size of 400 × 400 × 3.

In order to verify the performance of the proposed method in
processing data with different spatial resolutions and levels of
degradation, OVS-1 video satellite images, for which the frame
rate was 20 frames/s and the spatial resolution was 1.98 m,
were used for the real-data experiments. As shown in Fig. 7(b),
video clips of four scenes in the dataset were selected as the
real-data test set. The size of each video frame in the four
video clips was 120×120×3, and no downsampling operation
was performed.

B. Implementation Details
We performed horizontal and vertical flipping and 90◦

rotation to achieve data augmentation and then used bicubic
interpolation to downsample the frames in each video clip
by a factor of 4. During the training phase, five consecutive
downsampled frames with a patch size of 40 × 40 in the LR
video clip were extracted as input for the model, and the
corresponding frames in the HR video clip were selected as
the ground truth. The batch size was set to 16. Note that the
input and output of the network were both three-channel RGB
images.

All the experiments were conducted using PyTorch 1.1 and
Python 3.6.2 on an NVIDIA RTX 2080 GPU. We initialized
the weights of the convolutional layers using the method
proposed in [59]. The Adam optimizer [60] with momen-
tum parameters β1 = 0.9, β2 = 0.999, and ε = 10−8

was employed for the optimization. Meanwhile, we set the
tradeoff parameter λ to 0.1. The initial learning rate was set
to 1 × 10−4 and was then halved after every 100 epochs.
Typically, 150 epochs were sufficient for training the models
since more epochs do not always mean further improvement.

1Jilin-1 video satellite imagery is available at http://charmingglobe.com/
2OVS-1 video satellite imagery is available at https://www.myorbita.net/
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Fig. 7. Sample frames of the two satellite video test datasets. (a) Sample frames of representative scenes in the Jilin-1 test dataset, i.e., airport, overpass,
parking lot, industrial, downtown, intersection, residential, building, freeway, storage tank, runway, and school. (b) Sample frames of representative scenes in
the OVS-1 test dataset, i.e., Real_scene1, Real_scene2, Real_scene3, and Real_scene4.

TABLE I

QUANTITATIVE COMPARISON ON THE JILIN-1 VIDEO SATELLITE TEST SETS FOR 4× SR, WHERE THE BOLD FONT INDICATES THE BEST PERFORMANCE

C. Simulated Experiments
In the simulated experiments, the test LR video frames were

synthesized by applying the bicubic interpolation with a scal-
ing factor of 4 to the test video clips collected from the Jilin-1
video satellite data. To validate the overall performance of
the proposed method, we compared the EGVSR method with
several representative SR methods. These methods included
three SFSR methods, i.e., VDSR [61], RCAN [62], and
SRGAN [63], and two MFSR methods, i.e., SOFVSR [64]
and EDVR [54]. For a fair comparison, all the models were
retrained using the Jilin-1 video satellite datasets. For the
evaluation, we adopted the peak signal-to-noise ratio (PSNR)
and the structural similarity measure (SSIM) [65]. The total
PSNR and SSIM values of a video clip were calculated by
averaging the PSNRs/SSIMs of all the frames.

The quantitative results in terms of PSNR and SSIM are
listed in Table I, where it can be seen that the three video
SR methods, including EGVSR, perform better than the other
methods in terms of PSNR and SSIM. The proposed EGVSR
method overperforms all the other methods in terms of PSNR
and SSIM. In certain scenes, such as parking lots and freeways
that contain rich image content, EGVSR surpasses all the other
methods by a large margin in terms of PSNR. The results for
all the test sets show that the proposed EGVSR method obtains
the best performance, which proves that the method has a
strong reconstruction capability for video satellite imagery.

We also present some visual results in Figs. 8–10 to investi-
gate how the methods perform in terms of visual quality. For a

better comparison of the visual results, we provide zoomed-in
views within the yellow box region and their corresponding
reconstruction mean error (ME) maps, which displays obvious
distinctions between the different methods. It can be seen that
EGVSR can recover clear and sharp edges and is faithful to the
ground truth. For example, in the overpass video clip in Fig. 8,
the other methods blur the two white vehicles driving side
by side, and only EGVSR can distinguish these two objects.
As shown in Fig. 9, most of the methods produce blurring
artifacts. Although SOF-VSR and EDVR can reproduce the
small white cars beside the trains, they still oversmooth the
trains, and it is clear that EGVSR can recover the frames with
more detailed patterns. Because many vehicles exist in the
parking lot scene, the frames contain abundant high-frequency
information. The proposed EGVSR method can reconstruct a
result that is closest to the ground-truth frame and, therefore,
greatly outperforms the other methods by a large margin in
terms of PSNR, which further demonstrates the superiority of
the proposed method in reconstructing textures and details of
adjacent ground objects. Moreover, for the texture of the four
neighboring trucks in Fig. 10, only EGVSR can separate the
four trucks and recover clear textures, while the other methods
suffer from varying degrees of ambiguity. Meanwhile, in the
ME maps in Figs. 8–10, the whiter the pixel, the smaller the
error, and the better the SR result. It can be observed that
the proposed EGVSR can effectively preserve the textures.
In general, the other methods show limitations in recovering
consecutive objects and small moving objects, whereas the
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Fig. 8. Visual results obtained using the different SR methods on the 21st frame of the overpass scene with a scale factor of 4. The yellow box area is
zoomed in for better visualization, and the corresponding reconstruction error image is shown on the right-hand side. The legend color bar is shown on the
far right.

Fig. 9. Visual results obtained using the different SR methods on the 16th frame of the parking lot scene with a scale factor of 4. The yellow box area is
zoomed in for better visualization, and the corresponding reconstruction error image is shown on the right-hand side. The legend color bar is shown on the
far right.

Fig. 10. Visual results obtained using the different SR methods on the 25th frame of the industrial scene with a scale factor of 4. The yellow box area is
zoomed in for better visualization, and the corresponding reconstruction error image is shown on the right-hand side. The legend color bar is shown on the
far right.

reconstructed results of EGVSR can not only show sharp
image contours but also contain finer details.

D. Real-Data Experiments
To further evaluate the robustness of the proposed EG-VSR

method on real scenes, we conducted another group of exper-
iments on the test video clips collected from the OVS-1 video
satellite data. In real-world SR experiments, the degradation
factors in the test video clips are unknown, so we directly feed
observed video frames instead of downsampled LR frames
as the input. In addition, we introduce the average gradient
(AG) [66] to further evaluate the quality of the reconstruc-
tion results since there are no corresponding HR images for
reference. The calculation of AG is given as follows:

AG = 1

(H − 1)(W − 1)

�
x

�
y

|G(x, y)|√
2

(21)

where H and W are the height and the width of the image,
respectively, and G(·) is the gradient vector of the image. The
AG is often used to assess image clarity because it reflects
the small detail contrast and texture variation characteristics
in the imagery. Generally speaking, the larger the AG, the
clearer the reconstruction images.

As shown in Table II, EGVSR obtains better quantitative
results than the other compared methods in all the test
scenes. The SRGAN and RCAN methods are single-image
SR methods, which obtains poorer results than the other
video SR methods. We take RCAN, SOFVSR, and EDVR
into account for the qualitative comparison. The visual results
of the different methods are displayed in Fig. 11. In the
Real_scene1 sample image, the proposed method reconstructs
two small white objects, while the other methods blur one
of the objects. For the white roof in the Real_scene3 sample
image, most of the methods produce blurred and distorted
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Fig. 11. Results obtained on the OVS-1 video satellite imagery with a scale factor of 4. (a) Super-resolved results for Real_scene1. (b) Super-resolved results
for Real_scene2. (c) Super-resolved results for Real_scene3. (d) Super-resolved results for Real_scene4.

TABLE II

RESULTS OF THE DIFFERENT METHODS ON THE OVS-1 TEST SET WITH THE SCALE FACTOR OF 4

textures, but the proposed method shows a better performance
in recovering clearer textures on the roof. Overall, the pro-
posed EGVSR method is capable of reconstructing images
with sharper edges and more details than the other methods.

IV. DISCUSSIONS AND ANALYSIS

A. Exploring the Effectiveness of the Two Branches
The effectiveness of the proposed EGVSR was proven by

the experiments described in Sections III-C and III-D. To give
a more transparent explanation of the effectiveness of the
proposed model, we conducted further additional investiga-
tions. First, we conducted an ablation study on the edge
branch to explore its importance and performance. In the
proposed method, the edge branch serves as a part of the
EGVSR framework to provide an image edge prior for
reconstructing high-quality images. We, therefore, removed
it from the EGVSR framework and only used the MFSR
branch for inference, which is denoted as EGVSR_NEDGE.

TABLE III

ABLATION STUDY ON THE EDGE BRANCH IN THE EGVSR FRAMEWORK

We conducted experiments on EGVSR and EGVSR_N-EDGE
for a quantitative and qualitative comparison. As shown
in Table III, the quantitative evaluation results of the full
model after removing the edge branch drop by 0.24 dB.
As shown in Fig. 12, the green roof super-resolved by
EGVSR_NEDGE is blurry, while the images recovered by
EGVSR have more detailed textures. The quantitative and
qualitative results demonstrate that the edge prior provided by
the edge branch can help the model generate visually pleasing
SR results with clearer textures.
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Fig. 12. Visual comparison of the SR reconstruction results obtained on the
residential scene from the test set: (a) HR image; (b) SR reconstruction result
obtained by EGVSR_NEDGE, which only has the MFSR branch; and (c) SR
reconstruction result obtained by EGVSR.

Fig. 13. Effect of the length of the input frames for 4× SR with EGVSR.
EGVSR/(n): EGVSR takes n frames as input.

In EGVSR, the MFSR branch is used to deal with
satellite video sequences. In order to explore the influence
of complementary information between the different video
frames on the reconstruction, we also evaluated EGVSR
with different lengths of temporal sequences, i.e., different
numbers of input frames n ∈ {1, 3, 5, and 7}. The corre-
sponding trained models are denoted as EGVSR/1, EGVSR/3,
EGVSR/5, and EGVSR/7, respectively. The performance and
training time per epoch of each model, as measured on the
Jilin-1 video satellite imagery, is shown in Fig. 13. Compared
with EGVSR/1, the different input frames in EGVSR/3 possess
additional complementary information, thereby improving the
SR performance. By adding more frames, the performance
of EGVSR/5 increases by roughly 0.05 dB over EGVSR/3.
However, the performance improvement is marginal when the
length of the temporal sequences is longer than 5, and the
performance of EGVSR/5 is even better than that of EGVSR/7,
which uses seven neighboring frames. The deployment speed
decreases with a longer temporal sequence length. Therefore,
we set the number of input frames as five in the proposed
model by making a tradeoff between the performance and
speed.

TABLE IV

ABLATION STUDY ON DBFM IN THE EGVSR FRAMEWORK

Fig. 14. Selection of a different λ. When λ = 0.1, the model achieves the
best results.

B. Effectiveness of the Dual-Branch Fusion Module

The features in the MFSR branch and the edge features
in the edge branch contain different feature representations.
In EGVSR, we use the DBFM to merge the features from
the two branches. In this section, we describe the ablation
experiments conducted to analyze the contributions of the
DBFM. We replaced the DBFM with common RBs. The
trained model is referred to as EGVSR_NDBFM. As shown
in Table IV, the performance of EGVSR_NDBFM drops by
0.07 dB. It is often difficult to obtain further improvements in a
very deep network, but we can still obtain an improvement by
introducing the attention mechanism into the module, which
demonstrates the effectiveness of the DBFM in fusing the
features from different branches.

C. Investigation on the Hyperparameter λ

The total loss of EGVSR consists of a SR loss and an edge
loss, among which we use the hyperparameter λ to balance the
proportion of the two parts. If λ is too big, the edge branch
will dominate and affect the reconstruction result, which leads
to degraded performance. On the contrary, if λ is too small,
edge guidance does not work.

In this section, we conduct multiple sets of ablation
experiments to find the suitable λ. The SR result fidelity
term deserves a relatively larger weight than the edge prior
modeling term for obtaining better reconstruction results;
thus, setting λ in the range of 0.1–1 gives slightly better
performance. The impact of different values of λ on the
model performance is displayed in Fig. 14. According to the
experimental results, our model is robust to different values
of λ in a wide range. It can be seen that our model achieves
the best performance when λ = 0.1. Therefore, we finally set
λ = 0.1 in our model. Although we have found a suitable λ
through multiple experiments, we hope to find the optimal λ
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Fig. 15. Visual comparison of the generated edge maps: (a) ground truth obtained using the Sobel operator to directly extract the edge map from the HR
image; (b)–(d) edge maps generated by Sobel + bicubic, bicubic + Sobel, and the edge-enhanced network, respectively; and (e)–(h) edge maps output by
EGVSR_woFeatures, EGVSR_wFeature1, EGVSR_wFeature2, and EGVSR_wFeature3, respectively.

by introducing dynamic learning strategies and achieve better
results in future work.

D. Effectiveness of the Edge-Generation Capability

In the edge branch, we utilize the Sobel operator to
extract coarse edge maps from the LR images and utilize the
edge-enhanced network to predict the HR edge map so as
to provide an edge prior for the SR reconstruction. In order
to validate the capability of generating an accurate edge
map through the edge-enhanced network, we compared the
proposed edge-enhanced network with two other generation
strategies, i.e., Sobel + bicubic and bicubic + Sobel. It can
be seen in Fig. 15(b) that the edge map extracted from
the LR counterparts contains thick lines after the bicubic
interpolation. The edge map extracted from the upsampled
image has blurred edges [see Fig. 15(c)]. In particular, the edge
maps generated by Sobel + bicubic and bicubic + Sobel both
lose texture details. The CNN-based edge-enhanced network
can model the spatial translation between the LR and HR edge
maps. As shown in Fig. 15(d), the edge-enhanced network
successfully recovers an edge map with sharp details, which
is very similar to the ground truth.

Furthermore, as shown in Fig. 6, several intermediate
features from the MFSR branch are incorporated into the
edge branch. To investigate the influence of these features,
we separately incorporated them into the edge branch and

Fig. 16. PSNR curves of different models using features from the MFSR
branch.

train the network under the same conditions to obtain corre-
sponding models, which are denoted as EGVSR_wFeature1,
EGVSR_wFeature2, and EGVSR_wFeature3, respectively.
We also trained a model that removed all the features and
denoted them as EGVSR_woFeatures. The HR edge maps
reconstructed by these models are displayed in Fig. 15(e)–(h),
and the PSNR curves of different models during the train-
ing phase are plotted in Fig. 16. It is clear that the edge
map [see Fig. 15(e)] output by the EGVSR_woFeatures
shows fewer textures than those of the other three models.
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Fig. 17. Visual comparison of the ground features extracted from the SR results of the different methods: (a) HR image, (b) Bicubic, (c) VDSR, (d) SRGAN,
(e) RCAN, (f) SOFVSR, (g) EDVR, and (h) proposed method.

Similarly, it can be seen from Fig. 16 that the PSNR curves
of EGVSR_wo-Features start with the lowest PSNR value
and oscillate more obviously than other models. For the
texture of the cylinders on the roof in the second scene
in Fig. 15, EG-VSR_wFeature3 can preserve relatively more
textures than EGVSR_wFeature1 and EGVSR_wFeature2.
As shown in Fig. 16, the PSNR curve of EGVSR_wFeature3 is
also relatively higher than those of EGVSR_wFeature1 and
EGV-SR_wFeature2, which indicates that the high-level fea-
tures output by the deep reconstruction module are relatively
more effective than the features of the other modules in
improving the performance of the edge branch. Specifically,
we incorporate the features output by the three modules in the
MFSR branch into the edge branch in the proposed EGVSR,
which achieves the clearest edge map [see Fig. 15(d)] and the
highest PSNR curve (see Fig. 16).

E. Experiments in Ground Feature Extraction

In order to further explore the effect of the proposed EGVSR
on object extraction performance, we conducted a group of
feature extraction experiments on video satellite imagery. First,
the image segmentation algorithm based on edge detection was
used to segment the image at multiple scales, and then, the full
lambda-schedule algorithm [67] was used to fuse adjacent
small patches with spectral and spatial feature information.
The complete extraction process was implemented using the
Segment Only Feature Extraction Workflow in ENVI5.3, and
the parameters were set to the same values as those used in
the processing of the different SR reconstruction results.

We performed target extraction for the vehicles in the image
and display the results in Fig. 17. The extraction results can
be identified by the color and shape of the patch. We display
zoomed-in results in the red boxes for better comparison and
visualization. Most of the methods extract the two adjacent
vehicles in the lower right corner of the red box into a whole
patch and only in the results of the two video SR methods, and
the proposed method can the two vehicles be distinguished.
It can be seen from Fig. 17(h) that the patch of the four
consecutive cars in the middle of the red boxes has two
characteristic colors of gray and white, which is similar to the

result in Fig. 17(a), while the other methods treat the four cars
as a whole. Overall, the small target extraction results obtained
from the SR reconstruction results of the proposed EGVSR
method are closest to the ground truth, which demonstrates
that the proposed method has advantages in reconstructing
accurate edges and textures.

V. CONCLUSION

In this article, we have proposed an MFSR and E-SFSR
coupled network for video satellite image SR. The proposed
EGVSR framework is made up of an MFSR branch and
an edge branch. In the MFSR branch, the shallow features
of the multiple input satellite video frames are first aligned
implicitly and then fused with spatial and temporal atten-
tion mechanisms. We then utilize a reconstruction module to
further super-resolve the features to obtain an intermediate
result. Meanwhile, we apply the edge branch to predict an
HR edge map from the central frame. The features from the
two branches are input into the DBFM, which can select
and focus on the important parts of the features for the
final SR reconstruction. The extensive experimental results
showed that the proposed EGVSR can recover accurate and
clear details, resulting in an improvement of both the SR
accuracy and visual effect. The visual comparisons with video
satellite images demonstrated the effectiveness of the proposed
edge-guided strategies. The comparison with several repre-
sentative SFSR and MFSR methods further demonstrated the
outstanding performance of the proposed EGVSR. Although
the current model and strategy have achieved good results,
further improvements, such as embedding a more advanced
edge extraction module in our proposed framework, could be
made to handle the images with unknown degradation.
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