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Abstract—Recently, classification using multiple classifier sys-
tem (MCS) has been reported as an effective method to improve
remote sensing (RS) image classification. Such systems provide a
complementary mechanism to use multiple classifiers, which have
shallow architecture to solve the same classification problem; how-
ever, the system exhibits shortcomings due to complex ensemble
strategy. Deep learning (DL) has been proven to be an advanced
method for complex data classification; however, how to use its
advantages to overcome the shortcomings of MCS in ensemble
strategy for classification accuracy improvement is worthy of study.
Thus, with the multiple classifier mechanism and DL architecture,
we propose a novel RS image classification framework, namely,
deep–shallow learning (DSL), to improve classification accuracy.
The DSL framework consists of a shallow learning (SL) layer and
a DL layer. The SL layer contains various classifiers with shallow
architecture, which can output different classification results for
a certain input, whereas the DL layer is formed by DL networks,
which can continue learning from the outputs of the SL layer. DSL
simulates a human thinking model that continuously learns from
the existing learnings to improve learning efficiency. In our exper-
iment, three shallow classification algorithms, i.e., C4.5, k-nearest
neighbor, and naive Bayesian, are used to train base classifiers in
the SL layer, whereas a deep belief network (DBN) is used to train
the DL layer. The experiment results on three different datasets
indicate that DSL outperforms other methods in terms of classifica-
tion accuracy by using backpropagation neural network, bagging,
AdaBoost, random forest, multilayer perceptron, and DBN.

Index Terms—Deep–shallow learning (DSL), deep learning (DL),
ensemble learning (EL), image classification, remote sensing (RS).

I. INTRODUCTION

R EMOTE sensing (RS) technology provides the most intu-
itive approach to observe land use and land cover (LULC),

which are important for studies on climate change, earth system
energy balance, and human sustainable development [1]–[5].
Over the past two decades, the use of RS image classification
with machine learning to map LULCs with high accuracy and
efficiency has gained popularity [6]–[9]. Typical classification

Manuscript received January 6, 2021; revised February 1, 2021; accepted
February 22, 2021. Date of publication March 1, 2021; date of current version
March 22, 2021. This work was supported in part by the National Natural Science
Foundation of China under Grant 42001370, in part by the National Key Re-
search and Development Program of China under Grant 2018YFA0605500, and
in part by the China Postdoctoral Science Foundation under Grant 2019TQ0233
and Grant 2019M662698. (Corresponding author: Zhiwei Li.)

The authors are with the School of Resource and Environmental Sciences,
Wuhan University, Wuhan 430079, China (e-mail: dp_imgclassifier@163.
com; shenhf@whu.edu.cn; lizw@whu.edu.cn; guanxb@whu.edu.cn; lwenli.
huang@whu.edu.cn).

Digital Object Identifier 10.1109/JSTARS.2021.3062635

algorithms, such as maximum likelihood, decision tree, support
vector machine, naive Bayesian (NB), and k-nearest neighbor
(KNN), have been widely used to produce LULC data in the
early stage and exhibit satisfactory performance [7], [12]–[15].
However, none of these algorithms can produce perfect clas-
sification for all LULC categories due to their single-classifier
structure; thus, advanced algorithms are urgently needed to meet
the requirements of complex RS image classification.

Multiple classifier systems (MCS) [also known as ensemble
learning (EL)], which are a powerful method of RS image clas-
sification, are based on the theory that multiple weak classifiers
can be equivalent to a strong classifier with high generalization
and accuracy; thus, it can solve problems, such as small training
sample set and local optimum, which weak classifiers cannot
address [16]–[20]. Weak classifiers, which are also called base
classifiers, are diverse and differ from each other. Their outputs
are complementary and can be used to improve classification
performance [16], [21]–[22]. Recently, advanced MSCs have
been reported to be effective methods to improve RS image
classification. For example, Samat et al. used ExtraTrees and
maximally stable extremal region-guided morphological pro-
file to classify very-high resolution images and achieved good
performance for urban mapping [23]. They also introduced
CatBoost for RS image classification using diverse features
and showed that CatBoost has better capability of reducing
the overfitting issue at large number of boosting iteration [24].
Meanwhile, some other MCS algorithms like Light Gradient
Boosting Machine, Meta-XGBoost have been proved to be very
effective approach to extract information from RS images [25].

In an MCS, a rational ensemble strategy, which combines
advantages of different base classifiers, plays an important role
[21], [26]–[27]. With such strategy, the differences existing in
the base classifiers are fully used to advance the classification
performance. To date, these ensemble strategies include the
statistical and voting methods. The statistical method builds on
prior knowledge to obtain the relations of different base clas-
sifiers, whereas the popular method includes Bayesian average,
maximum probability, fuzzy theory, and consistency theory [16],
[18], [26]. The voting method obtains results via weighting
or simple vote the outputs of base classifiers; some popular
MCSs, including AdaBoost (AB), rotation forest, random forest
(RF) and bagging (BA), are founded on such strategy [29]–[32].
However, collecting enough samples to evaluate the properties of
base classifiers and set up a stable ensemble strategy is difficult
due to the effect of natural conditions and other factors [19],
[33]; as a result, research on MCS must explore the complex
relationships among base classifiers. Thus, several advanced
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ensemble strategies have been proposed by current research
to reflect the relationship of different base classifiers in MCS
accurately.

Recently, deep learning (DL) has been considered one of the
most effective methods for RS image classification [34]–[38]. It
uses brain simulations to establish deep structures with multiple
layers to extract high-level features progressively and solves
complex classification problems. Compared with classifiers that
belong to shallow learning (SL) methods, DL has advantages
to learn features automatically and classify them using deep
networks to improve accuracy [36],[38]. DL has better gen-
eralization capacity compared with SL [38]–[39]. Well-known
methods, such as deep belief networks (DBN), recurrent neural
networks (RNN), and convolutional neural networks (CNN),
have been widely used for LULC mapping [40]–[42]. Various
DL methods have different aspects when they solve different
classification problems. Some DL methods, such as CNN, are
focused on the powerful capability of feature learning [36],[38].
By contrast, some DL methods, such as DBN and RNN, are
focused on classification with deep architectures. For example,
[40] improved DBN via pretraining and fine-tuning, applied the
network to classify hyperspectral RS images and obtained better
performance than the original method. Huang et al. [41] pro-
posed a semitransfer deep CNN to overcome the shortcomings of
traditional CNN and extracted high-accuracy LULU from World
View-3 and WorldView-2 images. Lyu et al. [42] programmed
an RNN model to minimize the seasonal spectral differences of
urban areas and obtained the LULC data of four sites located in
different regions by using limited training samples.

Continuous learning from existing learnings (CLFEL) is a
common thinking model and an effective way to improve learn-
ing efficiency. DL is priory for solving complex classification
problems; however, most of them take RS images as material,
and only a few recognizes the idea of CLFEL [34]–[38]. MCS
uses multiple learners, and some researches fused various DL
networks to improve classification performance [43], [44]. How-
ever, but up to now, research that combines multiple learners with
DL methods is rare. Thus, the multiple classifiers’ mechanism
and powerful cognitive capability of DL must be maximized to
achieve a new learning model based on the idea of CLFEL and
thus achieve an improved classification performance. From the
perspective of MCS, the new model attempts to build a relation-
ship among different base classifiers by using the DL strategy.
From the perspective of DL, the outcomes of each base classifier
in the MCS are used as input features to train a DL network,
which performs deeper learning on the existing learning results.
Based on idea of CLFEL, we proposed a new concept called
deep–shallow learning (DSL), which inherits the characteristics
of MCS and DL. DSL consists of an SL and a DL layer. The
SL layer contains various classifiers with shallow architecture,
which can output different classification results for a certain
input; the DL layer is formed by DL networks, which can con-
tinuously learn from the outputs of the SL layer. Thus, the main
objectives of this article are as follows: 1) proposing a framework
which combines the MCS and DL to improve the RS classifi-
cation performance, 2) developing an effective feature fusion
method to make the outputs of base classifiers adapt to DL layer
construction, and 3) investigating the feasibility of CLFEL on
RS classification and achieving accurate LULC mapping results.

The remainder of this article is organized as follows. Follow-
ing the introduction in Section I, Section II describes DSL frame-
work. Section III presents experiment and results. Section IV
discusses the diversity of base classifiers in DSL, fusion of clas-
sification results with spectral features, classification accuracy
improvements, and efficiency. Finally, Section V concludes the
article.

II. METHODOLOGY

A. DSL Framework

Fig. 1 illustrates the DSL classification method of this article.
The classification model can be divided into two levels. The
first level is called SL layer, which consists of various base
classifiers produced by different training subsets. The outputs
of base classifiers are fused with the spectrum to generate new
features, which are considered the output of the SL layer. The
second layer is called DL layer, which executes classification
using the features provided by the SL layer. The specific process
of model training is as follows.

1) Samples are selected from the RS image to generate a
training set. Then, 80% of the samples are repeatedly
selected from the training set via random replacement
sampling to produce a list of subtraining sets. With the
subtraining sets, various base classifiers are trained.

2) The base classifiers are used to classify the dataset with
100% samples. Then, the classification results are fused
with the image spectrum to produce a new training set in
accordance with the method mentioned in Section II-C. In
the new training set, samples have the same location with
the original training set on the RS image.

3) The new training set is used to produce a DL network to
construct the DL layer of DSL. In this article, we use the
DBN to build the DSL model.

With the DSL model, a pixel on the RS image is first classified
by the base classifiers in the SL layer; then, the classification
results are fused with the spectrum to generate new features.
These new features are then taken as input of the DL layer, and
the pixel is reclassified as the final output. In this manner, when
all pixels are processed, accurate LULC maps are produced.

B. SL Layer Construction

SL methods usually have only one hidden layer or no hidden
layers; their classifiers have a simple structure and fast running
speed and can be trained in a short time [34], [52]–[53]. In this
article, SL algorithms with little or no parameters (e.g., C4.5,
KNN, and NB) are used to train base classifiers in the SL layer,
thereby reducing complexity.

The diversity of base classifiers is the foundation of EL [21],
[26]–[27]. The methods of base classifiers are applied equally
to produce base classifiers in DSL because for the same object,
the differences of the classification results of base classifiers
can be used to reflect the properties of each base classifier.
BA is a popular EL framework which uses random sampling
with replacement to produce different base classifiers. In this
article, we refer to the BA method to propose an approach for
building the SL layer of DSL. The process of production of base
classifiers in the SL layer is shown in Fig. 1. In each epoch, 80%
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Fig. 1. DSL classification flowchart.

of the samples are randomly selected from the training set with
replacement to generate a subset to train a base classifier. After
several epochs, a series of versatile base classifiers is trained
for the SL layer. Then, the samples in the training set were
classified by the base classifiers, thus generating a new dataset
which contains class labels.

C. Fusion of Classification Results and Spectral Features

For an input sample, the results of the SL layer can be recorded
as a vector whose entries correspond to the class labels outputted
by each base classifier. However, the class labels are discrete
codes, which lack the property of continuous values, which
may not contribute to high-level classification in the DL layer.
Fortunately, the spectrum information of RS images consists of
continuous values. Thus, if the class codes and spectral infor-
mation are fused, then new features that contain predicted class
information and spectrum information are generated. Therefore,
we propose a prelabeling method to combine class codes and
spectrum information and desire useful features from the clas-
sification results of SL classifiers.

Let i= {12, …,n}, j= {12, …,l}, and t= {12, …,c}, where n is
the number of classifiers in the SL layer, l is the number of bands
of the RS image, and c is the number of classes. For each pixel
of RS image, the spectral features can be described by D = [d1,
d2, …,dl]. Taking D as the input of the classifier Hi, the output
of Hi can be considered a class code ri, where r = {12, …,c}.
To recognize the classification results from different classifiers,
a unique random number yi�(01) is generated for classifier Hi,
and the final output of classifier Hi can be regarded as riyi. Then,
if D is taken as the input of classifiers set H = {H1, H2, …,Hn},
the outputs of H can be expressed as R= [ y1r1, y2r2, …, ynrn]T.
With the results of H, the pixel described by D can be prelabeled
by using (1):

F = RD =

⎡
⎢⎢⎣

r1y1d1 r1y1d2 · · · r1y1dl
r2y2d1 r2y2d2 · · · r2y2dl

...
...

. . .
...

rnynd1 rnynd2 · · · rnyndl

⎤
⎥⎥⎦ (1)

Fig. 2. Training process of DBN.

Then, F is rearranged by row to obtain a vector F’ with n × l
dimensions, representing the new features of the current pixel.

After prelabeling the entire RS image, a new image with n ×
l channels is obtained. The new image contains spectral and
SL classification information and has additional features for
classification in the DL layer.

D. DL Layer Construction

In DSL, DBN is used to continue learning from the outputs of
the SL layer and thus obtain more accurate classification results.
As reported in many studies, DBN has been considered one of the
most popular DL networks in the field of RS image classification.
As shown in Fig. 2(a), a DBN model can be viewed as a
composition of several layers of restricted Boltzmann machines
(RBMs) and a layer of back propagation (BP) neural network.
RBM is an unsupervised network which consists of visible and
hidden layers. The hidden layer serves as the visible layer for
the next, and a pair of the units from either of the two layers has
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TABLE I
INFORMATION OF DATASETS

a symmetric connection between them; units within a layer have
no connections. With the RBM, the probability distributions over
its set of inputs can be learned. On the basis of the staking layers
of RBMs, the training process of DBN can be divided into the
pretraining and fine-tuning stages.

1) Pretraining: RBMs are trained from the first RBM, which
consists of the input layer and the first hidden layer. The
output of each FRM is treated as the visible layer of the
next RBM. The layer-by-layer learning process can be
repeated until the last hidden layer.

2) Fine-tuning: After pretraining, the supervised learning and
BP neural network are used to propagate the error of the
outputs of the last RBM and the labels layer by layer and
to adjust the weight and bias with several interactions until
the globally optimal DBN is obtained.

As the unsupervised learning process in the pretraining stage
can be considered the initialization of the BP network instead of
random initialization, the backpropagation in the DBN does not
fall into the local optimal solution easily. Thus, in this article,
we select DBN to construct the DL layer in the DSL framework.

III. EXPERIMENT AND RESULTS

A. Experiment Dataset

In our experiment, three cloud-free RS images of Landsat
OLI, Spot-5, and GaoFen-2 are used to produce dataset-1, -2,
and -3, respectively. The information of the RS images is listed
in Table I. For dataset-1, the Gram–Schmidt pan sharpening
method is used to enhance the spatial resolution of bands 1–
7 (30-m spatial resolution) using panchromatic band 8 (15-m
spatial resolution). By staking the processed bands 1–7 and band
8, a new multispectral band image with 15 m is obtained. For
dataset-2, the same method is used to enhance the multispectral
bands (10-m spatial resolution) using the panchromatic band
(5-m spatial resolution). The multispectral bands of GaoFen-2
(4-m spatial resolution) are used generate dataset-3. The study
plots of the three datasets are illustrated in Fig. 3.

By analyzing the landcover status of the study areas, we
establish classification schemes for datasets 1–3. Dataset-1 in-
cludes nine classes: grassland (GR), low-reflectivity buildings
(LRB), high-reflectivity buildings (HRB), river (RI), dike-pond
(DP), bare land (BL), cultivated land (CL), noncultivated land
(NCL), and forest. Dataset-2 includes six classes: artificial land
cover (ALC), FO, water body (WB), CL, GR, and BL. Dataset-
3 includes nine classes: arbor (AR), shrubs (SH), CL, HRB,
LRB, WB, hardened ground (HG), BL, and NCL. To facilitate
data processing, the class labels of all datasets are digitized
by successive integers starting from 1; these integers represent

Fig. 3. Remote sensing images.

different classes. The specific digitization code of each class
label is shown in Table II.

High-resolution images from Google Earth are used as a
reference to select the training samples and test samples of each
dataset. All samples are point-based and the training samples
are typical pure pixels. The test samples are randomly selected
pixels, and they are then assigned to the class labels using the
reference image. The number of samples of different datasets is
shown in Table III.

B. Parameter Setting

In our experiment, the number of classifiers in the SL layer
was set as 50. The parameters of C4.5, NB, and KNN, which
were used for training base classifiers in the SL layer, and DBN,
which was used for training deep networks in the DL layer, are
described in Table IV. To evaluate the performance of DSL the
framework, several excellent classification algorithms, includ-
ing back propagation neural network (BPNN), RF, AB, BA, and
multilayer perceptron (MLP), were used for comparison; their
parameters are also described in Table IV. For all the algorithms,
the parameters are optimized with practical experience, thereby
stabilizing the performance of the algorithms in the experiment.

C. Classification and Accuracy Analysis

Pixel-based classifications were executed on the three datasets
with DSL and other algorithms. Within the classification
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TABLE II
DIGITIZATION CODES OF CLASSIFICATION SCHEMES

TABLE III
NUMBER OF TRAINING AND TEST SAMPLES

algorithms, BA and AB are two EL frameworks which can be
worked on different supervised classification algorithms. Here,
we used C4.5, KNN, and NB to train the base classifiers of
BA, AB, and DSL. The classification accuracy of all methods is
summarized in Table V.

When single classifiers (SC) are used, the accuracy of C4.5,
KNN, and NB is low. The OA of dataset-1, -2, and -3 are
75.69%–80.47%, 77.57%–82.18%, and 63.78%–72.61%, re-
spectively. However, when it comes to DSL which uses C4.5,
KNN, and NB to produce the base classifiers, the accuracy for
the three datasets reaches 86.91%–87.7%, 88.15%–88.97%, and
80.53%–84.18%, respectively. DSL exhibits higher accuracy
compared with its base classifiers and the SC of DBN, which
have accuracies of 85.54%, 85.28%, and 75.89% for dataset-1,
-2, and 3, respectively. Moreover, the contrastive classification

methods have higher accuracy than that of C4.5, KNN, and NB
but lower accuracy than that of DSL. This feature indicates that
DSL performs better than the existing methods in the experiment
in terms of improving RS image classification.

IV. DISCUSSION

A. Diversity of Base Classifiers in DSL

For the same classification problem, different classifiers have
different classification results. Some researchers have reported
that even though no remarkable difference exists among differ-
ent classifiers at the overall level, such dissimilarities can be
found at the per-class level [16]–[19], [21]–[22]. Such situation
is suitable for the base classifiers of DLS. To evaluate these
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TABLE IV
DESCRIPTION OF THE MAJOR PARAMETERS OF DIFFERENT CLASSIFIERS

TABLE V
CLASSIFICATION ACCURACY OF DIFFERENT CLASSIFICATION METHODS (“–” MEANS NO VALUE EXISTS IN THE CELLS)
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Fig. 4. SD of classification accuracy at the per-class level in the SL layer.

TABLE VI
SD OF THE CLASSIFICATION ACCURACY

differences, standard deviations (SDs) of the OA are used to
measure the dispersion of the base classifiers’ results in the DLS
(Table VI). The higher the SD, the more differences among these
classifiers would have. Furthermore, the SDs of the OA for the
base classifiers are greater than 1, indicating differences and
diversity among the base classifiers in the DSL framework. Fig. 4
illustrates the SD of classification accuracy at the per-class level.
Under the same classification algorithm, the SD of user accuracy
(UA) and producer accuracy (PA) is substantially larger than the
SD of OA, indicating that the differences among base classifiers
at the per-class level are larger than that of the overall level.

TABLE VII
PERCENTAGE OF THE INERT PIXELS OF THE ENTIRE IMAGE OBTAINED BY

DIFFERENT SL CLASSIFIERS (%)

With the base classifiers, 50 LULC maps are generated and
digitized with the schedule listed in Table II. Then, the average
value for each pixel is calculated to obtain an average image
(AI). The grey histograms of these AIs are shown in Fig. 5. For
each pixel of the AI, if the value is closer to the class label value,
then the outputs of the base classifiers become more consistent.
For convenience, pixels whose all base classifiers have the same
classification results are referred to as inert pixels, and the other
pixels are called noninert pixels. The percentages of the inert
pixels of the entire image obtained by different base classifiers
are listed in Table VII. When the base classifiers in the DSL
are used to classify the RS image, most pixels are noninert
pixels, and the outputs of these classifiers vary. To some degree,
the properties of different objects under each classifier can be
exhibited by the classification results. That is, when the outputs
of all base classifiers in the DSL are distributed into feature
space, the combination of different base classifiers’ outputs can
be used for object identification.
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Fig. 5. Histograms of AIs with the use of different SL algorithms.

B. Fusion of Classification Results With Spectral Features

In the DSL, the proposed prelabeling method fuses the outputs
of the base classifiers with the spectral information. Theoreti-
cally, the new features contain abundant information for distin-
guishing different objects. To explore the characteristics of these
features intuitively, 300 samples for each class are randomly
selected, and these samples are arranged from smallest to largest
according to the class label values. In this manner, a scatter plot
graph between features and classes is generated, as shown in
Fig. 6. Different classes show different stripes on the graph with
particular layering. This feature makes objects on the RS image
more easily distinguished. For example, in dataset-1, DP and
RI, which are difficult to distinguish, show some similarities in
the RS image; however, with the fused features, the differences
between them are enhanced, thus reflecting a fairly optimistic
separability on the graph. The properties exhibited on the graphs
show that the prelabeling method provides additional optimal
features, and this feature can be viewed as an important basis
for the classification improvement in DSL.

C. DSL Classification Performance

1) Analysis of the Classification Performance of DSL: DSL
exhibits high classification accuracy because of the improve-
ments at the per-class level. Fig. 7 shows the PAs and UAs of DSL
and DBN whose accuracy can be viewed as the representation
of comparative methods. Except for a few classes, DSL has
improved classification accuracy at the per-class level, indicating
that most individual classes predicted by DSL are closer to the
ground truth.

DSL uses an MCS to solve classification problems; thus, the
types and counts of base classifiers play an important role in

classification improvements. Fig. 8 illustrates the classification
accuracy improvements with base classifiers increasing in the
DSLs. Some DSLs, such as C4.5-based DSL that worked on
dataset-1 and -2 and NB-based DSL that worked on dataset-3,
exhibit a continuous increase in accuracy with increase in base
classifiers. For some other DSLs, significant improvements in
classification accuracy are observed in the early stage, but such
improvements are saturated in the later stage, such as KNN-
based DSL worked on dataset 1 and KNN-, and NB-based DSL
worked on dataset-2. This phenomenon suggests that with differ-
ent algorithms to produce base classifiers in DSL, classification
improvement becomes different. Considering the percentage of
inert pixels in RS image classification (Table VII and Fig. 5),
we find that for dataset-1, C4.5 produces the lowest inert pixels
percentage (25%) in comparison with KNN and NB; thus, C4.5-
based DSL has the largest accuracy improvement. For dataset-3,
the percentage of inert pixels produced by NB is less than that of
C4.5 and KNN, whereas the NB-based DSL exhibits the largest
classification improvement. That is, if the base classifiers are
more diverse, then these classifiers can facilitate classification
accuracy improvement with DSL.

Many aspects can be used to explain why DSL has better
classification performance than SL, DL, and other comparative
methods. First, DSL uses a series of features extracted from
the classification results of base classifiers with SL methods.
These features sign class information to the original RS data
and increase the recognizability of different classes (Fig. 6),
resulting in an easy classification for the DL layer. Second, it
is based on the idea of CLFEL, learning from the results of SL
classifiers to obtain accurate classification with the DL method.
Furthermore, different base classifiers perform differently,
and their classification results exhibit certain complementary
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Fig. 6. Scatter plot graphs between features and classes of using different SL classifiers.

relationships. These complements can be combined by DL in the
DSL. In addition, DSL integrates the SL and DL to minimize
the problem of insufficient classification by using SC, and it
improves classification accuracy effectively.

2) Analysis of Time Consumption: DSL is a time-consuming
algorithm due to its MCS. Table VIII lists the training time for
different classifiers. The algorithm selection in the SL layer
affects the time consumption of DSL. For example, the KNN
method needs more time for training compared with C4.5
and NB, making KNN-based DSL works on different datasets
consume more time compared with C4.5 and NB-based DSL.
Moreover, the classifiers in the SL layer in DSL consume less
time compared with the DBN in the DL layer because SL
methods, such as C4.5, KNN, and NB, have a simpler structure
compared with the DL method, DBN. In DSL, the number of
base classifiers increases time consumption, but the experiments
suggest that the DL layer consumes more time compared with the
SL layer in DSL training. Moreover, with 50 base classifiers, the
SL layer costs less than 10% of DSL training time, whereas the
DL layer dominates the most part of DSL time consumption.
This result shows that compared with the DL method of DBN,

DSL is more time consuming, but the increased time consump-
tion is basically within an acceptable range.

The analyses above indicate that DSL inherits time-
consuming characteristics from DL and is an algorithm that
improves accuracy by consuming time. In addition to the above
reasons, many other factors affect DSL training time; these
factors include optimal parameters and DL network settings.
In our experiment, the classifiers in the SL layer are generated
in a serial manner, thus increasing time consumption.

3) LULC Mapping: With the different classification meth-
ods, the LULC of different datasets is mapped. The local details
are shown in Figs. 9 –11. For dataset-1 (Fig. 9), DP and RI have
similar characteristics on the RS image, making them difficult
for classification. With the SC of NB, KNN, and C4.5, most
peripheries of the DPs are misclassified as RIs, and some objects
mixed in the DPs are incorrectly classified as CL. With RF, MLP,
BPNN, BA, BA, and DBN, classification seems to improve;
however, some errors still exist in the LULC maps. With the
DSL, the outline of DP is clearer than other methods with fewer
wrongly classified peripheries. For dataset-2 (Fig. 10), with the
SC of NB, KNN, and C4.5 and other comparative methods, the
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Fig. 7. Classification improvement at the per-class level with the use of DSL.

Fig. 8. OA improvement via DBN-based DSL and MLP-based DSL.
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Fig. 9. Results of classification using different methods for dataset-1.

Fig. 10. Results of classification using different methods for dataset-2.
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Fig. 11. Results of classification using different methods for dataset-3.

TABLE VIII
TIME CONSUMPTION OF SINGLE CLASSIFIERS AND DSL FOR TRAINING

(SECOND) (“–” MEANS NO VALUE EXISTS IN THE CELLS)

CLs which exhibit bright areas in the image are misclassified as
ALCs and BLs at different levels. However, with DSL, most CLs
are correctly classified, and DSL has an improved performance
to recognize CL, ALC, and BL. In dataset-3 (Fig. 11), the
waves in the RI show a similar brightness to HRB or HR,
and the shadows casted by the buildings have similar features
with the WB. Neither with the SC of NB, KNN, and C4.5
nor with other comparative methods, the waves and shadows
disturb the classification results. With DSL, the interference
seems minimized, most waves are classified as WB, and the
probability that shadows are misclassified as WB is decreased.

The LULC mapping cases of dataset-1, -2, and -3 indicate
that DSL has strong power to recognize different classes that
SLs, and MCSs that mentioned in this article and the deep
architectures difficult to classify. This result is obtained be-
cause DSL transforms the varied classification results of base
classifiers in the SL layer into series of new features. These
features are complementary and can effectively compensate for
the defects that some objects cannot be well distinguished from
other objects when the spectral information of the original image
is insufficient. In addition, DSL realizes some functions of MCS,
which can integrate the classification results of different classi-
fiers in the SL layer by using DL. In addition, it obtains more
accurate classification results compared with the base classifiers.
Furthermore, the essence of DSL is to perform additional DL
from the learning results of the SL layer. Compared with the
mode which only has one layer of learning mechanism, the
multiple learning layer mode, which integrates SL and DL, is
another major reason why DSL outperforms other classification
methods in LULC mapping.

V. CONCLUSION

On the basis of the idea of CLFEL, the DSL framework is
proposed for RS image classification. The tests on three different
RS datasets indicate that the DSL effectively maximizes MCS
and DL, resulting in higher classification accuracy. Based on
the results of the experiments, this article draws the following
conclusions:

1) For the same classification problem, the accuracy of dif-
ferent classifiers in the SL layer may not be much different
at the overall level, but huge differences are found at
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the per-class level, resulting in diverse classifiers whose
outputs contain rich information for recognizing different
objects. Based on this theory, the classification results and
spectral information are fused as new features by using
a prelabeling method. This fused feature enhances the
characteristics of different objects and exhibits optimistic
separability, allowing the objects to be easily classified in
the next layer.

2) DSL outperforms other classification methods because of
the following reasons: By simulating the cognitive process
of CLFEL, DSL has more approaches to improve classi-
fication accuracy and overcomes the insufficient classifi-
cation accuracy of using SC. The new method effectively
combines the diversity property of multiple classifiers in
the SL layer and the superior classification power of DBN
in the DL layer. The multiple learning layer mechanism
improves DSL in terms of LULC mapping.

In summary, DSL is a new classification mechanism with
shallow and DL layers. This mechanism can be used to improve
RS classification remarkably. The framework is flexible for SL
classifiers and DL algorithms choosing; thus, it has potential
for improvement to generate more accurate LULC maps from
RS images. However, DSL is as time consuming as DL; if the
framework is designed in a parallel manner, then its operational
efficiency would be greatly improved.
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