
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 19, 2022 8002805

Block Adjustment-Based Radiometric Normalization
by Considering Global and Local Differences

Xiaoshuang Zhang , Ruitao Feng, Associate Member, IEEE, Xinghua Li , Member, IEEE,

Huanfeng Shen , Senior Member, IEEE, and Zhaoxiang Yuan

Abstract— For radiometric normalization (RN) of multiple
remote sensing (MRS) images within large-scale coverage, the
traditional methods ignore the error accumulation and adaptive
allocation of cumulative errors caused by the transfer paths
in the classical one-after-another pipeline. To this end, a block
adjustment-based RN method of MRS images is proposed by
considering the global and local radiometric differences (RDs)
in this letter. First, the block adjustment-based global RN is
conducted to eliminate the global differences of MRS images. This
step is independent of transfer paths so that it breaks through
the corresponding error accumulation and uneven distribution
in the one-after-another pipeline. Second, two local strategies
based on block adjustment and edge optimization are further
adopted to remove the local residual RDs. In the experiments,
it demonstrates that the proposed method can obtain MRS images
with a balanced and appealing visual effect, which outperforms
the moment matching (MM) method and the popular ENVI
software.

Index Terms— Block adjustment, local difference, moment
matching (MM), radiometric normalization (RN), remote sensing
image.

I. INTRODUCTION

W ITH the successful launch of remote sensing platforms,
such as GeoEye series, WorldView series, and Planet,

high-resolution images have become more and more widely
used. However, high-resolution images have a limited range of
coverage; thus, the acquisition of large-area images can only
be achieved by mosaicking multiple remote sensing (MRS)
images. Remote sensing images are usually acquired at differ-
ent times and different angles, resulting in obvious radiometric
differences (RDs) [1]. The influence factor mainly includes
the solar incident angle, atmosphere, illumination condition,
and so on [2]. Fortunately, radiometric normalization (RN)
is an effective approach to eliminate the RDs among MRS
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images. In a narrow sense, RN is the radiometric adjustment
between multiple images, in order to solve the problem of
significant difference in terms of radiation of multiple images.
In the literature, RN is also called radiometric balancing, tonal
adjustment, or tonal correction [3].

In the last decades, a great number of researches on RN
of MRS images have been conducted [4]–[6], which can
be classified into three categories [3]: global models, local
models, and combined models. Global models represent the
radiometric mapping relationship between the source and
target images by a global linear or nonlinear transform,
which are applicable to images with the overall consistent
RDs. Global models can be further grouped into pixel-to-
pixel methods and region-to-region methods. Pixel-to-pixel
methods perform well for images with overall consistent
RDs and high registration accuracy. Linear regression [7] and
least mean square-based transformation [8] are the typical
methods. Region-to-region methods are suitable for images
with overall consistent RDs but do not require high accuracy
of image registration. For instance, Sun et al. [9] eliminated
RDs between images by the Wallis transform. Xie et al. [10]
proposed a guided initial solution of the histogram extreme-
point matching strategy for global consistency optimization to
eliminate RDs. Xia et al. [11] proposed a closed-form solu-
tion for multiview color correction with gradient preservation.
Li et al. [12] proposed a grid model-based global color
correction method. Global models ignore the local RDs to
some extent, but local models can solve this problem according
to the regional features. For example, Li et al. [1] proposed
a local moment matching (MM) method, which established
different MM models in different regions. Li et al. [13]
coarsely aligned the color tone between reference images and
images to be corrected and removed RDs by least-squares RN.
The combined models integrate the advantages of global and
local models. For example, Pan et al. [14] proposed a global-
to-local network-based RN to eliminate the RDs, in which
the linear model is used globally and the nonlinear model
is adopted locally. Yu et al. [2] proposed a global-to-local
adaptive RN method, which can correct multiple types of
remote sensing images with flexible process flow.

In a word, the traditional methods ignore the cumulative
error and adaptive allocation of cumulative errors caused by
transfer paths in the correction process. To solve this problem,
this letter proposes an RN method of MRS images based on
block adjustment considering local RDs (BARN). The main
contributions of our study are summarized as follows.
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1) Inspired by the block adjustment of bundle aerial trian-
gulation, the proposed method simultaneously takes all
images into account to calculate the correction parame-
ters of RDs. The calculation is free from the influence of
the processing order of MRS images. In other words, it is
independent of the transfer paths with the inexistence of
cumulative error.

2) The proposed method employs combined strategies to
eliminate the RDs of MRS images globally and locally.
After the global RDs are eliminated, the local residual
RDs are further corrected by two local approaches. In the
framework, the satisfactory result of an RN is achieved.

The rest of this letter is organized as follows. In Section II,
the proposed method is introduced. The experiments are shown
in Section III, followed by the conclusions in Section IV.

II. METHOD

Based on the bundle aerial triangulation of block adjust-
ment, this letter proposes to eliminate the RDs from global
to local. As shown in Fig. 1, first, the block-adjustment-based
RN eliminates the global RDs and alleviates the error accu-
mulation and adaptive allocation of cumulative errors caused
by transfer paths; second, two local strategies eliminate the
residual discontinuity of the local features and edge artifacts.

A. Block-Adjustment-Based Global RN

Selecting the reference image is an important step in most
RN methods. The basic idea is to search the representative
image with the global radiometric characteristics shared by
the majority of images to be corrected. In order to estimate
the tones globally, the mean image brightness is applied,
which can reflect the visualization of an image. All images
are converted from RGB color space to HSL color space, and
the brightness layer of each image is extracted from the HSL
color space. Then, the images corresponding to the mode of
the mean brightness can be selected as the reference images.

In order to eliminate the global RDs and alleviate the error
accumulation and adaptive allocation of cumulative errors
caused by transfer paths, the global RN is adopted. This
method mainly includes three steps: information statistics
of overlapped region, block adjustment modeling, and MM
correction.

Step 1 (Information Statistics of Overlapped Area): In the
data set, there are p images and q overlapping pairs. Count
the number of corresponding pixels in the overlapped region,
and calculate the pixel mean and standard deviation of each
band.

Step 2 (Block Adjustment Modeling): In this step, all the
images are taken into account to model the block adjustment.
We use the known conditions of the overlapped areas of
adjacent images and the reference image to construct an error
equation set, employ weights to scientifically evaluate the role
of each overlapped area, and solve the tone compensation
parameters in the block adjustment model with the help of
least squares. This step is divided into five steps.

Step 2.1: Construct the matrix equation set by overlapped
regions.

Assuming that the adjacent images have the same radiomet-
ric tone in the overlapped area, the statistics information of the
radiometric tone should be the same. Taking the r th overlapped
region as an example, it is formed by overlapping the adjacent
x th image and yth image, which could be described in the
following equation:

μ0
r + μx = μ1

r + μy (1)

where μ0
r and μ1

r represent the pixel mean of the x th and
yth images in the r th overlapped pair, respectively, μx and
μy represent the unique pixel mean compensation parameters
of the x th and yth images, respectively. Equation (1) can be
written as�

br,0 br,1 . . . br,p−1
��

μ0 μ1 . . . μp−1
�T

= �
μ1

r − μ0
r

�
(2)

where
�

br,0 br,1 . . . br,p−1
�

is composed of br,i ; when i = x ,
br.i = 1; when i = y, br.i = −1; and in other cases, br.i = 0.
Then, for the q pairs of overlapped areas, q equations, such
as in (2), can be listed⎛
⎜⎜⎝

b0,0 b0,1 . . . b0,p−1

b1,0 b1,1 . . . b1,p−1

. . . . . . . . . . . .
bq−1,0 bq−1,1 . . . bq−1,p−1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

μ0

μ1

. . .
μp−1

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

μ1
0 − μ0

0
μ1

1 − μ0
1

. . .
μ1

q−1 − μ0
q−1

⎞
⎟⎟⎠. (3)

Equation (3) can be written as AB Xμ = L B .
Step 2.2: Construct the matrix equation set by a reference

image.
Assuming that the difference of actual mean between the

reference image and the ideal mean is small or almost zero,
the sth image is a reference image, which could be described�

cs,0 cs,1 . . . cs,p−1
��

μ0 μ1 . . . μp−1
�T = (0)

(4)

where
�

cs,0 cs,1 . . . cs,p−1
�

is composed of cs, j ; when j = s,
cs, j = 1; and in other cases, cs, j = 0. Suppose that t reference
images are selected from the p images, and the equation sets
are listed⎛
⎜⎜⎝

c0,0 c0,1 . . . c0,p−1

c1,0 c1,1 . . . c1,p−1

. . . . . . . . . . . .
ct−1,0 ct−1,1 . . . ct−1,p−1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

μ0

μ1

. . .
μp−1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
. . .
0

⎞
⎟⎟⎠.

(5)

Equation (5) can be written as AC Xμ = LC .
Step 2.3: Construct the error equation set.
Unite the matrix equation set by overlapped areas and

matrix equation set by reference image, and get AXμ = L,
where A = �

AT
B AT

C

�T
and L = �

LT
B LT

C

�T
.

Step 2.4: Construct the weight matrix.
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Fig. 1. Flowchart of the proposed method. The block-adjustment-based global RN module is the global model, which includes two core processes: the
selection of the reference image and the construction of the block adjustment model. The block-adjustment-based local RN and local edge optimization strategy
module contains two local models.

To determine the effect of each pair of overlapped areas,
a weight matrix P is constructed

P =



W O
O E

�
(6)

wi = ni

�
q−1
j=0

n j (7)

where O is a zero matrix, E is an identity matrix of order
(t × t), W is a diagonal matrix composed of wii , i ∈ [0, q − 1],
and ni represents the number of pixels in the i th overlapped
area.

Step 2.5: Solve the compensation parameters.
Use the least squares to solve the mean compensation

parameters as follows:
Xμ = �

AT P A
�−1

AT P L . (8)

Similarly, standard deviation compensation parameters can
be obtained according to Step 2⎧⎨

⎩
Xμ =

�
μ0 μ1 . . . μp−1

�
Xδ =

�
δ0 δ1 . . . δp−1

� (9)

where Xμ and Xδ represent the compensation parameters of
the mean and standard deviation of p images, respectively.

Step 3 (MM correction): MM is employed to correct the
target image. Supposing that the target image h intersects with
the image g0, g1,…, gnum−1 in the overlapped areas I0, I1, … ,
Inum−1, num represents the number of images overlapped with
the image h. Then, for the image adjacent to the target image,
the ideal values of pixel standard deviation and mean of the
overlapped area are�

δi
ref = δ

gi
Ii

+ δgi

μi
ref = μ

gi
Ii

+ μgi

(10)

where δi
ref and μi

ref represent the ideal standard deviation and
mean of the image gi in the overlapped area Ii , respectively,

δgi and μgi represent the compensation parameters of stan-
dard deviation and mean of image gi , respectively, and δ

gi
Ii

and
μ

gi
Ii

represent the actual values of the standard deviation and
mean of the image gi in the overlapped area Ii , respectively.

For each overlapped area Ii of the target image h, the weight
wi is

wi = ni

�
num−1

j=0

n j (11)

where ni represents the number of pixels in the overlapped
area. Therefore, for the target image h, the reference standard
deviation δref and reference mean μref are⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
δref =

num−1
i=0

�
δi

ref × wi
�

μref =
num−1

i=0

�
μi

ref × wi
�
.

(12)

The target standard deviation and target mean of the target
image h are ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
δdst =

num−1
i=0

�
δh

Ii
× wi

�

μdst =
num−1

i=0

�
μh

Ii
× wi

� (13)

where δh
Ii

and μh
Ii

represent the actual values of the standard
deviation and mean of the image h in the overlapped area Ii ,
respectively. Then, MM is applied to correct the target image
h. For all target images, the correction is carried out according
to Step 3.

B. Block-Adjustment-Based Local RN and Local Edge
Optimization Strategy

In order to solve the tone discontinuity of local features,
a local RN method based on block adjustment is proposed.
This method mainly includes four steps: image coarse classi-
fication, information statistics of overlapped area, block adjust-
ment modeling, and MM correction. Our RN is applied to the
digital number (DN) values of remote sensing images. DN val-
ues are converted first to normalized vegetation index (NDVI)
for each image. Then, the images are roughly divided into four
categories according to NDVI: −1 ≤ NDVI < 0, 0 ≤ NDVI <
0.33, 0.33 ≤ NDVI < 0.66, and 0.66 ≤ NDVI ≤ 1. Among
them, the negative value of NDVI means that the ground cover
is cloud, water, snow, and so on, and the nonnegative values
are equally divided. Every category is separately corrected
in a band-by-band way based on block adjustment as in
Section II-A.

In order to further solve the artifacts of the local water
edge, a local edge optimization strategy is proposed. This
method essentially constructs a cumulative error allocation
strategy around the water edge. As shown in Fig. 2, the red
line represents the boundary between local water features and
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Fig. 2. Local edge optimization.

nonwater features in the image. The local edge optimization
strategy mainly includes two steps.

Step 1 (Buffer Setting):
Taking the red line as the boundary and taking the same

size area on each side as a buffer, the buffer is divided into
2n parts, numbered 0, 1, …, 2n−1. The outermost areas 0
and 2n−1 on both sides are set as the reference for the inner
area, and RN will be performed on the inner 2n−2 areas. The
difference μdif between means and the difference δdif between
standard deviations of area 0 and area 2n−1 are as follows:�

μdif = μ2n−1 − μ0

δdif = δ2n−1 − δ0
(14)

where μi and δi represent the pixel mean and standard
deviation of area i , respectively. Then, the interval mean μgap

and interval standard deviation δgap are�
μgap = μdif/(2n − 2)

δgap = δdif/(2n − 2).
(15)

Step 2 (MM correction):
For the inner 2n−2 target areas, the reference mean and

standard deviation are solved as follows:�
μ�

i = μi + i × μgap

δ�
i = δi + i × δgap

(16)

where i represents the label of the inner area, i ∈ [1, 2n − 2],
μi and δi represent the mean and standard deviation of the
inner area i , respectively, and μ�

i and δ�
i represent the reference

mean and reference standard deviation of the inner area i ,
respectively. The RDs of the inner 2n−2 areas are corrected
with MM.

Through such a global-to-local RN, we have completed the
elimination of the RDs of MRS images.

III. EXPERIMENTAL RESULTS AND ANALYSIS

We selected two data sets from Landsat-8 OLI. The
four, three, and two bands are selected as experimental
data. The first data set (15 images) covers Central China
from 2016 to 2018, and the second data set (12 images) covers
North China from 2017 to 2019.

In order to further evaluate the proposed method, the RN
module of ENVI IDL Version 5.3 (histogram matching) and
MM with the one-after-another pipeline were considered as
the comparison methods. For the three methods, the reference
image is the same. For convenience, the proposed method,
ENVI method, and MM with the one-after-another pipeline
are referred to as “BARN,” “ENVI,” and “MM,” respectively.

Fig. 3. Result comparisons of the first data set. (a) Original. (b) MM.
(c) ENVI. (d) BARN.

Fig. 4. Detailed comparisons of Fig. 3. (a) Original. (b) MM. (c) ENVI.
(d) BARN.

A. Visual Assessments

There are obvious RDs between adjacent images in the
two data sets. Fig. 3 shows the results of the first data set.
It can be clearly seen that the results of the proposed method
are visually seamless and consistent. The result of MM was
enhanced, but there are obvious RDs between some adjacent
images. This is because MM deeply depends on the transfer
paths. The ENVI results are relatively poor. Fig. 4 shows the
details in the red box shown in Fig. 3. It is obvious that the
proposed method is superior to others. Fig. 5 shows the results
of the second data set. The results of MM are good, but those
of the proposed method are slightly better. Both BARN and
MM are applicable to images with global RDs. The ENVI
results are the worst. Fig. 6 shows the details in the red box
shown in Fig. 5. In general, BARN can obtain MRS images
with a balanced and appealing visual effect, which achieves
the best results compared with MM and ENVI.

B. Quantitative Analysis

To further evaluate the proposed method objectively, two
metrics were used to evaluate the RDs between adjacent
images, including the absolute differences of the mean and
standard deviation of the overlapped areas [15], as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
Dμ =

q
i=0

|�Mi |/q

Dδ =
q

i=0

|�Si |/q

(17)

where low values indicated that small RDs exist between
MRS images. Dμ is the absolute difference of the mean of the
overlapped areas of the images, Dδ is the absolute difference
of the standard deviation of the overlapped areas of the images,
q indicates that there are q overlapping pairs, and �Mi and
�Si represent the difference of the mean and the standard
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Fig. 5. Result comparisons of the second data set. (a) Original. (b) MM.
(c) ENVI. (d) BARN.

TABLE I

ABSOLUTE DIFFERENCE OF MEAN AND STANDARD DEVIATION BETWEEN

OVERLAPPED AREAS WITH DIFFERENT METHODS

deviation of the i th overlapping area, respectively. Table I
shows the absolute differences of the mean and standard
deviation for the same position between the original images
and the normalized images; they indicate the differences in the
statistical distribution.

In Table I, the bold numbers are the minimum value of each
row, indicating that the results of the corresponding method
have the smallest RDs. In addition, since ENVI cannot give
results that are not stitched in the intermediate process, the
metrics cannot be calculated. It can be seen that the RDs of
the original images are large, which has been improved by
different methods. The proposed method has the best results.
It can be seen from the first data set that the values of the
proposed method and MM have greatly decreased, indicating
that they perform well. The proposed method achieved the best
results. For the second data set, the values of the proposed
method and MM are relatively close, indicating that the
two methods have a good effect of eliminating the overall
RDs. The values of the proposed method are slightly lower,
indicating that the results of the proposed method are better.
The quantitative evaluation result is consistent with the visual
evaluation.

Fig. 6. Detailed comparisons of Fig. 5. (a) Original. (b) MM. (c) ENVI.
(d) BARN.

IV. CONCLUSION

In this letter, we proposed a block adjustment-based RN
method of MRS images by considering global and local RDs.
Under the framework of the combined model, BARN solves
the problem of error accumulation and adaptive allocation of
cumulative errors caused by the transfer paths in the classical
one-after-another pipeline. The experiment confirms that the
proposed method can obtain the visual consistency of MRS
images, which is promising for the large-scale application of
remote sensing images. In the future, we will further improve
efficiency and carry out more tests.
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