
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021 4633

ESPFNet: An Edge-Aware Spatial Pyramid Fusion
Network for Salient Shadow Detection in

Aerial Remote Sensing Images
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Abstract—Shadows can hinder image interpretation in aerial
remote sensing images. The existing shadow detection methods
focus on all shadow regions and detect the shadow regions di-
rectly, but they ignore the fact that salient shadows have a more
significant effect. In this work, a novel edge-aware spatial pyramid
fusion network (ESPFNet) under a multitask learning framework
is proposed for salient shadow detection in aerial remote sensing
images. ESPFNet has three components: a parallel spatial pyra-
mid (PSP) structure; an edge detection module (EDM); and an
edge-aware multibranch integration (EMI). The PSP structure is
constructed to extract multiscale features from the input image
and fuse them gradually. The EDM then integrates the shallow
features and deep features to detect the shadow edges. Finally,
the EMI incorporates the edge features with multibranch features,
and then concatenates them with the shallow features to generate
the salient shadow detection result. The experimental analyses
confirm the effectiveness of the ESPFNet method in both the
qualitative and quantitative performance, compared to the existing
methods, with the F-score reaching 92.04% in the salient shadow
test set.

Index Terms—Aerial remote sensing images, convolutional
neural network, multitask learning, salient shadow detection.

I. INTRODUCTION

SHADOW is a widespread phenomenon in high-resolution
aerial images, especially in urban regions, due to the nu-

merous high-altitude land covers, such as buildings, bridges
and trees [1], [2]. Shadows can provide additional geometric
information for object location and altitude estimation, but lead
to radiometric information loss, making the image interpretation
more difficult [3], [4], [5]. Therefore, for both the geometric
and radiometric applications of remote sensing images, shadow
detection is of great importance.
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Any obstacle, such as a car, tree, or building, leads to shadow
when direct light exists, and these shadows can be cast on any
surface, such as a road, roof, or another shadow. Thus, shadows
show three distinctive spatial features in high-resolution aerial
images: shadows are usually widely dispersed; the shape and
size of shadows are varied; and shadows are usually mutually
connected, as shown in Fig. 1. From the remote sensing image
application viewpoint, not all the shadows are of concern. In
fact, only those salient shadows with a relatively large area, a
medium length-width ratio, or shadows cast by a main target
need to be treated to benefit geometric location or image inter-
pretation. Therefore, we focus on salient shadow detection in this
article.

The existing shadow detection methods, i.e., the geomet-
rical methods and property-based methods, usually detect all
the shadows, and they do not distinguish between salient and
non-salient shadows in remote sensing images [6]–[10]. The
geometrical methods determine the location of shadows through
modeling the geometrical optics based on the surface altitude
and the sensor position information, which can be difficult to
acquire for high-resolution images [11]–[13]. The property-
based methods take the shadow properties into account, and they
directly recognize the shadow regions from the image [3], [6],
[7], [14]–[18]. The property-based methods can be categorized
into two main groups: thresholding-based methods; and machine
learning based methods. For the thresholding-based methods,
the image is usually transformed into a special feature space
and then a shadow index is constructed to highlight the shadows,
based on which a threshold can be set to separate shadow from
nonshadow [3], [8], [9], [14], [16]–[18]. This kind of method is
simple and efficient, but the use of only a shadow index is not
sufficient to support accurate shadow detection. While for the
machine learning based methods, a lot of samples are selected
to train the classifier [19]. The traditional machine learning
methods are mainly based on pixel-wise training samples, such
as support vector machine [7], [20], and they do not consider
the spatial correlations among adjacent pixels, which can lead
to noisy results. In recent years, deep learning based methods
have been introduced to detect the shadows in remote sensing
images and have shown promising results, due to the powerful
ability of data learning [6], [21]. As the accuracy of the deep
learning based methods is heavily dependent on the training
data, the aerial imagery dataset for shadow detection (AISD)
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Fig. 1. Representative examples of salient shadow masks. (a) Shadow images. (b) Original detailed shadow masks. (c) Salient shadow masks.

have been released publicly, which is the first aerial shadow
imagery dataset [6]. A deeply supervised convolutional neural
network for shadow detection (DSSDNet) was also proposed at
the same time. However, these methods above consider all the
shadows equally, and they do not rank the shadows. As a result,
these methods cannot identify the salient shadows.

In contrast, numerous salient object detection (SOD) methods
have been developed in computer vision (CV) [22]–[28]. SOD
is a task based on a visual attention mechanism, which aims to
detect objects more attractive than the surrounding areas in a
scene or an image [29], [30]. SOD occupies an important posi-
tion in many CV applications, such as object recognition [31],
[32], visual tracking [33], and image retrieval [34]. Recent deep
learning based methods have shown a superior performance by
learning global contextual features along with the local context
[27], or by adding extra edge information for SOD [35], [36].

In this article, inspired by the above observations, a novel
edge-aware spatial pyramid fusion network (ESPFNet) is pro-
posed to detect the salient shadows in aerial remote sensing
images. The major contributions of the proposed method are as
follows. First, salient shadows are considered for the first time
in remote sensing images, and some discriminative rules are
defined. Second, a multitask framework for salient shadow de-
tection is proposed by simultaneously detecting salient shadow
regions and shadow edges from a single image. The whole
network has three main parts: the parallel spatial pyramid (PSP)
structure; the edge detection module (EDM); and the edge-aware
multibranch integration (EMI).

The rest of this article is organized as follows. Section II gives
a definition of salient shadows in remote sensing images. Sec-
tion III presents the proposed salient shadow detection method in
detail. Section IV shows the qualitative and quantitative analysis
for the experimental results. The postprocessing of small shadow

regions removal is discussed in Section V. The conclusion of this
article is drawn in Section VI.

II. SALIENT SHADOWS IN REMOTE SENSING IMAGES

Inspired by the concept of salient objects in close-shot images,
the concept of salient shadows is based on a visual attention
mechanism which is more attractive than the surrounding areas,
and the influence for image interpretation in remote sensing
images. Salient shadows have some special features, as follows

1) Relatively Large Area: A salient shadow usually covers a
relatively large area, and the shadows of small objects can
be excluded, such as cars, sparse trees, etc.

2) Medium Length-Width Ratio: The slender shadow regions
with a large length-width ratio can be regarded as non-
salient shadow.

3) Cast by the Main Targets: In general, salient shadows are
cast by the main targets in remote sensing images, such as
buildings, bridges, and large trees.

To explain the concept of salient shadow more clearly, two
representative examples of salient shadow masks are shown
in Fig. 1. It can be seen, the small shadows on the roof and
the slender shadow regions near the boundary of the buildings
in Fig. 1(b) have been excluded in Fig. 1(c). The fragmentary
shadows of vegetation have also been eliminated in Fig. 1(c).

III. EDGE-AWARE SPATIAL PYRAMID FUSION NETWORK

In this section, the overall architecture and key components
of the proposed ESPFNet are introduced. Specifically, the three
components of ESPFNet, i.e., the PSP structure, the EDM, and
the EMI, and also the loss functions, are illustrated in detail.
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Fig. 2. Architecture of the proposed ESPFNet framework. The ESPFNet has three components. (a) PSP structure for feature extraction. (b) EDM for edge
prediction. (c) EMI for feature fusion.

A. Overall Architecture

Given a shadow image, the proposed ESPFNet simultane-
ously detects the salient shadow regions and the corresponding
shadow edges in an end-to-end manner in Fig. 2.

The PSP structure is mainly composed of spatial pyramid
pooling (SPP) and encoder-decoder residual (EDR) subnets. It
extracts multiscale feature representations and eliminates the
non-salient information, while fusing the features between dif-
ferent scales gradually. The EDM focuses on the shadow edge
detection task by integrating the shallow features containing
detail information with the deep features containing abstract
information. The EMI not only incorporates the edge features
with multibranch features, but also concatenates the edge-aware
branches with shallow features to generate the salient shadow
detection result.

Theoretically, the PSP structure can extract the salient shadow
regions and eliminate the non-salient shadow regions for a
shadow dataset with detailed annotation or salient annotation.

B. PSP Structure for Feature Extraction

1) Spatial Pyramid Pooling: The SPP can collect multi-
level information, and is more representative than global
pooling [37]–[39]. Therefore, the SPP is introduced to
extract multiscale feature representations and eliminate
the non-salient information.

Given an input image, as shown in Fig. 2, a convolutional
layer is followed by a batch normalization (BN) layer [40]
and a rectified linear unit (ReLU) [41], which is referred as a
“CONV+BN+ReLU” (CBR) block. SPP is then used to resize
the input feature maps into three different scales, with pooling
sizes of 2 × 2, 4 × 4, and 8 × 8, respectively, covering half of
and small portions of the image. The type of pooling operation is

average pooling, following the pooling operation used in PSPNet
[39].

2) Encoder-Decoder Residual Subnet: Through the SPP pro-
cessing, features in three different spatial scales can be
extracted in the proposed network. In order to extract and
aggregate multiscale shadow information, a set of subnets
are built independently for each level. All the subnets have
the same EDR module in Fig. 3.

For the encoder network, the input feature maps with 64
channels are gradually filtered with convolutional operation
and down-sampled with max pooling operation at each stage
to extract deep context features. The decoder network is then
constructed to up-sample the feature maps progressively and
concatenate them with the corresponding encoder feature maps.
Furthermore, residual learning [42] is adopted to accelerate the
network convergence and improve the performance of salient
shadow detection in the proposed method. Specifically, the
residual blocks are used in each scale of the encoder and decoder
network. Details of the residual block are presented in Fig. 4.

In order to help propagate information between the different
branches, each output feature maps of the EDR subnet are up-
sampled to the same size of the output feature maps in the next
branch, and then fused by the sum operation in the proposed
network.

C. EDM for Edge Prediction

Although the PSP structure can extract multiscale features
effectively, it may also lead to inaccurate shadow pixels around
the boundaries. This is because the down-sampling process can
extract the high-level abstract features, but it also results in
spatial information loss. It has been proved that edge information
can provide complementary cues for image segmentation [43]–
[46]. Therefore, a multitask learning framework is proposed by
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Fig. 3. Illustration of the EDR subnet.

Fig. 4. Details of the residual block.

expanding the EDM, i.e., the edge information is taken as a priori
knowledge to refine the shadow detection results.

The EDM reuses features from the PSP structure and incorpo-
rates them for edge prediction, effectively reducing the number
of parameters and improving the flow of information throughout
the network, making the network easy to train. Specifically, the
EDM fuses the shallow features containing detail information
and the deep features containing abstract information, and then
reduces the number of concatenated feature maps with a CBR
block. The final shadow edge prediction is generated by a con-
volutional layer with 1 × 1 kernel size and a sigmoid function,
rescaling the values to between 0 and 1.

D. EMI for Feature Fusion

In order to combine multiscale semantics with edge infor-
mation and local appearance, the EMI is conducted. The edge
features are first incorporated with the multibranch features to
optimize the shadow edges in the shadow mask. The deeply
supervised mechanism [47], [48] is then adopted for each edge-
aware branch to guide the network training and predict multi-
branch output images. Finally, these deeply supervised branches
are integrated with the shallow features, and the salient shadow
detection result is generated, followed by a convolutional layer
with 1 × 1 kernel size and a sigmoid function, rescaling the
values to between 0 and 1.

E. Loss Functions

As the multitask learning framework is applied to realize
salient shadow region detection and shadow edge detection

simultaneously, the total loss of the network contains two parts

Ltotal = Lregion + ωLedge (1)

where Ltotal represents the loss function of the whole network;
andLregion andLedge are the loss functions of the salient shadow
region detection and shadow edge detection, respectively. ω is
the weight parameter for balancing these two losses.

For the salient shadow region detection task, three edge-aware
branches are introduced and a final fusion layer is also added.
Therefore, the loss function of the salient shadow region detec-
tion task can be expressed as

Lregion = Lregion_F + Lregion_EB (2)

whereLregion_F andLregion_EB are the loss functions of the final
fusion layer and edge-aware branches, respectively. Lregion_EB

can be further expressed as follows:

Lregion_EB =

M∑

m=1

αmlmregion_EB (3)

where αm is the weight of the mth edge-aware branch, and
lmregion_EB is the loss function of the mth edge-aware branch. M
is equal to 3 here. Note that the weightsω andαm are empirically
set to 1.

As the salient shadow region detection task and shadow edge
detection task are both binary classification problems, binary
cross-entropy loss is utilized forLedge,Lregion_F , and lmregion_EB

to guide the network training, and defined as

L = − 1

N

N∑

i=1

[yilog(ŷi) + (1− yi)log(1− ŷi)] (4)

where N is the total pixel number. yi and ŷi ∈ [0, 1] are the
label value and the predicted value of the ith pixel, respectively.
yi = 1 if the pixel is in a shadow region or shadow edge, and
otherwise, yi = 0.

By minimizing the loss function, the predicted outputs be-
come consistent with the ground-truth labels. In the test stage,
the final output of ESPFNet is a probability map ranging from
0 to 1. Otsu’s thresholding method [49] is then applied to
automatically determine the suitable threshold, and segment the
final probability into a binary mask.
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Fig. 5. Comparison of shadow detection results by the different methods in image #1. (a) Aerial image. (b) SRS. (c) ERWSD. (d) U-Net. (e) PSPNet. (f) BDRAR.
(g) DSSDNet. (h) ESPFNet. (i) Salient shadow ground truth.

TABLE I
AVERAGE SALIENT SHADOW DETECTION ACCURACY COMPARISONS FOR THE SALIENT TEST IMAGES

IV. EXPERIMENTS

In this section, the dataset, implementation details, compared
methods and evaluation metrics used in this study are first
introduced. Qualitative and quantitative comparisons are then
presented. Finally, the effectiveness of the EDM is verified by
the ablation analysis.

A. Dataset Description and Implementation Details

The performance of the proposed network is evaluated on
the AISD [6], which can be freely downloaded.1 This dataset
consists of 514 aerial images and the associated shadow mask at
a 30-cm spatial resolution. Specifically, 80% of the AISD dataset

1[Online]. Available: https://github.com/RSrscoder/AISD

TABLE II
AVERAGE SHADOW DETECTION ACCURACY FOR THE SALIENT

SHADOW TEST IMAGES

is used as the training data, and the validation data and test data
each count for 10%. The ground-truth shadow edge maps are
generated by Canny operator [50] applied on the shadow mask.
Data augmentation is adopted for the training data to prevent
network overfitting and improve the effectiveness. The training
data are cropped to generate 11836 patches in total with a fixed
size of 256 × 256. It should be noted that the shadow masks
of the test set have been carefully adjusted into salient shadow
masks, according to the rules defined in Section II.

https://github.com/RSrscoder/AISD
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Fig. 6. Comparison of shadow detection results by the different methods in image #2. (a) Aerial image. (b) SRS. (c) ERWSD. (d) U-Net. (e) PSPNet. (f) BDRAR.
(g) DSSDNet. (h) ESPFNet. (i) Salient shadow ground truth.

For the implementation details of the proposed ESPFNet,
the kernel size of the convolutional layers is 3 × 3 except for
the deeply supervised layers and prediction layers with 1 × 1.
The stochastic gradient descent is used to optimize the network
with the weight decay of 0.0005 and the momentum of 0.9.
Besides, the training epochs are 100, the batch size is 10 and the
learning rate is initialized to 10−3, with a “poly” policy used for
the learning rate decay. The proposed network is implemented
using PyTorch framework [51].

B. Compared Methods and Evaluation Metrics

To evaluate the superiority of the proposed ESPFNet, six
representative methods are utilized for comparison, including
two traditional shadow detection methods, i.e., spectral ra-
tioing segmentation (SRS) [3] and extended random walker
based shadow detection (ERWSD) [7], and four deep learning
based methods, U-Net [52], the pyramid scene parsing net-
work (PSPNet) [39], the bidirectional feature pyramid network
with recurrent attention residual (BDRAR) modules, [53] and
the DSSDNet [6]. U-Net and PSPNet are two widely used
networks for semantic segmentation and the shadow detection

can also be regarded as a semantic segmentation problem.
BDRAR is designed for shadow detection in close-shot images,
and DSSDNet is proposed specifically for shadow detection in
aerial images. And all the deep learning based methods were
trained on the same training data with the same parameter
settings.

To analyze the compared methods quantitatively, a widely
used quantitative metric, i.e., the F-score, is adopted with the
value ranging from 0 to 1 [1], [8]. The closer the F-score is
to 1, the better performance of the methods. Besides, box plot
is introduced, which is an excellent way to provide a visual
representation of data distributions. And the receiver operating
characteristic (ROC) curves and precision-recall (PR) curves are
also plotted to analyze the binary classification accuracies of the
compared methods.

C. Qualitative Comparison

Four representative shadow images are presented to compare
the performance of compared methods in Figs. 5–8. These
images contain various land covers, shadow sizes and shadow
shapes. The experiments results show that the SRS can detect
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Fig. 7. Comparison of shadow detection results by the different methods in image #3. (a) Aerial image. (b) SRS. (c) ERWSD. (d) U-Net. (e) PSPNet. (f) BDRAR.
(g) DSSDNet. (h) ESPFNet. (i) Salient shadow ground truth.

all shadow regions, but also falsely recognize the vegetation as
shadows in Figs. 5–8(b). Comparing to the SRS, the ERWSD
can exclude some disturbance of vegetation, but the shadow
detection results are still noisy in Figs. 5–8(c). Because these
two methods are mainly based on the thresholding segmentation,
which may result in sunlit dark objects being falsely recognized
as shadow, and shadowed bright objects being falsely recog-
nized as nonshadow. The U-Net can generate more accurate
results than the above two traditional methods, but the detailed
shadow regions have been detected which are not salient, and a
part of dark non-shadow regions are mistakenly identified as
shadows in Figs. 5–8(d). For the results in Figs. 5–8(e) and
(f), the PSPNet and BDRAR can detect the salient shadow
regions effectively, but the detected shadow boundaries of the
buildings are smooth and irregular, and are not consistent with
the real scene. The results of the DSSDNet are accurate and
regular, but some detailed shadow regions are also detected in
Figs. 5–8(g). The proposed ESPFNet can not only detect the
salient shadow regions accurately, but it also maintains regular
shadow boundaries, as shown in Figs. 5–8(h).

D. Quantitative Comparison

A quantitative comparison was also carried out. The average
salient shadow detection accuracy comparisons for the salient
test images are given in Table I, and the proposed ESPFNet
achieves highest F-score value, i.e., 92.04%, among all the
compared methods. The F-score values of the SRS and ERWSD
are 71.30% and 75.32%, respectively, lower than 80%, while the
U-Net, PSPNet, BDRAR, and DSSDNet are between 87%–92%.
Therefore, the ESPFNet has significant accuracy improvements
for the traditional methods, and shows accuracy advantages for
the compared deep learning based methods as well.

Besides, the box plots of the F-score distributions for the
compared methods on the salient test images are shown in
Fig. 9. The box sizes of SRS and ERWSD are large, which
means the detection results are unstable, while that of the deep
learning based methods are smaller, which are more stable than
the traditional methods. And the box location and box size
of ESPFNet are both highest and smallest, which verifies the
effectiveness of ESPFNet.
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Fig. 8. Comparison of shadow detection results by the different methods in image #4. (a) Aerial image. (b) SRS. (c) ERWSD. (d) U-Net. (e) PSPNet. (f) BDRAR.
(g) DSSDNet. (h) ESPFNet. (i) Salient shadow ground truth.

Fig. 9. Box plots of the F-score distributions for the compared methods on the salient test images.
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Fig. 10. ROC and PR curves of the compared methods on the salient test images. (a) ROC curves. (b) PR curves.

Fig. 11. Visual comparison of a detailed region (red box) for ESPFNet-WoEDM, ESPFNet-WoEFF, and ESPFNet. (a) Shadow image. (b) Detailed region cropped
from (a). (c) ESPFNet-WoEDM. (d) ESPFNet-WoEFF. (e) ESPFNet. (f) Salient shadow ground truth.

ROC and PR curves of the compared methods on the salient
test images are presented in Fig. 10. The ROC curves of the
proposed ESPFNet method (red solid curve) and DSSDNet
(black dashed curve) are close to each other, and are better than
the other methods in Fig. 10(a). The AUC scores of ESPFNet
and DSSDNet are both 0.986, and are higher than the scores of
the other methods, except for PSPNet. It should be noted that
the AUC score of PSPNet is 0.989, which is the highest score,
but the ROC curve of PSPNet is not the closest to the upper left
corner. Besides, the PR curves are shown in Fig. 10(b), which
also indicates the ESPFNet and DSSDNet achieve superior
performances on the salient shadow test images.

E. Ablation Analysis

As the EDM is the main innovation of the proposed ESPFNet
method, two baseline networks were evaluated, i.e., ESPFNet

without the EDM (ESPFNet-WoEDM) and ESPFNet without
the edge feature fusion (ESPFNet-WoEFF), to demonstrate the
effectiveness of the EDM. It should be noted that ESPFNet-
WoEDM means that the EDM has been completely removed,
while ESPFNet-WoEFF means that the EDM still exists, but the
edge features are not fused with the multibranch features.

Visual comparisons for ESPFNet-WoEDM, ESPFNet-
WoEFF, and ESPFNet are presented in Figs. 11 and 12. Parts
of shadow regions are enlarged, and labeled with the red
boxes, as shown in Figs. 11(a) and 12(a). It can be seen that
ESPFNet-WoEDM has left out some salient shadow regions in
Fig. 11(c), and it falsely recognizes the dark road as shadow in
Fig. 12(c). ESPFNet-WoEFF can partially correct the problems
of the missing salient shadow regions and the false detection of
dark road in Figs. 11(d) and 12(d), respectively. Comparing the
ESPFNet-WoEDM and ESPFNet-WoEFF, ESPFNet can not
only detects the salient shadows completely, but it also
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Fig. 12. Visual comparison of a detailed region (red box) for ESPFNet-WoEDM, ESPFNet-WoEFF, and ESPFNet. (a) Shadow image. (b) Detailed region cropped
from (a). (c) ESPFNet-WoEDM. (d) ESPFNet-WoEFF. (e) ESPFNet. (f) Salient shadow ground truth.

Fig. 13. Box plots of the F-score distributions for the salient test images.

effectively excludes the disturbance of the dark road in
Figs. 11(e) and 12(e), which demonstrates the effectiveness
of the EDM and the edge feature fusion with multibranch
features.

The F-scores of ESPFNet-WoEDM, ESPFNet-WoEFF, and
ESPFNet obtained with the salient test images are given in
Table II. It shows that the F-score of ESPFNet-WoEFF is 90.68%
higher than the F-score of ESPFNet-WoEDM (90.37%), demon-
strating the effectiveness of the EDM. The F-score of ESPFNet is
92.04%, higher than the F-score of ESPFNet-WoEFF (90.68%),
which means that the edge feature fusion with multibranch
features is helpful for salient shadow detection. The box plots of
the F-score distributions for the salient test images are shown in
Fig. 13. The box size of ESPFNet-WoEFF is smaller than that of
ESPFNet-WoEDM, and the box location of ESPFNet-WoEFF
is also higher than that of ESPFNet-WoEDM. The box size and
box location of ESPFNet are both the smallest and the highest.

Further, ROC and PR curves are provided in Fig. 14 to com-
pare ESPFNet with ESPFNet-WoEDM and ESPFNet-WoEFF.
The ROC curves indicate that ESPFNet (red curve) is clos-
est to the upper left corner, while ESPFNet-WoEFF (blue
curve) is slightly better than ESPFNet-WoEDM (green curve) in
Fig. 14(a). Moreover, the PR curves show that ESPFNet is again
closest to the upper right corner, while ESPFNet-WoEFF shows a

better performance than ESPFNet-WoEDM in Fig. 14(b). Over-
all, the proposed ESPFNet can improve the salient shadow de-
tection accuracy significantly, compared to ESPFNet-WoEDM
and ESPFNet-WoEFF.

V. DISCUSSION

Since the large area is the most important feature for salient
shadows, it should be investigated whether salient shadow detec-
tion results can be achieved through some simple postprocessing
of the compared methods. Therefore, a morphological operation
i.e., small shadow region removal, was conducted to verify this
point. Through a trial-and-error test, the area threshold value was
set to 130, which can generate accurate salient shadow detection
results for DSSDNet, because the original results of DSSDNet
are the most accurate among the compared methods, but with
small shadow regions.

The results of two experiments in postprocessing for the
compared methods are presented in Figs. 15 and 16 (from Figs. 5
and 7). It is clear that the results of the compared methods in
Figs. 15 and 16 are improved significantly when compared to
the results in Figs. 5 and 7. The salient shadow regions remain
while the small shadow regions are excluded. However, it should
also be noted that, for the results of SRS and ERWSD shown
in Figs. 15(a) and (b) and 16(a) and (b), the falsely detected
vegetation regions are not removed through this postprocessing,
because some of the vegetation regions are too large. For the
results of U-Net shown in Figs. 15(c) and 16(c), most of the
non-salient shadow regions are removed, but some small regions
are still connected with the building shadows, which are difficult
to exclude with the area threshold. For the results of PSPNet
and BDRAR in Figs. 15(d) and (e) and 16(d) and (e), the
detected shadow regions are salient and the postprocessing is
less effective on these results, but the problem is that the detected
shadow boundaries are inaccurate, as mentioned in Section IV-C.
For the results of DSSDNet in Figs. 15(f) and 16(f), the results
are improved a lot, and DSSDNet can detect the salient shadow
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Fig. 14. ROC and PR curves of ESPFNet-WoEDM ESPFNet-WoEFF, and ESPFNet on the salient test images. (a) ROC curves. (b) PR curves.

Fig. 15. Postprocessing for the compared methods from Fig. 5 with the area threshold value equal to 130. (a) SRS. (b) ERWSD. (c) U-Net. (d) PSPNet. (e)
BDRAR. (f) DSSDNet.

TABLE III
AVERAGE ACCURACIES OBTAINED WITH THE SALIENT SHADOW TEST IMAGES, WITH THE AREA THRESHOLD VALUE EQUAL TO 130 (EXCEPT FOR ESPFNET)

regions accurately while retaining regular shadow boundaries,
but the slender shadow regions, as labeled with the red box, are
difficult to remove, because these shadows also have a relatively
large area.

The average accuracies obtained by the different methods
with the salient shadow test images are given in Table III.
Most of the compared methods show an improved accuracy,

except for BDRAR with a 0.05% decrease, because the orig-
inal results of BDRAR detect most of the salient shadow
regions. The F-score of DSSDNet is 92.15% after small
shadow region removal, which is higher than ESPFNet, with
92.04%.

Although the postprocessing can improve the salient shadow
detection accuracy of the compared methods, an optimal area
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Fig. 16. Postprocessing for the compared methods from Fig. 7 with the area threshold value equal to 130. (a) SRS. (b) ERWSD. (c) U-Net. (d) PSPNet. (e)
BDRAR. (f) DSSDNet.

threshold is obligatory for the postprocessing, which requires
trial-and-error interaction. In contrast, salient shadows can be
detected directly by ESPFNet. Overall, the proposed ESPFNet
is a more effective and efficient way to obtain the salient shadows
in aerial remote sensing images.

VI. CONCLUSION

In this article, the concept of salient shadows in remote sensing
images has been presented and the novel ESPFNet under a
multitask learning framework has been proposed to solve this
problem in aerial remote sensing images. The key idea is the use
of a multitask framework to achieve salient shadow detection by
simultaneously detecting the shadow regions and shadow edges.
ESPFNet is made up of three components, i.e., the PSP structure,
the EDM, and the EMI.

The qualitative and quantitative analyses demonstrated that
the proposed ESPFNet achieved competitive salient shadow
detection performance, compared with traditional shadow de-
tection methods and deep learning based methods. In addition,
the ablation analysis has also been conducted, and verified the
effectiveness of the EDM and the edge feature fusion with multi-
branch features. Furthermore, postprocessing (small shadow re-
gion removal) was performed to further highlight the advantage
of the proposed ESPFNet.

ACKNOWLEDGMENT

The authors appreciate the editors and anonymous reviewers
for their valuable suggestions.

REFERENCES

[1] K. R. M. Adeline, M. Chen, X. Briottet, S. K. Pang, and N. Paparoditis,
“Shadow detection in very high spatial resolution aerial images: A com-
parative study,” ISPRS J. Photogramm. Remote Sens., vol. 80, pp. 21–38,
2013.

[2] H. Li, L. Zhang, and H. Shen, “An adaptive nonlocal regularized shadow
removal method for aerial remote sensing images,” IEEE Trans. Geosci.
Remote Sens., vol. 52, no. 1, pp. 106–120, Jan. 2014.

[3] V. J. D. Tsai, “A comparative study on shadow compensation of color
aerial images in invariant color models,” IEEE Trans. Geosci. Remote
Sens., vol. 44, no. 6, pp. 1661–1671, Jun. 2006.

[4] S. Luo, H. Shen, H. Li, and Y. Chen, “Shadow removal based on separated
illumination correction for urban aerial remote sensing images,” Signal
Process, vol. 165, pp. 197–208, 2019.

[5] Z. Li, H. Shen, H. Li, G. Xia, P. Gamba, and L. Zhang, “Multi-
feature combined cloud and cloud shadow detection in GaoFen-1 wide
field of view imagery,” Remote Sens. Environ., vol. 191, pp. 342–358,
2017.

[6] S. Luo, H. Li, and H. Shen, “Deeply supervised convolutional neural
network for shadow detection based on a novel aerial shadow imagery
dataset,” ISPRS J. Photogramm. Remote Sens., vol. 167, pp. 443–457,
2020.

[7] X. Kang, Y. Huang, S. Li, H. Lin, and J. A. Benediktsson, “Extended
random walker for shadow detection in very high resolution remote sensing
images,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 2, pp. 867–876,
Feb. 2018.

[8] G. F. Silva, G. B. Carneiro, R. Doth, L. A. Amaral, and D. F. G. d. Azevedo,
“Near real-time shadow detection and removal in aerial motion imagery
application,” ISPRS J. Photogramm. Remote Sens., vol. 140, pp. 104–121,
2018.

[9] G. Sun et al., “Combinational shadow index for building shadow extraction
in urban areas from Sentinel-2A MSI imagery,” Int. J. Appl. Earth Observ.
Geoinf., vol. 78, pp. 53–65, 2019.

[10] G. Liasis and S. Stavrou, “Satellite images analysis for shadow detection
and building height estimation,” ISPRS J. Photogramm. Remote Sens.,
vol. 119, pp. 437–450, 2016.

[11] Y. Li, P. Gong, and T. Sasagawa, “Integrated shadow removal based on
photogrammetry and image analysis,” Int. J. Remote Sens., vol. 26, no. 18,
pp. 3911–3929, 2005.



LUO et al.: ESPFNET FOR SALIENT SHADOW DETECTION IN AERIAL REMOTE SENSING IMAGES 4645

[12] G. Tolt, M. Shimoni, and J. Ahlberg, “A shadow detection method for
remote sensing images using VHR hyperspectral and LIDAR data,” in
Proc. IEEE Int. Geosci. Remote Sens. Symp., 2011, pp. 4423–4426.

[13] Q. Wang, L. Yan, Q. Yuan, and Z. Ma, “An automatic shadow detection
method for VHR remote sensing orthoimagery,” Remote Sens., vol. 9,
no. 5, pp. 469, 2017.

[14] P. M. Dare, “Shadow analysis in high-resolution satellite imagery of urban
areas,” Photogramm. Eng. Remote Sens., vol. 71, no. 2, pp. 169–177, 2005.

[15] V. Arévalo, J. González, and G. Ambrosio, “Shadow detection in colour
high-resolution satellite images,” Int. J. Remote Sens., vol. 29, no. 7,
pp. 1945–1963, 2008.

[16] K. L. Chung, Y. R. Lin, and Y. H. Huang, “Efficient shadow detection
of color aerial images based on successive thresholding scheme,” IEEE
Trans. Geosci. Remote Sens., vol. 47, no. 2, pp. 671–682, Feb. 2009.

[17] H. Song, B. Huang, and K. Zhang, “Shadow detection and reconstruc-
tion in high-resolution satellite images via morphological filtering and
example-based learning,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5,
pp. 2545–2554, May 2014.

[18] H. Zhang, K. Sun, and W. Li, “Object-Oriented shadow detection and
removal from urban high-resolution remote sensing images,” IEEE Trans.
Geosci. Remote Sens., vol. 52, no. 11, pp. 6972–6982, Nov. 2014.

[19] Y. Jin, W. Xu, D. Shao, X. He, and X. Zhang, “Object-Oriented au-
tomatic and accurate shadow detection for very high spatial resolution
satellite images,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2019,
pp. 1458–1461.

[20] L. Lorenzi, F. Melgani, and G. Mercier, “A complete processing chain
for shadow detection and reconstruction in VHR images,” IEEE Trans.
Geosci. Remote Sens., vol. 50, no. 9, pp. 3440–3452, Sep. 2012.

[21] Y. Zhang et al., “Recurrent shadow attention model (RSAM) for shadow
removal in high-resolution urban land-cover mapping,” Remote Sens.
Environ., vol. 247, 2020, Art. no. 111945.

[22] T. Liu et al., “Learning to detect a salient object,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 33, no. 2, pp. 353–367, Feb. 2011.

[23] A. Borji, M. Cheng, H. Jiang, and J. Li, “Salient object detection: A
benchmark,” IEEE Trans. Image Process., vol. 24, no. 12, pp. 5706–5722,
Dec. 2015.

[24] R. Zhao, W. Ouyang, H. Li, and X. Wang, “Saliency detection by multi-
context deep learning,” in Proc. IEEE Conf. Comput. Vis. Pattern, 2015,
pp. 1265–1274.

[25] Q. Hou, M. Cheng, X. Hu, A. Borji, Z. Tu, and P. H. S. Torr, “Deeply
supervised salient object detection with short connections,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 41, no. 4, pp. 815–828, Apr. 2019.

[26] X. Zhang, T. Wang, J. Qi, H. Lu, and G. Wang, “Progressive attention
guided recurrent network for salient object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern, 2018, pp. 714–722.

[27] L. Wang, R. Chen, L. Zhu, H. Xie, and X. Li, “Deep Sub-region network
for salient object detection,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 31, no. 2, pp. 728–741, Feb. 2021.

[28] M. Zhang et al. “LFNet: Light field fusion network for salient object
detection,” IEEE Trans. Image Process., vol. 29, pp. 6276–6287, 2020.

[29] T. Liu, J. Sun, N. Zheng, X. Tang, and H. Shum, “Learning to detect a
salient object,” in Proc. IEEE Conf. Comput. Vis. Pattern, 2007, pp. 1–8.

[30] A. Borji, “What is a salient object? A dataset and a baseline model for
salient object detection,” IEEE Trans. Image Process., vol. 24, no. 2,
pp. 742–756, Feb. 2015.

[31] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time
object detection with region proposal networks,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017.

[32] C. F. Flores, A. Gonzalez-Garcia, J. van de Weijer, and B. Raducanu,
“Saliency for fine-grained object recognition in domains with scarce
training data,” Pattern Recognit., vol. 94, pp. 62–73, 2019.

[33] R. Cong, J. Lei, H. Fu, F. Porikli, Q. Huang, and C. Hou, “Video saliency
detection via sparsity-based reconstruction and propagation,” IEEE Trans.
Image Process., vol. 28, no. 10, pp. 4819–4831, Oct. 2019.

[34] L. Shao and M. Brady, “Specific object retrieval based on salient regions,”
Pattern Recognit., vol. 39, no. 10, pp. 1932–1948, 2006.

[35] X. Qin, Z. Zhang, C. Huang, C. Gao, M. Dehghan, and M. Jagersand,
“BASNet: Boundary-aware salient object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern, 2019, pp. 7471–7481.

[36] M. Feng, H. Lu, and E. Ding, “Attentive feedback network for boundary-
aware salient object detection,” in Proc. IEEE Conf. Comput. Vis. Pattern,
2019, pp. 1623–1632.

[37] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories,” in Proc. IEEE
Conf. Comput. Vis. Pattern, 2006, vol. 2, pp. 2169–2178.

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep
convolutional networks for visual recognition,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 37, no. 9, pp. 1904–1916, Sep. 2015.

[39] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proc. IEEE Conf. Comput. Vis. Pattern, 2017, pp. 6230–6239.

[40] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proc. Int. Conf. Mach.
Learn., 2015, vol. 37, pp. 448–456.

[41] V. Nair and G. E. Hinton, “Rectified linear units improve restricted Boltz-
mann machines,” in Proc. Int. Conf. Mach. Learn., 2010, pp. 807–814.

[42] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern, 2016,
pp. 770–778.

[43] L. Chen, J. T. Barron, G. Papandreou, K. Murphy, and A. L. Yuille,
“Semantic image segmentation with task-specific edge detection using
CNNs and a discriminatively trained domain transform,” in Proc. IEEE
Conf. Comput. Vis. Pattern, 2016, pp. 4545–4554.

[44] D. Marmanis, K. Schindler, J. D. Wegner, S. Galliani, M. Datcu, and U.
Stilla, “Classification with an edge: Improving semantic image segmen-
tation with boundary detection,” ISPRS J. Photogramm. Remote Sens.,
vol. 135, pp. 158–172, 2018.

[45] H. Ding, X. Jiang, A. Q. Liu, N. M. Thalmann, and G. Wang, “Boundary-
Aware feature propagation for scene segmentation,” in Proc. IEEE Int.
Conf. Comput. Vis., 2019, pp. 6818–6828.

[46] H. Han, Y. Chen, P. Hsiao, and L. Fu, “Using channel-wise attention
for deep CNN based real-time semantic segmentation with class-aware
edge information,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 2,
pp. 1041–1051, Feb. 2021.

[47] S. Xie and Z. Tu, “Holistically-Nested edge detection,” in Proc. IEEE Int.
Conf. Comput. Vis ., 2015, pp. 1395–1403.

[48] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu, “Deeply-supervised
nets,” in Proc. Int. Conf. Artif. Intell. Statist., 2015, pp. 562–570.

[49] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE
Trans. Syst. , Man, Cybern., vol. 9, no. 1, pp. 62–66, Jan. 1979.

[50] J. Canny, “A computational approach to edge detection,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. PAMI-8, no. 6, pp. 679–698, Nov. 1986.

[51] A. Paszke et al., “Pytorch: An imperative style, high-performance
deep learning library,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 8026–8037.

[52] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervention, 2015, pp. 234–241.

[53] L. Zhu et al., “Bidirectional feature pyramid network with recurrent
attention residual modules for shadow detection,” in Proc. Eur. Conf.
Comput. Vis., 2018, pp. 122–137.

Shuang Luo received the B.S. degree in geo-
graphic information system from China University of
Petroleum, Qingdao, China, in 2015. He is currently
working toward the Ph.D. degree in cartography and
geographic Information engineering at School of Re-
source and Environmental Sciences, Wuhan Univer-
sity, Wuhan, China.

His research interests include shadow detection and
removal of high resolution remote sensing images.



4646 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Huifang Li (Member, IEEE) received the B.S. degree
in geographical information science from China Uni-
versity of Mining and Technology, Xuzhou, China,
in 2008, and the Ph.D. degree in photogrammetry
and remote sensing from Wuhan University, Wuhan,
China, in 2013.

She is currently an Associate Professor with
the School of Resources and Environmental
Science, Wuhan University. Her research interests
include radiometric correction of remote sensing im-
ages, including cloud correction, shadow correction,

and urban thermal environment analysis and alleviation.

Ruzhao Zhu received the B.S. degree in physical
geography and resource environment from Wuhan
University, Wuhan, China, in 2019.

He is currently a R&D Engineer with KylinSoft,
Changsha, China. He is dedicated to develop China’s
self-developed and self-reliant operating system.

Yuting Gong received the B.S. degree in geo-
information science and technology from China Uni-
versity of Geosciences, Wuhan, China, in 2019.
She is currently working toward the M.S. degree
in surveying and mapping engineering at School
of Resource and Environmental Sciences, Wuhan
University, Wuhan, China.

Her research interests include reconstruction of
land surface temperature of remote sensing data.

Huanfeng Shen (Senior Member, IEEE) received the
B.S. degree in surveying and mapping engineering
and the Ph.D. degree in photogrammetry and remote
sensing from Wuhan University, Wuhan, China, in
2002 and 2007, respectively.

In 2007, he was with the School of Resource and
Environmental Sciences (SRES), Wuhan University,
where he is currently a Luojia Distinguished Profes-
sor and an Associate Dean of SRES. He was or is
the PI of two projects supported by the National Key
Research and Development Program of China, and six

projects supported by the National Natural Science Foundation of China. He has
authored more than 100 research papers in peer-reviewed international journals.
His research interests include remote sensing image processing, multi-source
data fusion, and intelligent environmental sensing.

Dr. Shen is a Council Member of China Association of Remote Sensing
Application, Education Committee Member of Chinese Society for Geodesy
Photogrammetry and Cartography, and Theory Committee Member of Chinese
Society for Geospatial Information Society. He is currently a member of the
Editorial Board of Journal of Applied Remote Sensing and Geography and
Geo-information Science.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


