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Abstract— It is a challenging task to integrate the spatial,
temporal, and spectral information of multisource remote sensing
images, especially in the case of heterogeneous images. To this
end, for the first time, this article proposes a heterogeneous inte-
grated framework based on a novel deep residual cycle generative
adversarial network (GAN). The proposed network consists of
a forward fusion part and a backward degeneration feedback
part. The forward part generates the desired fusion result from
the various observations; the backward degeneration feedback
part considers the imaging degradation process and regenerates
the observations inversely from the fusion result. The heteroge-
neous integrated fusion framework supported by the proposed
network can simultaneously merge the complementary spatial,
temporal, and spectral information of multisource heterogeneous
observations to achieve heterogeneous spatiospectral fusion, spa-
tiotemporal fusion, and heterogeneous spatiotemporal–spectral
fusion. Furthermore, the proposed heterogeneous integrated
fusion framework can be leveraged to relieve the two bottlenecks
of land-cover change and thick cloud cover. Thus, the inapparent
and unobserved variation trends of surface features, which are
caused by the low-resolution imaging and cloud contamination,
can be detected and reconstructed well. Images from many
different remote sensing satellites, i.e., Moderate Resolution
Imaging Spectroradiometer (MODIS), Landsat 8, Sentinel-1, and
Sentinel-2, were utilized in the experiments conducted in this
study, and both the qualitative and quantitative evaluations
confirmed the effectiveness of the proposed image fusion method.

Index Terms— Deep residual cycle generative adversarial net-
work (GAN), heterogeneous integrated framework, land-cover
change, thick cloud cover.

I. INTRODUCTION

DUE to the hardware limitations, remote sensing system
imaging involves a tradeoff between the temporal, spa-

tial, and spectral resolutions [1]. Remote sensing image fusion
is an effective way to fuse the complementary information
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between multisource observations and has been widely con-
sidered and developed [2]–[4]. To date, a variety of remote
sensing image fusion methods have been proposed. According
to the different aims, these methods can be divided into
different categories, i.e., spatiospectral fusion, spatiotemporal
fusion, and spatiotemporal–spectral fusion [5].

Spatiospectral fusion [6] is aimed at obtaining images
of both high spatial and spectral resolutions by fusing the
complementary rich spatial and spectral features between
two images. Spatiospectral fusion includes panchromatic
(PAN)/multispectral (MS) image fusion, PAN/hyperspectral
(HS) image fusion, and MS/HS image fusion. The existing
spatiospectral fusion methods can be broadly classified into
four major branches [7]: component substitution (CS)-based
methods [8], [9], multiresolution analysis (MRA)-based meth-
ods [10], [11], variational model-based methods [12], [13],
and deep-learning-based methods [14], [15]. The abovemen-
tioned methods are all aimed at fusing homogeneous optical
images. Nevertheless, scholars have proposed some hetero-
geneous -spectral fusion methods, e.g., synthetic aperture
radar (SAR)-optical image fusion, which uses the rich spatial
features in SAR images to make up for the spatial deficiencies
in optical images with rich spectral information. However,
most of the existing SAR-optical image fusion methods [16],
[17] have been transferred from the spatiospectral fusion of
optical images and are unsuitable for heterogeneous informa-
tion transformation.

Spatiotemporal fusion [18] is aimed at obtaining images
with both high spatial and temporal resolutions by fusing high
spatial resolution (HR) images with a long revisit period and
low spatial resolution (LR) images with a short revisit period.
The spatiotemporal fusion methods can be broadly classified
into four main categories [19]: weight function-based methods
[20], [21], unmixing-based methods [22], [23], Bayesian-based
methods [24], [25], and learning-based methods [26], [27].
Most of these methods can capture phenological changes,
but they have a bottleneck in reflecting land-cover changes,
especially when the changed land covers are imperceptible in
the LR image at the target time. This is a common problem in
the case of spatiotemporal fusion under large spatial resolution
gaps or severe weather conditions (such as thick cloud cover).

The aforementioned spatiospectral fusion and spatiotempo-
ral fusion methods are dedicated to fusing information from
only two of the spatial, temporal, and spectral domains. On this
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basis, Shen [28] first proposed the integrated fusion to integrate
the complementary spatial, temporal, and spectral features
of multisource remote sensing images to obtain images with
the highest spatial–temporal–spectral resolutions. Huang et al.
[29] then extended the model proposed in [28] by exploring
the relationship between the spatiospectral and spatiotemporal
fusion methods. Shen et al. [5] subsequently proposed an
integrated framework that thoroughly analyzes the spatial,
spectral, and temporal relationships between the desired image
and the multisource remote sensing observations and con-
structed an integrated relationship model based on maximum
a posteriori (MAP) theory. Zhao et al. [30] exploited the
high self-similarity in the spatial domain, the high spectral
correlation in the spectral domain, and the temporal changes
to develop an integrated sparsity model. However, due to
the complex and nonlinear relationships between multisource
datasets, the current studies of integrated fusion methods have
been limited to homogeneous optical images, and they have
not considered the heterogeneous information of different
imaging mechanisms, such as SAR and optical images.

In this article, to address these issues, we propose a
heterogeneous integrated fusion framework based on a deep
residual cycle generative adversarial network (GAN). The
main contributions of this article are as follows.

1) We propose a novel deep residual cycle GAN, which
consists of a forward fusion part and a backward degeneration
feedback part, where a cycle consistency constraint is formed
from the inputs of the forward part to the outputs of the
backward part.

2) The integrated fusion of multisource heterogeneous
remote sensing images is first implemented, which can suc-
cessfully achieve heterogeneous spatiospectral fusion, spa-
tiotemporal fusion, and heterogeneous spatiotemporal–spectral
fusion.

3) The proposed heterogeneous integrated fusion framework
can effectively alleviate the two bottlenecks of land-cover
change and thick cloud cover to predict, not only, the HR
image at the target time but also the changes.

The rest of this article is organized as follows. Section II
describes the proposed deep residual cycle GAN in detail.
In Section III, the experiments and analyses for two chal-
lenging scenarios are presented. Our conclusion and future
prospects are reported in Section IV.

II. PROPOSED METHOD

Before describing the proposed method in detail, the impor-
tant notations are introduced. X ∈ R

M×N×B denotes the
desired HR MS image at target time t2, where M , N , and
B represent the width, height, and band number of the image,
respectively. X̃ ∈ R

m×n×B denotes the observed LR MS image
at t2. S = M/m = N /n is the spatial resolution ratio of the
LR MS image to the HR MS image. X̂ ∈ R

M×N×B is the
result of X̃ bicubic upsampling to the same spatial size as
X . Y ∈ R

M×N×b denotes the observed HR SAR image at t2,
where b < B . Z ∈ R

M×N×B denotes the observed HR MS
image at auxiliary time t1. Note that t2 is subsequent to t1.
The relationships between the observations and the desired

image can be formulated as⎧⎨⎨
⎨⎩

X̃ = fspatial(X)=AX+N

Z = ftemporal(X)

Y = fheterogeneous(X)

(1)

where fspatial(·) denotes the spatial degradation relationship
from X to X̃ , usually assumed to be a blurring and downsam-
pling operation [6], which can be expressed by the blurring and
downsampling matrix A and the noise N. ftemporal(·) denotes
the temporal relationship from X to Z , usually assumed to
be a linear model [29], [31]. fheterogeneous(·) denotes the het-
erogeneous relationship between X and Y , which is currently
difficult to express explicitly.

Fig. 1 displays the flowchart of the proposed method. The
proposed deep residual cycle GAN is based on the GAN
[32] framework. In the network training depicted in Fig. 1(a),
the network can be divided into a forward fusion part and
a backward degeneration feedback part. The forward fusion
part includes a forward generator and a forward discrimina-
tor. The input of the forward generator network consists of
observations resized to the same spatial size and concatenated
along the spectral dimension. Specifically, for heterogenous
spatiotemporal–spectral fusion, the input to the forward gen-
erator composes of t2 HR SAR, t1 HR MS, and resized t2 LR
MS images, namely, (Y, Z , X̂ ). For heterogeneous spatiospec-
tral fusion, the input to the forward generator is (Y, X̂ ). For
spatiotemporal fusion, the input to the forward generator is
(Z , X̂). That is, three networks are trained to exploit the effect
of different fusion strategies. In the following, we describe the
proposed network in detail with the example of heterogenous
spatiotemporal–spectral fusion. As shown in Fig. 1(a), the
output of the forward generator is the fused HR MS image
at t2. This can be written as

X f = GF
��

Y, Z , X̂
�; �F

�
(2)

where X f is the output of the forward generator GF(·), and �F

represents the trainable parameters. The forward discriminator
discriminates X f and the label data X .

The backward degeneration feedback part takes the degra-
dation process of remote sensing imaging into account and
reversely generates observation images from the fusion result
X f. Since fspatial(·) in (1) is relatively clear, but ftemporal(·)
and fheterogeneous(·) in (1) are difficult to accurately model.
As shown in Fig. 1(a), the backward part utilizes the “resize”
branch to regenerate the t2 LR MS image and the backward
generator to implement ftemporal(·) and fheterogeneous(·) implic-
itly. They can be expressed as

X̂∗ = resize
�

X f

�
(3)

Y ∗, Z∗ = GB
�

X f ; �B
�

(4)

where resize(·) represents the blurring and resampling oper-
ation. Note that, in the case of thick cloud cover, resize(·)
represents the sequential operation of blurring and resampling
and adding the cloud mask. X̂∗ is the regenerated t2 LR MS
image. GB(·) and �B denote the backward generator and the
corresponding trainable parameters, respectively. Y ∗ and Z∗
denote the regenerated t2 HR SAR and t1 HR MS images,
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Fig. 1. Flowchart of the proposed method. HSTS fusion represents heterogeneous spatiotemporal–spectral fusion, HSS fusion represents heterogeneous
spatiospectral fusion, and ST fusion represents spatiotemporal fusion. (a) Train and (b) test.

respectively. A cycle forms from the inputs of the forward
generator to the outputs of the “resize” branch and backward
generator. The backward discriminator discriminates (Y, Z , X̂ )
and (Y ∗, Z∗, X̂∗). In the network testing depicted in Fig. 1(b),
the corresponding observations are input into the trained
forward generator of each fusion class, and the output is then
the final fusion result.

A. Architecture of the Proposed Network

The proposed deep residual cycle GAN includes two gen-
erators and two discriminators. The two generators have the
same network structure, and the two discriminators also have
the same network structure.

The structure of the adopted generator networks is shown in
Fig. 2, which is similar to that of [33] and consists of a feature
extraction module, a feature encoding module, a residual
learning module, a feature decoding module, and a feature
compression module.

1) The feature extraction module extracts features from the
inputs. It is a “Conv + BN + ReLU” block that consists
of a convolutional layer, a batch normalization layer, and
a rectified linear unit (ReLU) activation function layer.
The convolutional layer consists of 64 filters of 7 × 7 ×
InC with stride 1, where InC denotes the channels of the
input image.

2) The feature encoding module downsamples the fea-
ture maps by convolutional layers with stride 2 [34],
which enlarges the receptive field of the features with-
out increasing the convolution kernel size or the net-
work depth. It includes two “Conv + BN + ReLU”
blocks, in which the first convolutional layer consists of

128 filters of 3 × 3 × 64 and the second convolutional
layer consists of 256 filters of 3 × 3 × 128.

3) The residual learning module utilizes the popular resid-
ual learning strategy [35], whose effectiveness has been
verified in many tasks [36]–[38]. It consists of six
residual blocks. As shown in Fig. 2, a residual block
consists of a “Conv + BN + ReLU” structure and a
“Conv + BN” structure, in which both convolutional
layers include 256 filters of 3 × 3 × 256. ⊕ denotes a
pixel-by-pixel addition function.

4) The feature decoding module has the opposite func-
tion to the feature encoding module, which gradually
expands the feature map to the input image size through
deconvolution [39]. It is made up of two “DeConv +
BN + ReLU” blocks, where the first deconvolutional
layer includes 128 filters of 3 × 3 × 256 with stride
2 and the second deconvolutional layer includes 64 fil-
ters of 3 × 3 × 128 with stride 2.

5) The feature compression module maps the features back
to the image domain. This module consists of a “Conv +
Tanh” block, in which the convolutional layer includes
OutC filters of 7 × 7 × 64, where OutC denotes
the channels of the output image. The tanh activation
function layer [40] is empirically used in the last layer
of the generator.

For the discriminator networks, we use the popular Patch-
GAN architecture in [41], which determines whether the image
patches are real or fake. Fig. 3 shows the detailed structure of
the proposed discriminators, which consist of one “Conv +
LeakyReLU” block, three “Conv + BN + LeakyReLU”
blocks, and a “Conv + Sigmoid” block. The kernel size of
all the convolutional layers is 4 × 4, the stride of the first
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Fig. 2. Structure of the proposed generators.

Fig. 3. Structure of the proposed discriminators.

three convolutional layers is 2, and the stride of the last two
convolutional layers is 1.

B. Loss Function

With the network structure, the loss function of the proposed
network also includes two parts: the loss function of the
generator networks and the loss function of the discriminator
networks. Two generators are trained together with one loss
function, which can be written as follows:

LG = Ladv + Lcon (5)

where LG denotes the total loss of the generators and consists
of two terms: Ladv and Lcon. Ladv is the adversarial loss
between the generators and discriminators [42], which is
defined as

Ladv = 1

N

N�
n=1

		DF
�

X f
�− 1

		2
F

+ 1

N

N�
n=1

		DB
��

Y ∗, Z∗, X̂∗��− 1
		2

F
(6)

where the first term is the forward discriminator-related adver-
sarial loss and the second term is the backward discriminator-
related adversarial loss. N denotes the number of patches
in a batch [6]. The mean squared error (MSE) loss [43] is
empirically utilized in Ladv, and � · �F is the matrix Frobenius
norm.

Lcon in (5) is the content loss to ensure that the outputs of
the generators are close to the ground truth. Specifically, the

content loss is defined as follows:

Lcon = λ1 ∗ 1

N

N�
n=1

		X f − X
		

1+λ2 ∗ 1

N

N�
n=1

�M�

×�X f − X
�		

1

+ λ3 ∗ 1

N

N�
n=1

		�Y ∗, Z∗, X̂∗�− �Y, Z , X̂
�		

1 (7)

where the first term calculates the global loss between the
forward generator output and the ideal fusion result. The
second term calculates the local loss between the forward
generator output and the ideal fusion result in the cloud-
covered areas, where M is the binarized cloud mask, with
1 representing a cloud-covered area and 0 a cloudless area.
� is the dot product operator. The last term is the cycle
consistency loss between the inputs of the forward generator
and the outputs of the “resize” branch and the backward
generator. λ1, λ2, and λ3 are the adjustable parameters that
balance the three terms. Since mean absolute error (MAE) loss
[43] is less sensitive to outliers than MSE loss, it is empirically
used in the content loss, and � · �1is the L1 norm.

The two discriminators are trained separately with their
own loss functions. The forward discriminator distinguishes
the forward generator output and the ideal fusion result, i.e.,
the t2 HR MS image. It judges the t2 HR MS image to be
true with label 1, and the output of the forward generator to
be fake with label 0. The loss function can be formulated as
follows:

L DF = 1

2



1

N

N�
n=1

�DF
�

X f
�− 0�2

F + 1

N

N�
n=1

�DF(X) − 1�2
F

�
.

(8)

Similarly, the backward discriminator distinguishes the
inputs of the forward generator and the outputs of the “resize”
branch and the backward generator. It judges the former to be
true with label 1, and the latter to be fake with label 0. The
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TABLE I

DATASETS USED IN THE RESOLUTION IMPROVEMENTS EXPERIMENTS

loss function can be formulated as follows:

L DB = 1

2N

N�
n=1

		DB
��

Y, Z , X̂
��− 1

		2

F

+ 1

2N

N�
n=1

		DB
��

Y ∗, Z∗, X̂∗��− 0
		2

F
. (9)

In the network training, the trainable parameters of the
generators and the discriminators are updated sequentially,
according to the corresponding loss functions. Considering
the sensitivity of GANs, we learned from [44] and set the
hyperparameters accordingly. The learning rate in the first
75 epochs was set to 0.0002, and this was decayed linearly
to 0 in the last 75 epochs. In addition, the adjustable weights
in (7) were set as: λ1 = 50, λ2 = 100, and λ3 = 50. The
Adam optimizer [45] was utilized to optimize the network
parameters.

III. EXPERIMENTS

To verify the performance of the proposed method in the
two difficult problems of land-cover change and thick cloud
cover, three sets of experiments were carried out: resolution
improvement experiments, thick cloud removal experiments,
and joint processing experiments of thick cloud removal and
resolution improvement. Images from multiple sensors were
utilized, i.e., the Moderate Resolution Imaging Spectrora-
diometer (MODIS), the Landsat 8 Operational Land Imager
(OLI), the Sentinel-2 Multispectral Instrument (MSI), and the
Sentinel-1 C-SAR instrument. All the optical images include
the red, green, and blue bands, namely, the B2, B3, and B4
bands of the Sentinel-2 MS image and the Landsat 8 MS
image and the B01, B03, and B04 bands of the MODIS MS
image. All SAR images include the VH and VV polarization
bands. More details of the datasets used in each experiment
are provided in the corresponding sections. In this article, five
representative indices are used to evaluate the performance
of the fusion results quantitatively: the relative dimensionless
global error in synthesis (ERGAS) [46], the spectral angle
mapper (SAM) [46], the Q metric [46], the peak-signal-to-
noise ratio (PSNR), and the structural similarity index (SSIM)

[47]. Among the different indices, ERGAS is used for the
resolution improvement experiments.

A. Resolution Improvement Experiments

In the resolution improvement experiments, we fused the t2
MODIS MS image of a 500-m resolution, the t2 Sentinel-1
dual-polarization SAR image of a 10-m resolution, and the
t1 Sentinel-2 MS image of a 10-m resolution to obtain the
t2 MS image of a 10-m resolution. Note that due to the
different revisit periods of the sensors, the capture time of
t2 images for different sensors may be slightly different.
Table I lists the datasets used for the network training and
testing. The t2 MODIS MS image is the MODO9GA prod-
uct captured on October 29, 2017. The t2 Sentinel-1 dual-
polarization SAR image is the ground range detected (GRD)
product of stripmap (SM) mode captured on October 28,
2017. The t1 Sentinel-2 MS image is the Level-1C product
captured on September 29, 2016. The t2 Sentinel-2 MS image
captured on October 29, 2017 was used as the label data in
the network training and the reference image in the network
testing. Three image pairs were utilized to generate the training
patches, where the sizes of the MODIS MS images were
128 × 106, 60 × 60, and 124 × 130 and the sizes of
the other images were 6400 × 5300, 3000 × 3000, and
6200 × 6500; ×2 and ×3 in the “Size” column represented
the spectral bands of images. The center locations of the
images were (95.62◦W, 30.23◦N), (95.43◦W, 29.86◦N), and
(95.77◦W, 29.41◦N). In total, 1984 patches of size 200 ×
200 were randomly generated from these three image pairs.
In the network testing, a pair of images was utilized, where
the size of the MODIS MS image was 60 × 60 and the size
of the other images was 3000 × 3000. The center location of
the images was (95.78◦W, 29.85◦N).

1) Visual Analysis: Fig. 4 displays the fusion results with
the size of 3000 × 3000 for the resolution improvement
experiments, where the MS images are displayed in the
red–green–blue band combination, and the SAR image is
displayed in the VV–VH–VV band combination. The first
row shows the observations, i.e., the MODIS MS image
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Fig. 4. Fusion results for the resolution improvement experiments. (a) t2 MODIS MS, (b) t2 Sentinel-1 SAR, (c) t1 Sentinel-2 MS, (d) AIHS, (e) Proposed-
HSS, (f) t2 Sentinel-2 MS (reference), (g) ESRCNN, (h) Proposed-ST, and (i) Proposed-HSTS.

from October 29, 2017 (written as t2 MODIS MS), the
Sentinel-1 dual-polarization SAR image from October 28,
2017 (written as t2 Sentinel-1 SAR), and the Sentinel-2 MS
image from September 29, 2016 (written as t1 Sentinel-2
MS). Fig. 4(d) and (e) in the second row shows the results
of fusing the t2 MODIS MS image and the t2 Sentinel-1
SAR image. Fig. 4(d) shows the result of adaptive intensity-
hue-saturation (AIHS) algorithm [48], which is a comparison
algorithm that originated from optical spatiospectral fusion.
Fig. 4(e) shows the result of the proposed deep residual
cycle GAN adopting the heterogeneous spatiospectral fusion
strategy, which is written as the proposed-HSS. Fig. 4(f) is
the Sentinel-2 MS image from October 29, 2017 (written as
t2 Sentinel-2 MS) that acts as the reference image. Fig. 4(g)
and (h) in the third row shows the results of fusing the t2
MODIS MS image and the t1 Sentinel-2 MS image. Fig. 4(g)
shows the result of the extended superresolution convolutional
neural network (ESRCNN) algorithm [49]. Fig. 4(h) shows the

result of the proposed network adopting the spatiotemporal
fusion strategy, which is written as the proposed-ST. Fig. 4(i)
shows the fusion result of the proposed network adopting
the heterogeneous spatiotemporal–spectral fusion strategy of
fusing the t2 MODIS MS image, the t2 SAR image, and the
t1 Sentinel-2 MS image, which is written as the proposed-
HSTS. As shown in Fig. 4, lots of land-cover changes took
place between t1 and t2, as can be seen in the Sentinel-2 MS
images at t1 and t2 (in the green ellipses in Fig. 4(c) and (f),
for example). By comparing the fusion results, it can be
observed that the AIHS method results in severe global spatial
and spectral distortion. The proposed-HSS method effectively
increases the spatial information of the t2 MODIS MS image,
but it results in some local spectral distortion, as can be
found in the upper-left corner of Fig. 4(e). The ESRCNN and
proposed-ST methods perform much better than the AIHS and
proposed-HSS methods, but neither predicts the changed land
covers, as shown in the green ellipses in Fig. 4(g) and (h).
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Fig. 5. Sampling area pointed to by red rectangles in Fig. 4(f). S1 and S2 are the abbreviations for Sentinel-1 and Sentinel-2, respectively. (a) t2 S2
MS (reference: sampling area 1), (b) t2 S2 MS (reference: sampling area 2), (c) t2 MODIS MS, (d) t2 S1 SAR, (e) t1 S2 MS, (f) AIHS, (g) Proposed-
HSS, (h) ESRCNN, (i) Proposed-ST, (j) Proposed-HSTS, (k) t2 MODIS MS, (l) t2 S1 SAR, (m) t1 S2 MS, (n) AIHS, (o) Proposed-HSS, (p) ESRCNN,
(q) Proposed-ST, and (r) Proposed-HSTS.

On the whole, the fusion result of the proposed-HSTS
method in Fig. 4(i) is visually the closest to the
reference.

To further compare the effects of these methods, two repre-
sentative areas with the size of 200 × 200 in red rectangles in
Fig. 4(f) were selected for the analysis in Fig. 5. As shown in
Fig. 5, between t1 and t2, minor land cover changes occurred
in sampling area 1; lots of land cover changes occurred in
sampling area 2. First, in sampling area 1 shown in the second
row of Fig. 5, the AIHS method performs extremely poorly,
both spatially and spectrally, which reflects the incompatibility
of the migration of the optical image fusion method to SAR-
optical image fusion. The proposed-HSS method performs
better than the AIHS method, but it produces distorted spatial
structure, as shown in the green rectangle in Fig. 5(g). In the
two spatiotemporal fusion-based methods, the results of the
ESRCNN and proposed-ST methods differ slightly, but neither
reflects the land-cover changes, as shown in the green ellipses
in Fig. 5(h) and (i). Overall, the proposed-HSTS method
combines the advantage of the proposed-ST method to obtain
unchanged land covers, as shown in the green rectangle in
Fig. 5(j), and the ability of the proposed-HSS method to
reflect changed land covers, as shown in the green ellipse
in Fig. 5(j).

In sampling area 2 shown in the third row, the white building
in the red rectangle is not visible at t1 but t2, as shown
in Fig. 5(b) and (m). Due to the clear structural information
of the white building in Fig. 5(l), the proposed-HSS method
successfully reconstructs the changed land covers, as shown
in Fig. 5(o). In the two spatiotemporal fusion-based methods,
the ESRCNN method does not detect any land-cover changes,
as in Fig. 5(p), while the proposed-ST method detects some
changed land covers but fails to reconstruct them, as shown in
Fig. 5(q). The proposed-HSTS method effectively predicts the
land-cover changes, as shown in Fig. 5(r), but the result seems
not as clear as that of the proposed-HSS method in Fig. 5(o).

The reason should be that the proposed-HSTS method obtains
HR spatial information by fusing the t1 Sentinel-2 MS image
and the t2 Sentinel-1 SAR image, but the t1 Sentinel-2 MS
image lacks the corresponding spatial structural information
of changed land covers.

2) Quantitative Analysis: Fig. 6 displays the point density
between the fusion results and the reference image in Fig. 4.
In Fig. 6(a)–(o), the color scheme indicates the point density,
the black line refers to the function y = x , and the red line
represents the band-by-band linear fitting between the fusion
result and the reference image. The smaller the angle between
the red line and the black line, the closer the slope of the
fitted line is to 1. In addition, the narrower the point cloud
and the more evenly the points are distributed on both sides of
the fitted line, the larger the R^2 value and the more reliable
the fitting result. From Fig. 6, it is clear that the proposed-
HSS method performs much better than the AIHS method,
and the proposed-ST method performs slightly better than the
ESRCNN method. Comparing the three proposed methods, the
proposed-ST method has a better average slope, a narrower
point cloud, and larger R^2 values than the proposed-HSS
method, which indicates that the proposed-ST method is
generally better than the proposed-HSS method. However,
it is noticeable that the proposed-ST method has an uneven
distribution of points in all bands, as shown in the red ellipse
in Fig. 6(j), which is likely to be caused by land-cover changes.
In contrast, the result of the proposed-HSTS method has
uniformly distributed points, an average slope closest to 1, and
an average R^2 of about 0.80, outperforming other methods
by a significant margin.

Table II lists the quantitative evaluation results for the
resolution improvement experiments, where the best perfor-
mance for each index is marked in bold. With the visual
results, the proposed-HSS method performs much better than
the AIHS method in all the indices, and the proposed-ST
method performs slightly better than the ESRCNN method
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Fig. 6. Point density between the fusion results and the reference image in Fig. 4. (a) AIHS_Blue. (b) AIHS_Green. (c) AIHS_Red. (d) Proposed-HSS_Blue.
(e) Proposed-HSS_Green. (f) Proposed-HSS_Red. (g) ESRCNN_Blue. (h) ESRCNN_Green. (i) ESRCNN_Red. (j) Proposed-ST_Blue. (k) Proposed-ST_Green.
(l) Proposed-ST_Red. (m) Proposed-HSTS_Blue. (n) Proposed-HSTS_Green. (o) Proposed-HSTS_Red.

in all the indices. The proposed-HSTS method performs the
best in all the quality indices, which verifies the effectiveness

of the proposed heterogeneous spatiotemporal–spectral fusion
strategy.
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TABLE II

QUANTITATIVE RESULTS FOR THE RESOLUTION IMPROVEMENT EXPERIMENTS

B. Thick Cloud Removal Experiments

Optical remote sensing images are susceptible to clouds,
for which lots of related studies have been developed
[38], [50]–[54]. To fully demonstrate the effectiveness of the
proposed method, in the thick cloud removal experiment, four
comparison methods are selected. They are the Simulation-
Fusion GAN (Simu-Fus-GAN) method [52], the SAR-
Optical-conditional GAN (SAR-opt-cGAN) method [38], the
spatiotemporal fusion-based cloud removal (STF-CR) method
[53], and the spatial–temporal–spectral deep convolutional
neural network (STS-CNN) method [54].

Table III lists the details of the network training and test
datasets used for the thick cloud removal experiments. In the
experiments, we removed the thick cloud of the Sentinel-2
MS image from December 22, 2019 (t2) with the help of
the Sentinel-1 dual-polarization SAR image from December
21, 2019 (t2) and the cloudless Sentinel-2 MS image from
June 10, 2019 (t1). Since we cannot simultaneously capture
both cloudy and cloudless MS images of the same day, in the
network training and simulated experiments, we synthesized
the t2 cloudy Sentinel-2 MS image by adding a cloud mask
to the observed t2 cloudless Sentinel-2 MS image. The t2
cloudless Sentinel-2 observation was then considered as the
label data for the network training and the reference for the
simulated experiments. As shown in Table III, in the network
training, one image pair of size 5830 × 10 580, with a
center location of (88.44◦W, 41.96◦N), was used to generate
the training patches. The cloud coverage for the synthesized
t2 cloudy Sentinel-2 MS image was 19.72%. In total, 8112
patches of size 128 × 128 were randomly generated. In the
simulated experiments, a pair of images of size 5830 × 400,
with a center location of (88.43◦W, 41.47◦N), was utilized to
generate 22 small image pairs with the size of 256 × 256. The
cloud coverage for the synthesized t2 cloudy Sentinel-2 MS
image in simulated experiments was 23.15%. In the real-data
experiments, the t2 cloudy Sentinel-2 MS image was captured
on November 22, 2019, its cloud and shadow coverage was
40.11%, and its other parameters were the same as in the
simulated experiments.

1) Simulated Thick Cloud Removal Experiments: A group
of simulated experiment results with the size of 256 × 256 are
displayed in Fig. 7 in the red–green–blue band combination,
where the lower-right corner is a magnified display of the
image inside the red rectangle. The first row of Fig. 7 displays
the observations to be fused. In the second row, the first three
are the results of heterogeneous spatiospectral fusion-based

methods that fuse the t2 cloudy Sentinel-2 MS image and the
t2 Sentinel-1 SAR image; the fourth is the reference image.
In the third row, the first three are the results of spatiotemporal
fusion-based methods that fuse the t2 cloudy Sentinel-2 MS
image and the t1 cloudless Sentinel-2 MS image. The last
is the result of the proposed-HSTS method that fuses the t2
cloudy Sentinel-2 MS image, the t2 Sentinel-1 SAR image,
and the t1 cloudless Sentinel-2 MS image.

First, for the heterogeneous spatiospectral fusion-based
methods, the Simu-Fus-GAN method produces severe spec-
tral distortion and the SAR-opt-cGAN method produces
severe spatial distortion, as shown in the zoomed areas
of Fig. 7(e) and (f). The fusion result of the proposed-HSS
method is closer to the reference image, but it has some
blurring spatially, as shown in the edges of the bail soil in
the yellow ellipse of the zoomed area of Fig. 7(g), which
is caused by the unclear structures in the t2 SAR images
in Fig. 7(b) and (c). Then, among the three spatiotemporal
fusion-based methods, the spatial details of the cloud cov-
erage area reconstructed by the STF-CR method are close
to the t1 Sentinel-2 MS image instead of the reference
image, as shown in the zoomed area in Fig. 7(i). The STS-
CNN method produces obvious spectral distortion and spatial
blurring, as shown in the zoomed area in Fig. 7(j). The
result of the proposed-ST method is closer to the reference,
both spatially and spectrally, as shown in the zoomed area
in Fig. 7(k). Moreover, comparing the results of the three
proposed methods, the proposed-HSS method shows some
blurring in the zoomed area in Fig. 7(g). The proposed-ST
method performs better than the proposed-HSS method, but
slightly worse than the proposed-HSTS method, as indicated
by the vegetation in the yellow ellipse of the zoomed area
in Fig. 7(l). The result of the proposed-HSTS method is
the closest to the reference. Table IV lists the quantitative
evaluation results for the simulated thick cloud removal exper-
iments, with an average of 22 groups. In Table IV, the best
performance for each index is marked in bold. Consistent with
the visual results, the proposed-HSS method outperforms the
Simu-Fus-GAN and SAR-opt-cGAN methods in all the quality
indices. This is also true for the spatiotemporal fusion-based
methods, where the proposed-ST method performs better than
the STF-CR and STS-CNN methods in all the indices. They
show the superiority of the proposed network over the compar-
ison algorithms. Furthermore, comparing the proposed-HSS,
proposed-ST, and proposed-HSTS methods, it is clear that the
proposed-ST method performs better than the proposed-HSS
method in all the indices. This verifies that heterogeneous
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TABLE III

DATASETS USED IN THE THICK CLOUD REMOVAL EXPERIMENTS

Fig. 7. Results for the simulated thick cloud removal experiment. (a) t2 cloudy Sentinel-2 MS, (b) t2 Sentinel-1 SAR_VH, (c) t2 Sentinel-1 SAR_VV, (d) t1
Sentinel-2 MS, (e) Simu-Fus-GAN, (f) SAR-opt-cGAN, (g) Proposed-HSS, (h) t2 Sentinel-2 MS (reference), (i) STF-CR, (j) STS-CNN, (k) Proposed-ST,
and (l) Proposed-HSTS.

information fusion without a temporal change is still more
difficult than homogeneous optical information fusion with a
temporal change. The proposed-HSTS method performs the
best in all the indices, which confirms the advantage of the
heterogeneous spatiotemporal–spectral fusion strategy.

2) Real-Data Thick Cloud Removal Experiments: A group
of real-data experiment results with the size of 256 × 256 are
displayed in Fig. 8 in the red–green–blue band combina-
tion. In Fig. 8, the lower-left corner is a magnified display
of the image inside the green rectangle. For the real-data
experiments, the t2 cloudy Sentinel-2 MS image in Fig. 8(a)
was obtained on November 22, 2019, and its cloud and

shadow coverage was 48.01%. For the heterogeneous spa-
tiospectral fusion-based methods in Fig. 8(e)–(g), the results
of the Simu-Fus-GAN and SAR-opt-cGAN methods show
obvious cloud-cover boundaries, while the transition from the
cloud-covered area to the cloudless area in the result of the
proposed-HSS method is more natural. For the spatiotemporal
fusion-based methods, the result of the STF-CR method in
the cloud-covered areas is similar to the t1 Sentinel-2 MS
image but is quite different from the reference image, as shown
in the zoomed area in Fig. 8(i). The result of the STS-CNN
method shows obvious spectral distortion in the cloud-covered
areas, as shown in the zoomed area in Fig. 8(j). The result of
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TABLE IV

QUANTITATIVE RESULTS FOR THE SIMULATED THICK CLOUD REMOVAL EXPERIMENTS (22 GROUPS)

Fig. 8. Results for the real-data thick cloud removal experiments. (a) t2 cloudy Sentinel-2 MS, (b) t2 Sentinel-1 SAR_VH, (c) t2 Sentinel-1 SAR_VV, (d) t1
Sentinel-2 MS, (e) Simu-Fus-GAN, (f) SAR-opt-cGAN, (g) Proposed-HSS, (h) t2 Sentinel-2 MS (reference), (i) STF-CR, (j) STS-CNN, (k) Proposed-ST,
and (l) Proposed-HSTS.

the proposed-ST method is closer to the reference image than
the STF-CR and STS-CNN methods, but it is incapable of
detecting land-cover changes, as shown in the bare soil of the
zoomed area in Fig. 8(k). The proposed-HSTS method reflects
the land-cover changes well, as indicated by the bare soil edge
in the yellow ellipse of the zoomed area in Fig. 8(l), and it
obtains the best results.

C. Joint Processing of Thick Cloud Removal and Resolution
Improvement

In the joint processing of thick cloud removal and resolution
improvement, we fused the t2 cloudy Landsat 8 MS image of a

30-m resolution, the t2 cloudless Sentinel-1 dual-polarization
SAR image of a 10-m resolution, and the t1 cloudless
Sentinel-2 MS image of a 10-m resolution to obtain the t2
cloudless MS image of a 10-m resolution. Table V gives the
details of the network training and test datasets. In the network
training and simulated experiments, the t2 (October 29, 2017)
cloudy Landsat 8 MS image was synthesized by adding a
cloud mask to the t2 (October 29, 2017) Sentinel-2 MS image,
which was previously spatially downsampled to the resolution
of the Landsat 8 MS image. The t2 Sentinel-1 SAR image was
captured on October 28, 2017, and the t1 cloudless Sentinel-2
MS image was captured on September 29, 2016. As shown
in Table V, one pair of images was utilized to generate
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TABLE V

DATASETS USED IN THE JOINT PROCESSING OF THICK CLOUD REMOVAL AND RESOLUTION IMPROVEMENT

TABLE VI

QUANTITATIVE RESULT FOR THE SIMULATED EXPERIMENTS IN THE JOINT PROCESSING OF THICK CLOUD REMOVAL AND RESOLUTION
IMPROVEMENT (EIGHT GROUPS)

the training patches, where the size of the Landsat 8 image
was 1900 × 2794, and the size of the other images was
5700 × 8382. The center location was (95.65◦W, 30.09◦N).
The cloud coverage for the synthesized Landsat 8 MS image
in the network training was 32.58%. In total, 6336 patches of
size 128 × 128 were randomly generated. In the simulated
experiments, a pair of images was utilized, where the size
of the Landsat 8 MS image was 240 × 2794, with a center
location of (95.32◦W, 30.10◦N). The cloud coverage for the
synthesized Landsat 8 MS image in simulated experiments was
28.28%. This pair of images were utilized to generate eight
representative image pairs with the size of 256 × 256. For the
real-data experiments, the t2 cloudy Landsat 8 MS image was
captured by the Landsat 8 sensor on October 15, 2017, and
the parameters were the same as in the simulated experiments,
except that the cloud and shadow coverage was 34.51%.

1) Simulated Experiments in the Joint Processing of Thick
Cloud Removal and Resolution Improvement: In this section,
since there have been few studies of the joint processing of
thick cloud removal and resolution improvement, we focus
on comparing the three proposed methods, i.e., proposed-
HSS, proposed-ST, and proposed-HSTS. A group of simulated
experiment results with the size of 256 × 256 are displayed
in Fig. 9 in the red–green–blue band combination, where the
upper-right corner is a magnified display of the image inside
the red rectangle. From the fusion results, it can be seen that
all the methods can effectively remove the thick cloud and
improve the spatial structure information of the synthesized t2
(October 29, 2017) cloudy Landsat 8 MS image in Fig. 9(a).
In more detail, as shown in the t1 (September 29, 2016)
Sentinel-2 MS image in Fig. 9(d) and the reference image
in Fig. 9(h), the red rectangle points out one of the most
noticeable land-cover changes between t1 and t2, where the
white building next to the road does not exist at t1, but it
does at t2. Unfortunately, in the result of the proposed-ST
method obtained fusing the t2 cloudy Landsat 8 MS image
and the t1 cloudless Sentinel-2 MS image, in Fig. 9(f), the

white building is not seen, which confirms the inability of the
spatiotemporal fusion strategy to predict land-cover changes.
In contrast, the t2 (October 28, 2017) Sentinel-1 SAR image
contains the information of the white building, as shown
in Fig. 9(b) and (c). Thus, the proposed-HSS method fusing
the t2 cloudy Landsat 8 MS image and the t2 Sentinel-1
SAR image can effectively reconstruct the white building.
However, due to the difference in the imaging mechanisms,
the clear road next to the white building in the zoomed area
in Fig. 9(h) is unclear in the SAR image in Fig. 9(b) and (c),
resulting in an invisible road in the fusion result, as shown
in the yellow ellipse in Fig. 9(e). A similar situation can
be seen in the white building in the upper-left corner in
Fig. 9(e) and (h). The proposed-HSTS method fuses the t2
cloudy Landsat 8 MS image, the t2 Sentinel-1 SAR image,
and the t1 cloudless Sentinel-2 MS image. It integrates the
respective characteristics of the proposed-HSS and proposed-
ST methods, making full use of the complementary informa-
tion of the t2 SAR image and the t1 cloudless Sentinel-2 MS
image, and effectively reconstructs both the road and the white
building in the zoomed area in Fig. 9(g).

Table VI lists the quantitative evaluation results for the
simulated experiments in the joint processing f thick cloud
removal and resolution improvement, with an average of
eight groups, where the best performance for each index
is marked in bold. In Table VI, it can be seen that the
proposed-HSS method performs the worst in all the indices,
due to the difficulty of heterogeneous spatiospectral fusion.
The proposed-HSTS method performs slightly better than the
proposed-ST method in all the indices, expect SSIMG , which
shows the superiority of the heterogeneous spatiotemporal–
spectral fusion strategy.

2) Real-Data Experiments in the Joint Processing of Thick
Cloud Removal and Resolution Improvement: To further
compare the three proposed methods, a group of real-data
experiment results with the size of 256 × 256 are displayed
in Fig. 10 in the red–green–blue band combination, where the
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Fig. 9. Results for the simulated experiments in the joint processing of thick cloud removal and resolution improvement. (a) t2 cloudy Landsat 8 MS, (b) t2
Sentinel-1 SAR_VH, (c) t2 Sentinel-1 SAR_VV, (d) t1 Sentinel-2 MS, (e) Proposed-HSS, (f) Proposed-ST, (g) Proposed-HSTS, and (h) t2 Sentinel-2 MS
(reference).

Fig. 10. Results for the real-data experiments in the joint processing of thick cloud removal and resolution improvement. (a) t2 Cloudy Landsat 8 MS, (b) t2
Sentinel-1 SAR_VH, (c) t2 Sentinel-1 SAR_VV, (d) t1 Sentinel-2 MS, (e) Proposed-HSS, (f) Proposed-ST, (g) Proposed-HSTS, and (h) t2 Sentinel-2 MS
(reference).

upper-left corner is a magnified display of the image inside
the green rectangle. In the real-data experiments, the cloudy
image was not synthetic and was directly obtained from the
Landsat 8 sensor on October 15, 2017, and its cloud and
shadow coverage was 46.32%. The other dates were the same
as in the simulated experiments. In Fig. 10, it can be seen
that all the methods can remove all of the thick cloud in
the cloudy Landsat 8 MS image in Fig. 10(a) and effectively

enhance its spatial structure information. However, due to the
difficulty of information fusion in heterogeneous spatiospectral
fusion, the result of the proposed-HSS method contains severe
global spatial distortion, which is obvious in the lower-left
corner of Fig. 10(e). The bottleneck of spatiotemporal fusion
in the proposed-ST method means that it is unable to detect
the changed land covers between t1 and t2, as can be seen
by comparing the zoomed areas in Fig. 10(f) and (h). The
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proposed-HSTS method makes full use of the complementarity
of the proposed-HSS and proposed-ST methods. It not only
obtains a good result with less distortion, but it also effectively
reconstructs the changed land covers.

IV. CONCLUSION AND FUTURE PROSPECTS

In this article, for the first time, we have proposed a
deep residual cycle GAN-based heterogeneous integrated
fusion framework, which can simultaneously fuse the comple-
mentary spatial, temporal, and spectral information between
multisource heterogeneous observations and can achieve
heterogeneous spatiospectral fusion, spatiotemporal fusion,
and heterogeneous spatiotemporal–spectral fusion. From the
perspective of network design, the proposed method combines
a forward fusion part and a backward feedback part to simu-
late the imaging degradation process. The proposed network
preserves the spectral and temporal consistency between the
fusion result and the observed t2 LR MS image and the spatial
consistency between the fusion result and the t2 HR SAR
image and the t1 HR MS image. From the perspective of prac-
tical application, the proposed method can effectively relieve
the two bottlenecks of land-cover change and thick cloud
cover. Three experiments with multisensor images confirmed
that when there are no land-cover changes, the proposed-ST
method can obtain enough satisfactory results, but when there
are land-cover changes, the utilization of the SAR image
is essential, that is, when there are sufficient images, the
proposed-HSTS method is always the best choice.

In the future, to further improve the structural clarity of the
proposed-HSTS method in land-cover changed areas, it will
be of great significance to improve the network to adaptively
fuse input images. In this way, the network can extract more
information from the t2 Sentinel-1 SAR image in the land-
cover changed areas, while in other areas, the network can
extract more information from the t1 Sentinel-2 MS image.
Moreover, in the backward degradation part of the proposed
network, the proposed method only explicitly utilizes the
spatial degradation between the t2 LR MS and the t2 HR
MS images. Therefore, in the future, it will be feasible to
further explore the heterogeneous relationship model between
the SAR and optical images and the temporal relationship
model between MS images of different times and to embed
this into the network design to strengthen the restraint of the
backward part. Last but not least, it will be possible to extend
the proposed framework to more satellite images, such as HS
satellite images and fully polarized SAR images, and to time-
series image reconstruction.

REFERENCES

[1] Y. Zhang, “Understanding image fusion,” Photogram. Eng. Remote Sens,
vol. 70, no. 6, pp. 657–661, Jun. 2004.

[2] P. Sirguey, R. Mathieu, Y. Arnaud, M. M. Khan, and J. Chanussot,
“Improving MODIS spatial resolution for snow mapping using wavelet
fusion and ARSIS concept,” IEEE Geosci. Remote Sens. Lett., vol. 5,
no. 1, pp. 78–82, Jan. 2008.

[3] T. R. Martha, N. Kerle, C. J. van Westen, V. Jetten, and K. V. Kumar,
“Object-oriented analysis of multi-temporal panchromatic images for
creation of historical landslide inventories,” ISPRS J. Photogramm.
Remote Sens., vol. 67, pp. 105–119, Jan. 2012.

[4] J. He, J. Li, Q. Yuan, H. Shen, and L. Zhang, “Spectral response
function-guided deep optimization-driven network for spectral super-
resolution,” IEEE Trans. Neural Netw. Learn. Syst., early access,
Feb. 18, 2021, doi: 10.1109/TNNLS.2021.3056181.

[5] H. F. Shen, X. C. Meng, and L. P. Zhang, “An integrated framework
for the spatio-temporal-spectral fusion of remote sensing images,” IEEE
Trans. Geosci. Remote Sens., vol. 54, no. 12, pp. 7135–7148, Dec. 2016.

[6] H. Shen, M. Jiang, J. Li, Q. Yuan, W. Wei, and L. Zhang, “Spatial–
spectral fusion by combining deep learning and variational model,” IEEE
Trans. Geosci. Remote Sens., vol. 57, no. 8, pp. 6169–6181, Aug. 2019.

[7] X. Meng, H. Shen, H. Li, L. Zhang, and R. Fu, “Review of the
pansharpening methods for remote sensing images based on the idea of
meta-analysis: Practical discussion and challenges,” Inf. Fusion, vol. 46,
pp. 102–113, Mar. 2019.

[8] W. Carper, T. Lillesand, and R. Kiefer, “The use of intensity-hue-
saturation transformations for merging SPOT panchromatic and mul-
tispectral image data,” Photogramm. Eng. Remote Sens., vol. 56, no. 4,
pp. 459–467, Apr. 2004.

[9] J. Choi, K. Yu, and Y. Kim, “A new adaptive component-substitution-
based satellite image fusion by using partial replacement,” IEEE Trans.
Geosci. Remote Sens., vol. 49, no. 1, pp. 295–309, Jan. 2011.

[10] B. Aiazzi, L. Alparone, S. Baronti, A. Garzelli, and M. Selva, “MTF-
tailored multiscale fusion of high-resolution MS and Pan imagery,”
Photogramm. Eng. Remote Sens., vol. 72, no. 5, pp. 591–596, May 2006.

[11] H. R. Shahdoosti and N. Javaheri, “Pansharpening of clustered MS and
Pan images considering mixed pixels,” IEEE Trans. Geosci. Remote.
Lett., vol. 14, no. 6, pp. 826–830, Jun. 2017.

[12] L. Zhang, H. Shen, W. Gong, and H. Zhang, “Adjustable model-
based fusion method for multispectral and panchromatic images,” IEEE
Trans. Syst., Man, Cybern. B, Cybern., vol. 42, no. 6, pp. 1693–1704,
Dec. 2012.

[13] C. Jiang, H. Zhang, H. Shen, and L. Zhang, “Two-step sparse coding for
the Pan-sharpening of remote sensing images,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 7, no. 5, pp. 1792–1805, May 2014.

[14] Y. Wei, Q. Yuan, H. Shen, and L. Zhang, “Boosting the accuracy of
multispectral image pansharpening by learning a deep residual network,”
IEEE Geosci. Remote Sens. Lett., vol. 14, no. 10, pp. 1795–1799,
Oct. 2017.

[15] M. Jiang, H. Shen, J. Li, Q. Yuan, and L. Zhang, “A differential
information residual convolutional neural network for pansharpening,”
ISPRS J. Photogramm. Remote Sens., vol. 163, pp. 257–271, Jun. 2020.

[16] L. Alparone, S. Baronti, A. Garzelli, and F. Nencini, “Landsat ETM+
and SAR image fusion based on generalized intensity modulation,” IEEE
Trans. Geosci. Remote Sens., vol. 42, no. 12, pp. 2832–2839, Dec. 2004.

[17] S. Chen, R. Zhang, H. Su, J. Tian, and J. Xia, “SAR and multispectral
image fusion using generalized IHS transform based on àtrous wavelet
and EMD decompositions,” IEEE Sensors J., vol. 10, no. 3, pp. 737–745,
Mar. 2010.

[18] J. Wu, Q. Cheng, H. Li, S. Li, X. Guan, and H. Shen, “Spatiotemporal
fusion with only two remote sensing images as input,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 13, pp. 6206–6219,
Oct. 2020.

[19] J. Li, Y. Li, L. He, J. Chen, and A. Plaza, “Spatio-temporal fusion for
remote sensing data: An overview and new benchmark,” Sci. China Inf.
Sci., vol. 63, no. 4, Apr. 2020, Art. no. 140301.

[20] F. Gao, J. Masek, M. Schwaller, and F. Hall, “On the blending of
the Landsat and MODIS surface reflectance: Predicting daily Landsat
surface reflectance,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 8,
pp. 2207–2218, Aug. 2006.

[21] Q. Cheng, H. Liu, H. Shen, P. Wu, and L. Zhang, “A spatial and temporal
nonlocal filter-based data fusion method,” IEEE Trans. Geosci. Remote
Sens., vol. 55, no. 8, pp. 4476–4488, Aug. 2017.

[22] B. Zhukov, D. Oertel, F. Lanzl, and G. Reinhackel, “Unmixing-based
multisensor multiresolution image fusion,” IEEE Trans. Geosci. Remote
Sens., vol. 37, no. 3, pp. 1212–1226, May 1999.

[23] B. Huang and H. Zhang, “Spatio-temporal reflectance fusion via unmix-
ing: Accounting for both phenological and land-cover changes,” Int. J.
Remote Sens., vol. 35, no. 16, pp. 6213–6233, Aug. 2014.

[24] A. Li, Y. Bo, Y. Zhu, P. Guo, J. Bi, and Y. He, “Blending multi-resolution
satellite sea surface temperature (SST) products using Bayesian max-
imum entropy method,” Remote Sens. Environ., vol. 135, no. 4,
pp. 52–63, Aug. 2013.

[25] J. Xue, Y. Leung, and T. Fung, “A Bayesian data fusion approach to
spatio-temporal fusion of remotely sensed images,” Remote Sens., vol. 9,
no. 12, p. 1310, Dec. 2017.

Authorized licensed use limited to: Wuhan University. Downloaded on November 15,2022 at 09:38:09 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TNNLS.2021.3056181


JIANG et al.: DEEP-LEARNING-BASED SPATIO-TEMPORAL-SPECTRAL INTEGRATED FUSION 5410915

[26] H. Song, Q. Liu, G. Wang, L. Hang, and B. Huang, “Spatiotemporal
satellite image fusion using deep convolutional neural networks,” IEEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 11, no. 3,
pp. 821–829, Mar. 2018.

[27] Y. Li, J. Li, L. He, J. Chen, and A. Plaza, “A new sensor bias-driven
spatio-temporal fusion model based on convolutional neural networks,”
Sci. China Inf. Sci., vol. 63, no. 4, Mar. 2020, Art. no. 140302.

[28] H. Shen, “Integrated fusion method for multiple temporal-spatial–
spectral images,” in Proc. 22nd Congr. ISPRS, 2012, pp. 407–410.

[29] B. Huang, H. Zhang, H. Song, J. Wang, and C. Song, “Unified fusion
of remote-sensing imagery: Generating simultaneously high-resolution
synthetic spatial–temporal–spectral Earth observations,” Remote Sens.
Lett., vol. 4, no. 6, pp. 561–569, Jun. 2013.

[30] C. Zhao, X. Gao, W. J. Emery, Y. Wang, and J. Li, “An inte-
grated spatio–spectral–temporal sparse representation method for fusing
remote-sensing images with different resolutions,” IEEE Trans. Geosci.
Remote Sens., vol. 56, no. 6, pp. 3358–3370, Jun. 2018.

[31] D. Fasbender, V. Obsomer, J. Radoux, P. Bogaert, and P. Defourny,
“Bayesian data fusion: Spatial and temporal applications,” in Proc.
Int. Workshop Anal. Multi-Temporal Remote Sens. Images, Jul. 2007,
pp. 1–6.

[32] I. Goodfellow et al., “Generative adversarial nets,” in Proc. NIPS, 2014,
pp. 2672–2680.

[33] J. Zhu, T. Park, P. Isola, and A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proc. IEEE
Int. Conf. Comput. Vis., Oct. 2017, pp. 2223–2232.

[34] J. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving
for simplicity: The all convolutional net,” in Proc. Workshop Int. Conf.
Learn. Represent., 2015, pp. 1–14.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 770–778.

[36] D. Kiku, Y. Monno, M. Tanaka, and M. Okutomi, “Residual interpolation
for color image demosaicking,” in Proc. IEEE Int. Conf. Image Process.,
Sep. 2013, pp. 2304–2308.

[37] R. Timofte, V. De Smet, and L. Van Gool, “A+: Adjusted anchored
neighborhood regression for fast super-resolution,” in Proc. IEEE Asian
Conf. Comput. Vis., Nov. 2014, pp. 111–126.

[38] J. Gao, Q. Yuan, J. Li, H. Zhang, and X. Su, “Cloud removal with fusion
of high resolution optical and SAR images using generative adversarial
networks,” Remote Sens., vol. 12, no. 1, p. 191, Jan. 2020.

[39] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in Proc. Int. Conf. Med.
Image Comput. Comput.-Assist. Intervent., 2015, pp. 234–241.

[40] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” in
Proc. Int. Conf. Learn. Represent., 2016, pp. 1–16.

[41] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 5967–5976.

[42] J. Ma, W. Yu, P. Liang, C. Li, and J. Jiang, “FusionGAN: A generative
adversarial network for infrared and visible image fusion,” Inf. Fusion,
vol. 48, pp. 11–26, Aug. 2019.

[43] J. Qi, J. Du, S. M. Siniscalchi, X. Ma, and C.-H. Lee, “On mean absolute
error for deep neural network based vector-to-vector regression,” IEEE
Signal Process. Lett., vol. 27, pp. 1485–1489, 2020.

[44] J. Pan et al., “Physics-based generative adversarial models for image
restoration and beyond,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43,
no. 7, pp. 2449–2462, Jul. 2021.

[45] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimiza-
tion,” in Proc. Int. Conf. Learn. Represent., 2015, pp. 1–41.

[46] G. Vivone et al., “A critical comparison among pansharpening
algorithms,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5,
pp. 2565–2586, May 2015.

[47] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[48] S. Rahmani, M. Strait, D. Merkurjev, M. Moeller, and T. Wittman,
“An adaptive IHS Pan-sharpening method,” IEEE Geosci. Remote Sens.
Lett., vol. 7, no. 4, pp. 746–750, Oct. 2010.

[49] Z. Shao, J. Cai, P. Fu, L. Hu, and T. Liu, “Deep learning-based fusion
of Landsat-8 and Sentinel-2 images for a harmonized surface reflectance
product,” Remote Sens. Environ., vol. 235, Dec. 2019, Art. no. 111425.

[50] J. Inglada et al., “Assessment of an operational system for crop type map
production using high temporal and spatial resolution satellite optical
imagery,” Remote Sens., vol. 7, no. 9, pp. 12356–12379, Sep. 2015.

[51] G. Scarpa, M. Gargiulo, A. Mazza, and R. Gaetano, “A CNN-based
fusion method for feature extraction from sentinel data,” Remote Sens.,
vol. 10, no. 2, p. 236, Feb. 2018.

[52] C. Grohnfeldi, M. Schmitt, and X. Zhu, “A conditional generative
adversarial network to fuse SAR and multispectral optical data for cloud
removal from Sentinel-2 images,” in Proc. IEEE Int. Geosci. Remote
Sens. Symp. (IGARSS), Jul. 2018, pp. 1726–1729.

[53] H. Shen, J. Wu, Q. Cheng, M. Aihemaiti, C. Zhang, and Z. Li,
“A spatiotemporal fusion based cloud removal method for remote
sensing images with land cover changes,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 12, no. 3, pp. 862–874, Mar. 2019.

[54] Q. Zhang, Q. Yuan, C. Zeng, X. Li, and Y. Wei, “Missing data
reconstruction in remote sensing image with a unified spatial-temporal-
spectral deep convolutional neural network,” IEEE Trans. Geosci.
Remote Sens., vol. 56, no. 8, pp. 4274–4288, Aug. 2018.

Menghui Jiang (Graduate Student Member, IEEE)
received the B.S. degree in geographical science
and the Ph.D. degree in cartography and geographic
information engineering from Wuhan University,
Wuhan, China, in 2017 and 2022, respectively.

Her research interests include image data fusion,
quality improvement, remote sensing image process-
ing, and deep learning.

Huanfeng Shen (Senior Member, IEEE) received
the B.S. degree in surveying and mapping engi-
neering and the Ph.D. degree in photogrammetry
and remote sensing from Wuhan University, Wuhan,
China, in 2002 and 2007, respectively.

He is currently a Distinguished Professor with
Wuhan University, where he serves as the Dean with
the School of Resource and Environmental Sciences.
He was or is the Principal Investigator (PI) of two
projects supported by the National Key Research
and Development Program of China and six projects

supported by the National Natural Science Foundation of China. He has
authored or coauthored more than 150 peer-reviewed international journal
articles, where over 60 appeared in IEEE journals, and published four
books as a Chief Editor. His research interests include remote-sensing image
processing, multisource data fusion, and intelligent environmental sensing.

Dr. Shen is a fellow of the Institution of Engineering and Technology
(IET), an Education Committee Member of the Chinese Society for Geodesy
Photogrammetry and Cartography, and a Theory Committee Member of the
Chinese Society for Geospatial Information Society. He was a recipient of
the First Prize in Natural Science Award of Hubei Province in 2011, the First
Prize in Nature Scientific Award of China’s Ministry of Education in 2015,
and the First Prize in Scientific and Technological Progress Award of Chinese
Society for Geodesy Photogrammetry and Cartography in 2017. He is also
a Senior Regional Editor of the Journal of Applied Remote Sensing and an
Associate Editor of Geography and Geo-Information Science and Journal of
Remote Sensing.

Jie Li (Member, IEEE) received the B.S. degree in
sciences and techniques of remote sensing and the
Ph.D. degree in photogrammetry and remote sensing
from Wuhan University, Wuhan, China, in 2011 and
2016.

He is currently an Associate Professor with the
School of Geodesy and Geomatics, Wuhan Univer-
sity. His research interests include image quality
improvement, image superresolution reconstruction,
data fusion, remote sensing image processing, sparse
representation, and deep learning.

Authorized licensed use limited to: Wuhan University. Downloaded on November 15,2022 at 09:38:09 UTC from IEEE Xplore.  Restrictions apply. 


