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Abstract— Surface ozone (O3) pollution is a severe environ-
mental problem that endangers human health. It is necessary to
obtain high spatiotemporal resolution O3 data to provide support
for pollution monitoring and prevention. For this purpose,
this study makes comprehensive use of remote sensing data,
reanalysis data, and ground station observations and develops
an enhanced geographically and temporally weighted neural
network (EGTWNN) model to acquire high spatial and temporal
resolutions of O3 data. The EGTWNN model is nested by two
neural networks (NNs). The first NN automatically learns the
spatiotemporal proximity relationship to obtain spatiotemporal
weights for the samples, and the spatiotemporal weights are
then inputted into the second NN to conduct weighted model-
ing of the relationship between O3 and influencing variables.
The contribution of the proposed model is that the first NN
replaces the traditional empirical weighting method and repre-
sents the spatiotemporal proximity relationship more accurately
to improve estimation accuracy. Results indicate that the cross-
validation R2 and the root mean square error (RMSE) of
EGTWNN are 0.81 and 21.24 μg/m3, respectively, which are
increased by 0.02 and decreased by ∼1 μg/m3 relative to those of
the traditional empirical weighting method-based geographically
and temporally weighted NN model. The results also show
that, compared with the geographically and temporally weighted
regression model, the proposed model achieves superior perfor-
mance. In addition, the spatiotemporal weights obtained by the
first NN of EGTWNN are highly consistent with those obtained
by the traditional empirical weighting method, indicating that
the results of NNs are highly interpretable.

Index Terms— Geographically and temporally weighted neural
network (NN), nested NN modeling, ozone remote sensing.

I. INTRODUCTION

SURFACE ozone (O3) pollution is a common environ-
mental problem faced by mankind [1]. Transient or
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prolonged exposure to high levels of O3 can cause prema-
ture death, respiratory diseases (e.g., asthma and respira-
tory infections), and cardiovascular diseases (e.g., stroke and
arrhythmias) in humans [2]. In addition, O3 is an important
greenhouse gas because tropospheric O3 can absorb and
release 8–10 μm of Earth’s infrared radiation [3], which
can exert an important influence on climate change. As a
result, O3 pollution has a considerable impact on human
health, climate change, and the ecosystem [4]–[6], and effec-
tive measures must be implemented for the monitoring of
O3 pollution.

Compared with ground monitoring stations, satellite remote
sensing is advantageous due to its broad and long-term obser-
vations, and it has been increasingly used in the monitoring
of surface O3 pollution [7]–[9]. Researchers usually utilize
statistical models and machine learning to construct the rela-
tionships between satellite-observed products (e.g., total O3

products, O3 profile products, and O3 precursor products)
and surface O3 concentration, so as to obtain large-scale O3

data. These models mainly include geographically weighted
regression (GWR) [10], land-use regression (LUR) [11], ran-
dom forest (RF) [12], extreme gradient boosting (XGBoost)
[13], [14], the RF-generalized additive model (RF-GAM) [15],
the RF-based data-fusion model [16], the light gradient boost-
ing machine (Light-GBM) [17], [18], extremely randomized
trees (ETs) [19], the neural network (NN) [20], [21], the
deep forest (DF) [22], the self-adaptive geospatially local
scheme based on categorical boosting (SGLBoost) [23], and
so on. These models have important applications in the remote
sensing estimation of surface O3.

The aforementioned models can generally be divided into
two categories. The first category is the global model, which
establishes the relationship between variables by using con-
stant coefficients but cannot consider the spatiotemporal het-
erogeneity of the relationship. The second category is the
spatiotemporal model that can consider the spatiotemporal
heterogeneity of the relationship between variables [24], such
as GWR and SGLBoost (the others are global models). Both
the two categories of models can achieve fruitful applications,
but the second one may produce relatively better results on
the local scale. Thereinto, the GWR model and its exten-
sion model, namely, geographically and temporally weighted
regression (GTWR), are the most representative spatiotempo-
ral models, which have been widely applied in the remote
sensing estimation of atmospheric parameters, such as fine
particulate matter (PM2.5) [25]–[27].
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GWR and GTWR models assume that samples with closer
distances contribute more to the modeling [28], [29], and the
weights of the samples are determined based on the spatiotem-
poral weighting of spatial and temporal distances. However,
the spatiotemporal weighting method is often empirical, and
two problems still exist. First, temporal and spatial distances
have many expressions (e.g., the Euclidean distance and the
Manhattan distance), so incorporating all expressions of dis-
tances into the empirical spatiotemporal weighting method is
difficult, that is, establishing a unified expression of temporal
and spatial distances is impossible. Second, it is still worth
further discussing whether the weights obtained are optimal
when the empirical formula (e.g., the Gaussian function) is
used for spatiotemporal weighting.

Fortunately, NNs can incorporate all forms of distances
for a unified expression and can automatically learn the best
expression between spatial distances, temporal distances, and
spatiotemporal weights. Meanwhile, NNs have strong non-
linear expression ability [30], [31] and can effectively mine
the internal association between spatial distances, temporal
distances, and spatiotemporal weights, possibly resulting in
better results than those of the empirical weighting method.
Therefore, it may be a promising idea to replace the empirical
spatiotemporal weighting method in GWR and GTWR models
with an NN.

In addition, aiming at the problem that GWR and
GTWR models cannot address the nonlinear relationships
between variables due to local linear modeling, our previ-
ous study [32] developed a geographically and temporally
weighted NN (GTWNN) model, which is essentially an NN
that integrates spatiotemporal weighting into NN modeling.
Similarly, the spatiotemporal weighting method is empirical,
and it is difficult to achieve the optimal expression between
spatiotemporal weights, and spatial and temporal distances.

Therefore, this study focuses on the development of the
enhanced GTWNN (EGTWNN) model, in which an NN is
used to replace the empirical spatiotemporal weighting method
of the previous GTWNN model. At the same time, this
study also develops an enhanced GTWR (EGTWR) model,
in which the empirical spatiotemporal weighting method of the
original GTWR model is replaced by an NN. The proposed
EGTWNN and EGTWR models can automatically learn the
optimal expression of spatiotemporal weighting, which helps
the model represent the spatiotemporal proximity relationship
and improves the estimation accuracy. On the basis of the
EGTWNN and EGTWR models, large-scale daily O3 data
can be obtained, which provides a data basis for O3 pollution
monitoring and control. Validation and mapping results indi-
cate that the proposed models report a promising application
prospect.

II. STUDY REGION AND DATA

A. Study Region

The study domain covers the Guangdong–Hong
Kong–Macao Greater Bay Area (GBA) region in China,
which includes nine cities in the Pearl River Delta of
Guangdong (i.e., Guangzhou, Shenzhen, Zhuhai, Foshan,

Huizhou, Dongguan, Zhongshan, Jiangmen, and Zhaoqing),
as well as Hong Kong and Macao (as shown in Fig. 1).
The GBA region is one of the most open and economically
dynamic regions in China, and it plays an outstanding
driving role and occupies a pivotal strategic position in
China’s economic and social development. The GBA region
is benchmarking other bay areas in the world, intending to
build a world-class megacity region [33]. However, with
the rapid urbanization and industrialization, the GBA region
faces serious O3 pollution [34]–[36], which has become an
important obstacle to economic and social development.

B. Data

1) Ground Station Measurements of O3: Hourly O3 concen-
trations measured at ground monitoring stations in 2019 were
obtained from the China National Environmental Monitor-
ing Center (CNEMC, https://air.cnemc.cn:18007/), the Geo-
physical and Meteorological Bureau of Macao (https://
www.smg.gov.mo/zh/subpage/64/realtime-iqa-report), and the
Environmental Protection Department of Hong Kong (https://
cd.epic.epd.gov.hk/EPICDI/air/station/). In total, 108 ground
monitoring stations (84 stations in the Pearl River Delta and
its surroundings, 18 stations in Hong Kong, and six stations
in Macao) were obtained. In this article, a daily maximum 8-h
average of O3 (MDA8_O3) was adopted to investigate the O3

pollution level in the GBA region. The study area was divided
into a 0.05◦ grid for the modeling and mapping of surface
O3, and the data of multiple monitors in one grid cell were
averaged. As shown in Fig. 1, 10% of the grid cells that contain
monitors are randomly selected as the model test dataset, and
90% of the grid cells are used as the modeling dataset.

2) Satellite Observations: The TROPOspheric Monitoring
Instrument (TROPOMI) sensor onboard the Sentinel-5
Precursor (S5P) satellite can observe O3 precursor information,
namely, nitrogen dioxide (NO2) and formaldehyde (HCHO),
providing a possible technical approach for remote sensing
estimation of surface O3. In this study, TROPOMI NO2

and HCHO products are obtained from the Google Earth
Engine (https://developers.google.com/earth-engine/datasets/
catalog/sentinel), with fields of “tropospheric_NO2_
column_number_density” and “tropospheric_HCHO_column_
number_density,” respectively. The temporal resolution of the
satellite observations is one day, and the spatial resolution is
resampled to 0.05◦ × 0.05◦. The TROPOMI NO2 products
were validated to show a high consistency with multiaxis
differential optical absorption spectroscopy (DOAS) sites, and
the correlation coefficient was 0.84 [37]. Also, the TROPOMI
HCHO products have achieved a good performance compared
to ground observations [38]. The satellite-observed NO2 and
HCHO products are used as primary predictors for remote
sensing estimation modeling of surface O3.

3) Reanalysis Data: ERA5 reanalysis data [39] were
included to provide meteorological variables, O3-related sim-
ulated variables, and radiation-related variables, which has
been widely used in O3 analysis and modeling [40], [41].
The meteorological variables include 10-m U-wind compo-
nent, 10-m V-wind component, 2-m temperature, boundary
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Fig. 1. Study region and distribution of monitoring stations.

layer height, relative humidity, evaporation, surface pressure,
and total precipitation. The O3-related simulated variables
are composed of the O3 mass mixing ratio and total col-
umn O3. The radiation-related variables contain surface net
solar radiation, downward UV radiation at the surface, and
surface net thermal radiation. These ERA5 reanalysis data
are downloaded from the Copernicus Climate Change Ser-
vice (C3S) Climate Date Store (https://cds.climate.copernicus.
eu/#!/search?text=ERA5&type=dataset).

C. Data Preprocessing

A grid with a spatial resolution of 0.05◦ was created for the
remote sensing modeling and mapping of O3 concentration in
this study. All data were reprojected to the same coordinate
system and resampled to the same resolution of 0.05◦, and the
modeling and mapping were based on this spatiotemporally
consistent dataset.

For the GTWR and EGTWR models, the collinearity of the
input variables will lead to instability. Therefore, we conducted
a collinearity diagnostic for the input variables based on the
variance inflation factor (VIF) and the GWR tool in ArcGIS,
and high collinearity is found among some variables (VIF >
10). To address this issue, these variables are excluded from
the modeling, and the following variables are selected for use
in this study: NO2, HCHO, boundary layer height, O3 mass
mixing ratio, and surface net thermal radiation.

III. METHOD

As mentioned previously, the spatiotemporal weighting
method of GTWR and GTWNN models is empirical. It fails to

achieve a unified expression of commonly used temporal and
spatial distances, and whether such an empirical weighting
method is optimal still needs further discussion. Thus, the
main purpose of this study is to use an NN to replace the
empirical spatiotemporal weighting method of GTWR and
GTWNN models; the proposed models are called EGTWR
and EGTWNN, respectively. The relationships among the four
models are shown in Fig. 2.

A. GTWNN

The GTWNN model was developed in our previous
study [32], and it was inspired by the GTWR model.
For ease of understanding, we first briefly describe the
GTWR model for O3 estimation, which can be depicted as
O3i = β0(ui , vi , ti) + ∑K

k=1 βk(ui , vi , ti ) · xik , where O3i

is the surface O3 concentration at location (ui , vi ) on day
ti ; β0 stands for the intercept for location (ui , vi ) on day
ti ; x denotes the influencing variables, such as NO2 and
HOCHO; and βk denotes the location–time–specific slopes
for the influencing variables. Meanwhile, K is the num-
ber of influencing variables. Let β = [β0, β1, . . . , βK ]T ,
and the model parameters (intercept and slopes) for loca-
tion (ui , vi ) on day ti can be expressed as β(ui , vi , ti ) =(
XT W(ui , vi , ti )X

)−1
XT W(ui , vi , ti )Y, where X is the input

matrix of influencing variables, Y is the vector of O3, and
W(ui , vi , ti ) = diag

(
wi1, wi2, . . . , wi j , . . . , win

)
, in which wi j

denotes the spatiotemporal weight of the j th sample, and n
is the number of samples. An empirical Gaussian weight-
ing function is often used to calculate the spatiotemporal
weight [25], [29].
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Fig. 2. Internal relationships among the models.

Fig. 3. Schematic of the EGTWR model.

Given that the GTWR model is locally linear, we developed
a GTWNN model, which uses an NN to replace the regression
process. Specifically, the GTWNN model can be described as

O3i = f(ui ,vi ,ti )(x1i , x2i , . . . , xK i) (1)

where f(ui ,vi ,ti ) denotes the location–time–specific NN, that
is, the NN model varies with location and time. Specifically,
a generalized regression NN (GRNN) with four layers is used
(denoted as GTW-GRNN). The first layer is the input layer.
The second layer is the pattern layer, which has as many
neurons as the number of samples. The outputs of the pattern
layer are passed on to the summation units in the third layer
(summation layer). The last layer is the output layer. The
details of the GRNN model can be referred to Specht [42].

The essence of constructing the GTW-GRNN model is to
incorporate spatiotemporal weighting into the GRNN model,
and the process is rough as follows. Assume that n samples
are included to construct the GTW-GRNN model for location
(ui , vi ) on day ti . Then, the number of neurons in the pattern
layer is n. For the j th neuron of the pattern layer, its output
can be expressed as a j = exp(−‖xi − x j‖), where xi stands
for the input vector of location (ui , vi ) on day ti , x j means
the input vector of sample j , ‖·‖ is the Euclidean distance,
b = 0.8326/spread is the bias term, and spread is a parameter

to control the smoothness of the fitting function. The outputs
of the pattern layer are passed to the summation layer, and the
predicted O3 concentration can be expressed as

O3i =
n∑

j=1

a jwi j y j

/
n∑

j=1

a jwi j (2)

where wi j is the spatiotemporal weight of sample j for loca-
tion (ui , vi ) on day ti calculated by the empirical weighting
method and y j denotes the O3 concentration of sample j .
According to (2), if the influencing variables and O3 observa-
tions of the training samples are obtained, the O3 concentration
for location (ui , vi ) on day ti can then be acquired, by inte-
grating the spatiotemporal weights to carry out joint weighting.
The details of the GTW-GRNN model can be found in [32].

B. EGTWR

To improve the spatiotemporal weighting of the GTWR
model, an EGTWR model is developed in this study, which
replaces the empirical spatiotemporal weighting function with
an NN. The basic idea of the EGTWR model is similar to
that of [43], but the modeling process is different (the details
are shown below). The structure of the EGTWR model is
presented in Fig. 3. In general, the structure of the EGTWR
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model is similar to that of GTWR, and the only difference lies
in the method of spatiotemporal weighting.

In the EGTWR model, the fully connected NN (FNN) is
used to establish the relationship between spatial and temporal
distances, and spatiotemporal weights. As shown in Fig. 3,
FNN has a three-layer structure. The first layer is the input
layer, in which temporal and spatial distances are incorporated,
and the second layer is the hidden layer, which carries out the
nonlinear transformation for the input signals. The last layer is
the output layer, which contains only one neuron, namely, the
spatiotemporal weight. It should be noted that the outputted
spatiotemporal weights for the samples will be normalized by
dividing by the maximum. In this study, two kinds of spatial
distances and two kinds of temporal distances are adopted
(M = 2 and N = 2 in Fig. 3), and their specific expressions
are given as follows:
ds1 = R · arccos

(
cos

( vi

180
· π

)
· cos

( v j

180
· π

)
·cos

( ui

180
·π− u j

180
·π

)
+sin

( vi

180
·π

)
·sin

( v j

180
·π

))
(3)

ds2 =
√(

ui − u j
)2 + (

vi − v j
)2

(4)

dt1 = ti − t j
(
ti ≥ t j

)
(5)

dt2 = 1 − cos

((
ti − t j

)2π

T

)
(T = 365) (6)

where u and v denote longitude and latitude, respectively;
R means Earth’s radius; ds1 is Earth’s surface distance from
location (ui , vi ) to location

(
u j , v j

)
; ds2 stands for the latitude

and longitude distance; dt1 is the temporal distance; ti ≥ t j

indicates that only the samples before day ti are included for
modeling; and dt2 is the cosine distance that considers the
seasonality of O3 and the explanatory variables [26].

Through the above process, the EGTWR model can be con-
structed. However, the outputs of FNN are the spatiotemporal
weights; we have no truth values for NN training. How to
train and optimize the FNN model is the key problem for
the EGTWR model. According to the solution of the GTWR
model (see Section III-A), once the spatiotemporal weight
matrix is determined, the model coefficient can be solved.
In other words, the EGTWR model coefficients can be solved
once the output values of FNN are substituted. Therefore,
we use the spatiotemporal weights outputted by FNN to
obtain the O3 values. Subsequently, station O3 observations are
adopted as the label data, and the mean square error (mse) loss
function is established. It is then backpropagated to optimize
the weights of FNN. Notably, an FNN can be constructed
for each location independently in theory, but, to reduce the
computation and improve model stability, the weights of FNN
are shared, that is, all FNNs constructed within the study
region are the same.

As mentioned above, the EGTWR model proposed in this
study is consistent with the basic idea of the model in [43],
but some differences exist in the specific implementation.
The equation for solving the coefficients of our model is
β = (

XT WX
)−1

XT WY, whereas the solution method in

[43] is β = W
(
XT X

)−1
XT Y. It can be seen that our

model completely follows the solution approach of the original
GTWR model. Compared to their study, we further developed
the EGTWNN model, as shown in Section III-C.

C. EGTWNN

Our previous study proposed the GTWNN model to simul-
taneously address the spatiotemporal heterogeneity and nonlin-
ear relationships [32]. However, the spatiotemporal weighting
function can still be improved. As a result, an EGTWNN
model is proposed in this study. The idea of the EGTWNN
model is similar to that of EGTWR, but the difference lies
in the use of an NN rather than a linear regression model to
build the relationships between variables. The model structure
of EGTWNN, which is nested by two NNs, is shown in Fig. 4.
The first NN constructs the relationship between spatial and
temporal distances and spatiotemporal weights, and the results
of the first NN are inputted into the second NN for joint
weighting to obtain surface O3 concentration. Among them,
the first NN adopts the same structure as FNN in the EGTWR
model, and the second is the GRNN model. Similar to the
EGTWR model, all the FNNs in the EGTWNN share the same
weights.

As indicated in (2), as long as the spatiotemporal weights
are determined, the O3 concentration can be obtained (other
variables can be calculated from the input data). Therefore,
we input the spatiotemporal weights obtained by FNN into
GRNN [i.e., substituting the spatiotemporal weights to (2)],
and O3 estimates of the EGTWNN model can then be
obtained. The mse loss function between the model estimates
and the ground observations of O3 can be established, and
the weights of the NN can thus be updated through the
backpropagation mechanism [44]. The modeling process of
EGTWNN is given as follows.

Step 1 (Spatiotemporal Weighting): With temporal and spa-
tial distances as inputs (using the same four kinds of distances
as the EGTWR model), the FNN model was constructed to
obtain the spatiotemporal weights. Given the local modeling
strategy of EGTWNN, we cannot collect a large number of
samples for training, so the FNN model only uses one hidden
layer. The outputs of the FNN model are the spatiotempo-
ral weights of the samples, and the truth values cannot be
obtained. Therefore, the FNN model is not trained separately
but adopts the idea of nested modeling and joint learning (see
Steps 2 and 3).

Step 2 (Nested NN Modeling): The spatiotemporal weights
obtained in Step 1 are inputted into the GRNN model, the
joint weighting is implemented by combining with the GRNN
weights, and the nested NN model (i.e., EGTWNN) is con-
structed. With this model, surface O3 concentration can be
obtained by inputting the influencing variables.

Step 3 (Error Backpropagation): On the basis of monitoring
station observations of O3 and the model estimates obtained
in Step 2, the error can be calculated to construct the loss
function. Afterward, the error is backpropagated, and the
weights of the NNs can be updated. Notably, the weights of
the GRNN model are mainly determined by the input data,
so the weights of the FNN model are updated in this process.
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Fig. 4. Schematic of the EGTWNN model.

For the proposed EGTWNN model, four main categories
of parameters need to be determined. The first category
encompasses the spatial and temporal parameters for modeling
and the six surrounding grid cells, and the samples in the five
days before the target day are used to construct the model in
this study. The second category encompasses the FNN model
parameters, the input layer, the hidden layer, and the output
layer containing four, six, and one neurons, respectively. The
third category is the GRNN model parameter, and spread is
set to 0.1 in this work. The last category encompasses the
nested NN modeling parameters, the learning rate is 0.1, the
number of iterations is set to 40, and the optimization method
is Adam [45]. These parameters are selected through the cross-
validation (CV) and test of the model, and Section III-D
provides the specific process.

D. Model Evaluation

The model CV [46] and the model external test are adopted
to determine the model parameters and evaluate model per-
formance in this study, and the details are shown in Fig. 5.
All grid cells containing monitoring stations are randomly
partitioned into two parts, that is, the modeling dataset (90%)
and the test dataset (10%), which can be seen in Fig. 1. The
modeling dataset is used to establish the EGTWNN model,
and the spatial-based CV is adopted to determine the model
parameters during modeling. All the grid cells containing
monitoring stations in the modeling dataset are randomly
and equally partitioned into tenfold, and ninefold is used for

Fig. 5. Procedure of the model evaluation process.

the model establishment and the remaining one for model
validation. The process would be repeated ten times until each
fold has been used for model validation. Through spatial-based
CV, the optimal model parameters can be determined, and the
test dataset is then used to evaluate the model performance,
so the model test performance can be achieved. In this study,
both model CV performance and model test performance
can be obtained, and they reflect the model performance and
generalization ability together.

Several statistical indicators are used to quantitatively eval-
uate model performance, including linear regression between
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Fig. 6. CV performance of (a) GTWR, (b) GTWNN, (c) EGTWR, and (d) EGTWNN models.

model estimates and station O3 observations (slope and inter-
cept), coefficient of determination (R2, unitless) for the linear
regression, root mse (RMSE, μg/m3), and mean absolute
predictive error (MPE, μg/m3).

IV. RESULTS AND ANALYSIS

A. CV and Test Performance of the Models

The model CV is adopted to determine the model para-
meters and reflect the predictive ability, and the results are
shown in Fig. 6. Due to the consideration of spatiotempo-
ral heterogeneity, the GTWR model has obtained relatively
satisfactory results, with R2, RMSE, and MPE values of
0.76, 24.01 μg/m3, and 17.18 μg/m3, respectively. To fur-
ther consider the nonlinear relationships, the GTWNN model
was proposed, and it obtained much better performance; the
R2, RMSE, and MPE values are 0.79, 22.22 μg/m3, and
15.96 μg/m3, respectively. In addition, the EGTWR model is
developed in this study to improve the empirical spatiotempo-
ral weighting method of GTWR with an NN, and superior
performance is reported compared with the GTWR model,
with the R2 value increasing by 0.02 (from 0.76 to 0.78),
the RMSE value decreasing by 1.42 μg/m3 (from 24.01 to
22.59 μg/m3), and the MPE value decreasing by 1.29 μg/m3

(from 17.18 to 15.89 μg/m3), respectively. Finally, when
comparing the EGTWNN model to the EGTWR model, the
GRNN model rather than the regression model is used to
address the nonlinear relationships between variables; when
the EGTWNN model is compared with the GTWNN model,
the empirical spatiotemporal weighting function is replaced
with the FNN model to automatically learn the optimal
spatiotemporal weights. As a result, the proposed EGTWNN
model has achieved the best performance, with R2, RMSE,

and MPE values of 0.81, 21.24 μg/m3, and 14.95 μg/m3,
respectively.

The models are also evaluated using the external dataset,
and the model test performance is shown in Fig. 7. Overall,
the model test performance presents a similar pattern as the
model CV performance. Among the four models, the GTWR
model achieves the poorest performance, and the R2, RMSE,
and MPE values are 0.80, 22.37 μg/m3, and 16.55 μg/m3,
respectively. When the nonlinear GRNN model is introduced
to establish the GTWNN model, the performance shows some
improvement, with R2, RMSE, and MPE values of 0.84,
20.35 μg/m3, and 14.78 μg/m3, respectively. In addition, when
the empirical spatiotemporal weighting is improved by the
EGTWR model, the R2, RMSE, and MPE values exhibit
great advantages, being 0.82, 21.22 μg/m3, and 15.90 μg/m3,
respectively. The proposed EGTWNN model demonstrates
the best performance, with R2, RMSE, and MPE values of
0.86, 18.76 μg/m3, and 13.68 μg/m3, respectively. Notably,
the model test performance is better than the model CV
performance for the models, which can probably be attributed
to that the test grid cells are generally located in the middle of
the study region (see Fig. 1); thus, the test monitoring stations
have sufficient modeling stations in their surroundings.

B. Temporal Evaluation of Model Performance

For the four models, the performance patterns exhibited in
all seasons (spring: March, April, and May; summer: June,
July, and August; autumn: September, October, and November;
and winter: January, February, and December) are basically
similar to the overall model performance in Section IV-A,
that is, the EGTWNN model reports the best performance,
the EGTWR and GTWNN models come in second, and the
GTWR model performs the worst (see Table I). With autumn
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Fig. 7. Test performance of (a) GTWR, (b) GTWNN, (c) EGTWR, and (d) EGTWNN models.

TABLE I

SEASONAL PERFORMANCE OF THE MODELS

as an example, the values of CV R2 are 0.77, 0.75, 0.74,
and 0.72, respectively, and the values of test R2 are 0.83,
0.78, 0.78, and 0.74, respectively. It is worth noting that the
EGTWNN model has a similar performance as GTWNN in
winter and reports no advantages.

Seasonally, the four models all perform the best in summer
and autumn, and the worst in winter. Taking the EGTWNN

model as an example, the CV R2 values of the four seasons are
0.73, 0.79, 0.77, and 0.63, respectively, and the test R2 values
are 0.74, 0.85, 0.83, and 0.73, respectively. A possible reason
for this result is that summer and autumn have relatively high
levels of O3 concentration, which are easier for the models
to predict, and the relationships between variables are more
stable in these two seasons.
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Fig. 8. Distribution of R2 values for grid cells with monitoring stations. The circle denotes CV performance, and the triangle stands for test performance.
(a) GTWR. (b) GTWNN. (c) EGTWR. (d) EGTWNN.

C. Spatial Evaluation of Model Performance

For each grid cell, the R2 and RMSE values were calculated
between the model CV/test results and station observations of
O3 to evaluate the spatial performance of the models. The
spatial distribution of the R2 values of each model is shown
in Fig. 8. In general, the EGTWNN model performs the best,
with mean CV R2 and RMSE values of 0.86 and 19.54 μg/m3,
respectively. The EGTWR and GTWNN models come next,
with mean CV R2 (RMSE) values of 0.82 (21.15 μg/m3) and
0.82 (20.83 μg/m3), respectively. The GTWR model performs
the worst, with mean CV R2 and RMSE values of 0.77 and
22.77 μg/m3, respectively. At the same time, the mean test
R2 values are 0.84, 0.80, 0.81, and 0.78 for the EGTWNN,
EGTWR, GTWNN, and GTWR models, respectively. In addi-
tion, the proportions of R2 values higher than 0.80 for these
models are 86%, 71%, 71%, and 61%, respectively, indicating
that the EGTWNN model has a great advantage in spatial
performance.

In terms of the spatial distribution of R2 values, the
EGTWR and EGTWNN models are superior to the GTWR
and GTWNN models on the whole, respectively, due to the use
of an NN to replace the empirical spatiotemporal weighting
method. The most obvious ones are the outer grid cells, such
as those circled in Fig. 8. The R2 values of the GTWR model
are concentrated within 0.6–0.7, whereas the R2 value of the
EGTWR model increases to 0.7–0.9. Similarly, the R2 values

of the EGTWNN model are improved compared with those of
the GTWNN model, which are all higher than 0.80.

V. DISCUSSION

A. Spatial and Temporal Mappings of Surface O3

Daily O3 concentration data can be obtained based
on the proposed EGTWNN model. This study selects
November 21–24, 2019, as an example to show the O3 remote
sensing estimation results, as shown in Fig. 9. It indicates
that the spatial distribution of O3 estimated by satellite remote
sensing is highly consistent with the O3 observations of ground
stations, but they have more spatial information than the
ground station observations, indicating that the EGTWNN
model proposed in this study has good application potential
in the spatiotemporal fine-scale monitoring of surface O3.

A pollution incident can be monitored and analyzed from
the four-day O3 mapping results. Jiangmen appears in a small
high-value range of O3 on November 21. It slowly spreads to
Zhongshan, Dongguan, and Guangzhou on November 22 then
to Zhaoqing and Zhuhai on November 23. Then, the wide-
range O3 pollution is formed in the mid-west of the GBA
region on November 24. This example shows that satellite
remote sensing has great potential to monitor and analyze
pollution incidents and processes on a fine scale.

Furthermore, the annual mean surface O3 estimates in the
GBA region are mapped, which are shown in Fig. 10. The
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Fig. 9. Spatiotemporal mapping of surface O3 concentrations. (Left) Station measurements of O3. (Right) Remote sensing retrievals of O3. The white regions
indicate missing data.

O3 pollution hotspots are located in Guangzhou, Dongguan,
and Zhongshan cities, whereas Zhaoqing, Zhuhai, Macao, and
Hongkong report relatively low levels of O3 pollution. The
mapping results indicate that the proposed model can achieve
high-resolution O3 data for pollution monitoring and analysis.

B. Interpretability of FNN for Spatiotemporal Weighting

The interpretability of NNs plays a critical role in accuracy
improvement, causal inference, and so on. In this study,
both the model CV and model test results show that the
EGTWNN model can effectively establish the relationship

between O3 and influencing variables. Is it reasonable for FNN
in the EGTWNN model to obtain spatiotemporal weights? In
other words, are the spatiotemporal weights obtained by the
FNN model interpretable? To this end, we use the traditional
empirical Gaussian weighting function to calculate the spa-
tiotemporal weights of the samples in the process of model CV
and compare the empirical weights with those obtained by the
FNN model to calculate the Spearman correlation coefficient
(r) and investigate the consistency of the two results.

Fig. 11(a) shows the statistical results of the r distribution.
About 87% of the r values are greater than or equal to
0.90, and the minimum r value is greater than 0.40. These
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Fig. 10. Annual mean surface O3 estimates in the GBA region.

Fig. 11. Comparison of FNN-based spatiotemporal weights and empirical
weighting function-based spatiotemporal weights. (a) Distribution of r values.
(b) One case of spatiotemporal weight.

results show that the spatiotemporal weights automatically
learned by FNN are highly consistent with those obtained
by the empirical spatiotemporal weighting function, indicating
that the spatiotemporal weights learned by FNN are highly
interpretable. Fig. 11(b) presents a case with 16 samples
participating in the modeling. The spatiotemporal weights
obtained by FNN are highly consistent with the empirical
results (r = 0.996) but are not equal numerically. Through
NN learning and optimization, the spatiotemporal weights are
mined more accurately to describe the spatiotemporal prox-
imity relationship of the samples, thus resulting in improved
model estimation accuracy.

C. Inspiration for Incorporating Neural Networks
Into Mechanism Models

Mechanism models use physical and chemical mechanisms
to construct retrieval equations for surface parameters, while
NNs train relationships between variables based on a large
amount of data. In recent years, scholars have extensively
discussed the choice of mechanism model and NN, among
which a critical view is that the coupling of the two is an
important tendency [47]–[49]. This study provides a reference
for the coupling of mechanism models and NNs, that is,
using an NN to replace the partial molecular process of
the mechanism model. The GTWR model is regarded as a
mechanism model (although it is also an empirical statistical
model), the FNN model is used in this study to replace
the spatiotemporal weighting subprocess of the model, and
the results demonstrate that higher estimation accuracy is
obtained. This example indicates that it is possible to improve
the accuracy and obtain more ideal results by using an NN to
replace a part of the uncertain subprocess of the mechanism
model.

D. Limitations and Uncertainties

Although the EGTWR and EGTWNN models proposed in
this study have achieved good performance, limitations still
exist in the following aspects. The first one is variable selec-
tion. For the variable selection of the EGTWR model, to avoid
the instability caused by multicollinearity, it is necessary to
use some statistical indicators (e.g., VIF) to screen variables,
but this procedure is troublesome. Nevertheless, the proposed
EGTWNN model has little restriction on variable screening.
To maintain consistency and comparability, the same input
variables as the EGTWR model are adopted for the EGTWNN
model. Second, to reduce calculation, we only include a certain
number of surrounding stations for modeling. If too few sam-
ples are collected, the EGTWR model is prone to instability.
In this study, when the number of samples is less than nine,
the EGTWR model tends to be unstable. Prosperously, the
EGTWNN model is not subject to this problem, and the model
can work with no less than two samples. The third aspect is
the common problem faced by the EGTWR and EGTWNN
models. That is, compared with GTWR and GTWNN models,
the amount of modeling computation increases a lot, which is
mainly spent on the joint training and optimization of NNs.

VI. CONCLUSION

Based on the GTWNN model, the EGTWNN model is
proposed in this study, and its contribution lies in that an
NN is used to replace the empirical spatiotemporal weight-
ing method. The results show that the proposed EGTWNN
model can achieve improved performance. This study can be
summarized from three aspects as follows.

1) Owing to the automatic learning of the optimal weight-
ing function and powerful nonlinear modeling ability
of the NN, the proposed EGTWNN model exhibits
advantageous performance compared with the GTWNN
model, the CV R2 value increases by 0.02 (from 0.79 to
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0.81), and the RMSE value decreases by ∼1 μg/m3

(from 22.22 to 21.24 μg/m3). Also, model test R2

increases by 0.02 (from 0.84 to 0.86), and RMSE
decreases by 1.59 μg/m3 (from 20.35 to 18.76 μg/m3).

2) The spatiotemporal weights automatically learned by
the FNN model are highly consistent with the results
obtained by the traditional empirical weighting method.
About 87% of the Spearman correlation coefficient val-
ues are greater than or equal to 0.90, indicating that the
proposed model has strong interpretability. However, the
spatiotemporal weights obtained by the FNN model are
not completely equal to those of the traditional empirical
weighting method, indicating that FNN can describe the
contribution of the samples more accurately.

3) Daily surface O3 data can be obtained based on the
proposed EGTWNN, and the results reveal the strong
potential of the EGTWNN model for monitoring and
analyzing O3 pollution events.
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