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A B S T R A C T

Various forms of machine learning (ML) methods have historically played a valuable role in environmental
remote sensing research. With an increasing amount of “big data” from earth observation and rapid advances in
ML, increasing opportunities for novel methods have emerged to aid in earth environmental monitoring. Over
the last decade, a typical and state-of-the-art ML framework named deep learning (DL), which is developed from
the traditional neural network (NN), has outperformed traditional models with considerable improvement in
performance. Substantial progress in developing a DL methodology for a variety of earth science applications has
been observed. Therefore, this review will concentrate on the use of the traditional NN and DL methods to
advance the environmental remote sensing process. First, the potential of DL in environmental remote sensing,
including land cover mapping, environmental parameter retrieval, data fusion and downscaling, and information
reconstruction and prediction, will be analyzed. A typical network structure will then be introduced. Afterward,
the applications of DL environmental monitoring in the atmosphere, vegetation, hydrology, air and land surface
temperature, evapotranspiration, solar radiation, and ocean color are specifically reviewed. Finally, challenges
and future perspectives will be comprehensively analyzed and discussed.

1. Introduction

The earth's environmental deterioration, which is caused by human
behavior and is continuously aggravating, has become the primary
problem hindering further developments of global changes. The lack of
resources and environmental deterioration are no longer exclusive
phenomena in specific regions. In the last 50 years, space information
technology, especially satellite remote sensing technology, has pro-
vided advanced detection and research means for the investigation of
the earth's resources, the monitoring of local and regional environ-
mental changes, and even the study of global changes, with the ad-
vantages of being macro, comprehensive, fast, dynamic, and accurate
(Overpeck et al., 2011; Yang et al., 2013).

Remote sensing data are mainly used for environmental parameter
monitoring based on physical models (Liang, 2005). Although physical
models can effectively express the formation process from

environmental parameters to remote sensing observations, these
models are largely dependent on the prior knowledge of the model
parameters. Such knowledge often has large uncertainty due to the high
complexity of the physical process and varies in different periods and
regions, which tends to result in the limited accuracy of environmental
remote sensing. Therefore, various forms of data-driven machine
learning (ML) methods have historically played a valuable role in en-
vironmental remote sensing. With the increasing availability of “earth
big data” and rapid advances in ML, increasing opportunities for novel
methods in earth environmental monitoring have emerged. Deep
learning (DL), which has attracted broad attention in recent years, is a
potential tool focusing on large-size and deep artificial neural networks.
The DL models can accurately approximate the complicated nonlinear
relationship between environmental parameters owing to multi-layer
learning (LeCun et al., 2015; Bengio et al., 2013), which help capture
the potential association between environmental variables for remote

https://doi.org/10.1016/j.rse.2020.111716
Received 1 March 2019; Received in revised form 17 January 2020; Accepted 8 February 2020

⁎ Corresponding author at: School of Resource and Environmental Sciences, Wuhan University, Wuhan, China.
E-mail address: shenhf@whu.edu.cn (H. Shen).

Remote Sensing of Environment 241 (2020) 111716

Available online 27 February 2020
0034-4257/ © 2020 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2020.111716
https://doi.org/10.1016/j.rse.2020.111716
mailto:shenhf@whu.edu.cn
https://doi.org/10.1016/j.rse.2020.111716
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2020.111716&domain=pdf


sensing retrieval, fusion, downscaling, and so forth; besides, DL has
reported great superiorities in multiscale and multilevel feature ex-
traction from remote sensing images and combining these features from
low level to high level (Zhang et al., 2016b), thus contributing to a high
performance in image processing and classification problems. As a re-
sult, DL models have outperformed traditional models with substantial
improvement in earth environmental monitoring with remote sensing
data (Reichstein et al., 2019).

Although several review papers on DL in remote sensing have been
published, these papers mainly focus on the preprocessing and classi-
fication problem from the image processing perspective (Ball et al.,
2017; Ma et al., 2019; Zhang et al., 2016b; Zhu et al., 2017) or the DL-
based quantitative remote sensing analysis in a specific field (for in-
stance, hydrology (Marçais and de Dreuzy, 2017; Shen, 2018; Shen
et al., 2018a) and atmospheric aerosol (Di Noia and Hasekamp, 2018)).
The comprehensive quantitative remote sensing analysis using DL has
been poorly explored. The traditional NN and DL models have been
used in earth environmental monitoring, and numerous works have
been published in recent decades (Aires et al., 2005; Aires et al., 2001;
Chlingaryan et al., 2018; Li et al., 2017a; Zhang et al., 2018b). There-
fore, this review will concentrate on the DL applications to advance the
environmental remote sensing process. The main outline (Fig. 1) of this
paper is as follows. (1) The DL potential for environmental remote
sensing, including land cover mapping, environmental parameter re-
trieval, data fusion and downscaling, and missing information re-
construction and prediction, will be comprehensively analyzed. (2)
Some popular DL network architectures and their use for remote sen-
sing applications will be introduced. (3) Some key areas in environ-
mental remote sensing, in which traditional NN and DL have been used,
will be reviewed. These areas include land cover mapping, atmosphere
parameter estimation, land surface quantitative retrieval, and hydro-
logical parameter sensing. (4) Finally, some new insights into the ways
by which DL can be efficiently driven for environmental remote sensing
will be provided. For example, this study will provide the method of
combining the physical and DL models. The incorporation of the geo-
graphical laws into intelligent DL architecture is also another potential
research direction. The DL-based quantitative retrieval is largely de-
pendent on the training samples. Thus, this review will also provide
knowledge on the effective use of DL in the limited sample condition.

The remainder of this paper is arranged as follows. Section 2 dis-
cusses the use of DL for environmental remote sensing. Section 3 ana-
lyzes some popular network structures and the roles of various net-
works for different data processing tasks. Section 4 provides a
comprehensive review of the applications of the traditional NN and DL

in environmental remote sensing, including land cover mapping and
quantitative parameter retrieval. Section 5 discusses the potential re-
search directions and future perspectives. Finally, Section 6 summarizes
the conclusions.

2. What can DL do for environmental remote sensing?

The DL applications in remotely sensed images are different from
those in natural images, the remotely sensed images usually have more
complicated and diverse patterns, as well as richer spatio–tempor-
al–spectral information that can be used, thus higher requirements are
imposed on the processing methods of remotely sensed images. Thanks
to the strong ability of DL in feature representation, DL has been in-
troduced into environmental remote sensing and applied in many as-
pects, including land cover mapping, environmental parameter re-
trieval, data fusion and downscaling, and information construction and
prediction. The detailed applications of DL in environmental remote
sensing are as follows.

2.1. Land cover mapping

Land cover mapping from remote sensing imagery relies on image
classification. Traditional classification methods categorize images
based on different spatial units, including pixels, moving windows,
objects, and scenes (Blaschke, 2010; Ma et al., 2017; Zhang et al.,
2018b). However, distinguishing the complex land structures or pat-
terns by using a limited number of rules is often difficult because tra-
ditional methods only involve low-level features in spectral and spatial
domains in classification. Thus, classification approaches using a huge
number of features at high levels are desirable. DL has been recently
introduced to land cover mapping and obtained optimal results due to
its superiorities in multiscale and multilevel feature extraction (Huang
et al., 2018; Scott et al., 2017b; Zhang et al., 2019). Compared with the
traditional rule-based and ML methods, the DL-based classification
method has significant advantages in terms of classification accuracy,
especially in complex urban areas. With the requirements of land cover
mapping from high-resolution and even very-high-resolution satellite
imageries, DL-based land-cover classification methods have shown their
potentials in current applications.

2.2. Environmental parameter retrieval

Remote sensing retrieval of environmental parameters is often
achieved by physical models, which are grounded in systematic

Fig. 1. Main outline of this work.
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physical theories and mechanisms. However, the physical processes are
highly complicated and involve numerous model parameters.
Furthermore, a sound physical model is yet to be developed for some
environmental phenomena. Given this fact, DL has a good opportunity
to retrieve environmental parameters. First, DL can simulate or simplify
the physical models for environmental parameter retrieval. The hugely
complex computation is necessary for physical models, and DL can be
used for the forward simulation of physical models, in part or in whole,
owing to its considerable simulation capability. Thus, the retrieval
process of environmental parameters can be simplified. Second, DL is
effective for establishing the statistical relationship between remote
sensing observations and in-situ environmental parameters owing to its
capacity of approximating complex relationships (LeCun et al., 2015).
This avoids the complicated physical models and can obtain a com-
parable performance. Perhaps more importantly, DL can provide an
alternative and feasible way for environmental parameter retrieval in
certain environmental phenomena with a lack of sound physical
models.

2.3. Data fusion and downscaling

Remote sensing satellite sensors feature a tradeoff among the spa-
tial, temporal, and spectral resolutions. Data fusion, which merges the
complementary information, is an effective way to obtain high spa-
tio–temporal–spectral resolution data (Shen et al., 2016). The fusion of
various data indicates the establishment of a complicated spatio–-
temporal–spectral relationship for different input data. This process is
similar to data downscaling, which establishes a statistical association
between the coarse-resolution parameter and high-resolution auxiliary
data (Peng et al., 2017). Therefore, the key issue for data fusion and
downscaling is how to build the relationships between various data,
which is exactly what DL is good at (LeCun et al., 2015). DL can capture
the abstract features of remote sensing observations and learn the po-
tential associations between different observations through multilayer
learning. Hence, the complicated relationship for data fusion and
downscaling can be comprehensively represented by DL. In addition,
DL establishes the relationship by extracting abstract features from data
samples, which are less influenced by the observation properties, such
as sensor type and spatial scale. Thus, robust relationships can be es-
tablished in DL models.

2.4. Information construction and prediction

Missing information in remote sensing data, which are caused by

dead lines, gaps, and cloud cover, are common (Shen et al., 2015). To
date, various methods have been developed for the reconstruction of
missing information in remote sensing data for different tasks. These
methods obtained satisfactory recovery results, such as gap filling (Zeng
et al., 2013), cloud removal (Cheng et al., 2014), normalized difference
vegetation index (NDVI), and land surface temperature (LST) re-
construction (Yang et al., 2015; Zeng et al., 2018). However, most re-
construction methods are based on linear models and can only be used
under limited conditions. This limitation contributes to the difficulty in
handling complex surfaces and large missing areas. Convolutional NNs
(CNNs) have been recently successfully applied to deal with missing
data prediction (Das and Ghosh, 2017), gap filling and cloud removal
(Zhang et al., 2018c), and LST reconstruction (Wu et al., 2019) because
of the strong nonlinear representation capability of the DL model and
acquired state-of-the-art results. This notion indicates the potential of
DL for missing information reconstruction and prediction in remote
sensing data.

3. Basic DL framework

Although the NN has good universality, a single network framework
cannot address all problems. To date, many different NN frameworks
have been developed to deal with various types of problems, thereby
demonstrating the importance of network frameworks. The back-pro-
pagation NN (BPNN) and generalized regression NN (GRNN) are two
typical examples in the traditional neuron network framework. To date,
the four mainstream DL architectures include the autoencoder (AE),
CNN, deep belief network (DBN), and recurrent NN (RNN). The fol-
lowing sections will further discuss each of these architectures.

3.1. BPNN

BPNN is one of the basic NNs. In BPNN (Fig. 2), at least one hidden
layer is present between one input and one output layer. Several nodes
or neurons can be found in each layer. The BPNN algorithm mainly
comprises forward and backward propagation: the neurons in the input
layer are passed through each hidden layer successively to finally reach
the output layer. If the expected results are not obtained in the output
layer, then the errors are back-propagated to update the neuron weights
of each hidden layer iteratively and finally minimize them.

BPNN, which is one of the popular algorithms of ML, has been used
in most aspects of remote sensing research. Li et al. (2007b) recently
established a hyperspectral retrieval model of soybean leaf area index
(LAI) estimation by BPNN. This model considerably improved accuracy

Fig. 2. BPNN structure.
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compared with traditional regression models. Yang et al. (2011) at-
tempted to interpolate the NDVI maps with the BPNN interpolation
algorithm and results confirmed its advantage compared with Kriging
interpolation. Liang et al. (2011) compensated for the sample tem-
perature with a principal component analysis BPNN (PCA-BPNN)
model, which significantly promoted the analytical precision. BPNN is
generally widely used in multi-parameter retrieval tasks. However,
further BPNN applications are constrained because of two drawbacks
derived from its nature: on the one hand, BPNN slowly converges
during the training process; on the other hand, BPNN is sensitive to the
initial network weights, and different initial weights may facilitate the
model convergence to different local minimum values.

3.2. GRNN

GRNN is a special type of radial basis NN, which usually comprises
four layers: input, pattern, summation, and output layers (Fig. 3). Each
GRNN layer contains several neurons. The sample dimension is the
number of neurons in the input layer. The Gaussian function is calcu-
lated in the pattern layer, and the number of neurons is the number of
training samples. The summation layer neurons are divided into two
parts. The first neuron outputs the arithmetic sum of the pattern layer,
and the rest of the k nodes output the weighted sum of the pattern layer.
The labels' dimension k is the number of neurons in the output layer.
Each neuron in the output layer is equal to the corresponding neuron of
the summation layer divided by the first neuron in the summation
layer. Specifically, GRNN is a complete forward propagation network
with no BP step.

GRNN shows its superiority in terms of fitting capability and con-
vergence speed and can converge to the global minimum compared
with BPNN. Many missions in the remote sensing area, especially the
remote sensing retrieval tasks, can be completed with the help of the
GRNN model. Boyd et al. (2002) showed that GRNN has considerable
potential for monitoring forest cover and its dynamics. Özerdem et al.
(2017) estimated the soil moisture (SM) over agricultural areas with
polarimetric decomposition models and a GRNN model. Şenkal (2010)
developed a solar radiation estimation model in Turkey with GRNN and
found a good agreement between the measured and predicted values
based on the simulation. Although GRNN has achieved such remarkable
success in the remote sensing area, the following drawback is also
evident: GRNN would poorly perform when the training data is scarce;
thus, sufficient training data must be collected to obtain a complete
output distribution.

Although the above mentioned traditional NNs achieve great

success in some area, they have somehow weak fitting ability due to
their shallow structure. Deeper networks should be developed to ad-
dress this problem. In the following, the introduced networks have a
deeper layer than that of traditional NNs. These networks are called DL
algorithms to distinguish them from traditional ML algorithms.

3.3. AE

AE is an important part of DL and can learn data coding in an un-
supervised manner. AE can be divided into two parts: encoder and
decoder (Fig. 4). Each part can be regarded as several hidden layers
between an input layer and an output layer. The encoder reduces the
dimension of the input high-dimensional sample data to output the low-
dimensional encoded data. The low-dimensional encoded data are then
taken as the decoder input. The output result, which has the same di-
mension as the input high-dimensional data of the encoder, is obtained
through the dimension-raising operation of the decoder. BP algorithm is
used to update the weight of the hidden layer to make the AE output as
close as possible to the input. This condition is also used as a criterion to
evaluate AE performance.

AE has been seldom applied in the field of remote sensing. However,
some recent successful cases that adopt the AE model indicate its pro-
mising application prospect. Zhang et al. (2016a) introduced the AE
model into the terrain classification of Polarimetric synthetic aperture
radar (PolSAR) images and achieved remarkable improvement in clas-
sification accuracy. Liu and Wu (2016) adopted AE to identify geolo-
gical disasters and found that AE outperforms the state-of-the-art clas-
sifiers in terms of efficiency and accuracy. Yuan and Jia (2015)
proposed a water quality assessment method based on sparse AE and
found that AE could achieve optimal recognition rates and is fit for
future intelligent management. Overall, AE is suitable for compression
and disentanglement tasks of high-dimensional data in the remote
sensing area.

3.4. DBN

DBN, which is also another important part of DL, is a type of gen-
erative graphical model. Classic DBN contains several restricted
Boltzmann machine (RBM) and ends with a BP layer (Fig. 5). Each RBM
includes a visible layer, followed by a hidden layer. Each layer contains
a certain number of neurons. Connections are found between RBMs but
none between units within layers. Starting from the first layer, the
upper hidden layer of the RBM serves as the next RBM visible layer
input. During the training, the DBN is trained layer by layer, and the

Fig. 3. GRNN structure.
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weights of each layer are fixed layer by layer to obtain the approximate
weight. Finally, the BP algorithm is used to fine-tune the weight of each
layer and obtain the final DBN model.

Compared with some traditional NN models, such as BPNN, DBN
overcomes the disadvantages of local optimum and long training time
derived from the random initialization of weighted parameters. It only
needs a local search for the parameter space; thus, the convergence time
is considerably less. DBN could help solve many problems in remote
sensing due to this meliorate. Shen et al. (2018b) directly estimated
regional ground-level PM2.5 (particulate matter with aerodynamic
diameters< 2.5 μm) from satellite top-of-atmosphere (TOA) re-
flectance by DBN, providing an alternative technique to estimate the
ground-level PM2.5. Zhang et al. (2016a) and Zhong et al. (2017) in-
troduced the DBN model to hyperspectral image classification work.
They also provided better classification performance compared with
traditional models, such as support vector machine (SVM), in most
cases. Diao et al. (2016) adopted DBN to the object detection work and
demonstrated the accuracy and efficiency of the DBN model.

3.5. CNN

CNN comprises a series of basic units stacked between the input and
output layers (Fig. 6). Each basic unit may include the following op-
erational layers: convolutional, pooling, and activation layers. In the

convolution layer, several local filters are used to perform convolution
operation on the input data. The output data with the same dimension
as the input data are usually obtained. The pooling layer can obtain the
low-dimensional data from the input data through various operations,
such as max-pooling and average-pooling operations. The nonlinear
operations in the activation layer increase the nonlinear fitting cap-
ability of CNN. The output and label data share the same dimension and
should be as close as possible to each other through this series of shrink
operations. CNN generally updates weight through BP in the same way
as BPNN.

In the computer vision area, CNN shows its important and excellent
function in the target recognition tasks and the remote sensing area. Lee
and Kwon (2017) discussed the target recognition tasks with hyper-
spectral images. Jiang et al. (2018) extended the CNN application to
recognize the target in SAR images. Both studies far exceeded the tra-
ditional recognition model. In addition, CNN can be applied to some
retrieval tasks, such as SM retrieval (Wang et al., 2019a). Compared
with the traditional NN, CNN abandons the fully connected layer and
adopts a local connection. This approach reduces the computation and
takes advantage of the relative position information in the sample. The
shared convolution kernel is suitable for high-dimensional data pro-
cessing. Nevertheless, CNN also has some disadvantages, such as the
demand for massive training data and high computation cost.

Fig. 4. AE structure.

Fig. 5. DBN structure (Shen et al., 2018b).
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3.6. RNN, long short-term memory (LSTM) and gated recurrent unit (GRU)

A prerequisite of the model definition for an ordinary NN is the
independence of the input/input, output/output, and input/output
samples from each other. This condition makes it impossible to learn
the relationship between samples. However, many samples are corre-
lated in real datasets, such as sequential data, and the traditional net-
work model cannot effectively cope with this correlation. RNN, LSTM
and GRU are models that can deal with sequences, utilize the correla-
tion between sequence data, and even generate sequences. As shown in
Fig. 7(a), RNN has three main parts with several hidden layers. Each
unit of the input sequence is successively inputted into RNN to obtain
the corresponding output sequence unit of this phase and the in-
formation to transmit to the next phase. Such a task is performed to
utilize the correlation within sequences. As an improved version of
RNN, LSTM (Fig. 7(b)) contains forget, input, and output gates, which
are used to control the filtering of the previous status. This structure
aims to obtain previous statuses that are influential to the present in-
stead of the most recent ones. Refer to Lipton et al. (2015) for the de-
tailed algorithm and network structure of the above two models. As an
excellent variant of LSTM, GRU (Fig. 7(c)) has far fewer parameters and
simpler structure, whereas the same or even better effects compared

with LSTM. GRU contains two main gates, namely, reset gate and up-
date gate, to control the flow of long-term information. Reset gate
controls how much previous information would be utilized in the cur-
rent phase and update gate determines which parts of previous in-
formation would be abandoned in the current and next phases. The
detailed algorithm of GRU can be found in Cho et al. (2014).

RNN has become an important model for analyzing time-series
changes in remote sensing due to its excellent performance in short
sequence processing. Besnard et al. (2017) established a model between
forest disturbance and carbon balance in history with the RNN model.
Freeman et al. (2018) applied the RNN model to predict air pollution
time series with data from air monitoring stations in Kuwait.
Ndikumana et al. (2018b) took advantage of RNN to deal with the
agricultural classification study with multitemporal Sentinel-1 SAR
data. RNN generally shows a remarkable advantage in dealing with
short sequence problems. However, RNN would perform relatively poor
in terms of long sequence data processing. As an evolution of RNN,
LSTM can deal with the problems whose time sequence is long. You
et al. (2017) proposed a model based on LSTM for crop field prediction,
thereby allowing real-time forecasting. Yang et al. (2018) improved the
prediction accuracy of sea surface temperature by combining spatial
and temporal information with LSTM. Reddy and Prasad (2018)

Fig. 6. CNN structure.

Fig. 7. Structures of (a) RNN, (b) LSTM and (c) GRU.

Q. Yuan, et al. Remote Sensing of Environment 241 (2020) 111716

6



predicted the vegetation dynamics with far better performance by
LSTM compared with the ordinary NN model. In addition, recent works
(Fang et al., 2019; Fang et al., 2017) estimated the long-term SM by
LSTM, which exhibits better generalization capability than that of tra-
ditional linear regression or autoregressive models. As a variant of
LSTM, GRU can handle the long-term sequence with less training time
but obtain results with even better quality. Ndikumana et al. (2018a)
introduced GRU into the agriculture classification work with multi-
temporal SAR data, which show some superiority over LSTM. Zhao
et al. (2019) further compared the performance of RNN, LSTM and GRU
in the early crop classification work with Sentinel-1A Imagery, in which
GRU performs the best among the three algorithms.

4. Applications

4.1. Land cover

Land cover plays an important role in land planning and manage-
ment as well as environmental analysis and applications. Land cover
maps can be determined by classifying the different sources of remote
sensing imagery, including optical and radar imagery (Augusteijn and
Warrender, 1998; Benediktsson and Sveinsson, 1997; Lv et al., 2015;
Shaker et al., 2019). Various land cover classification approaches using
spectral and spatial information have been intensively studied
(Blaschke, 2010; Duro et al., 2012; Foody, 1995; Hu et al., 2018a; Myint
et al., 2011; Yan et al., 2006). These methods can interpret images by
using the spectral features of each pixel and spatial features based on
local regions or segmented objects. However, the performances of these
methods are often affected by variations and noises within the class.
The complex land structures or patterns are also difficult to dis-
criminate by only using low-level spectral and spatial features. There-
fore, considering the classification approaches using features at high
levels is necessary.

DL has recently created huge breakthroughs in the remote sensing
field, and these breakthroughs have been summarized in several review
articles (John E. Ball et al., 2017; Ma et al., 2019; Zhang et al., 2016b;
Zhu et al., 2017). Image classification is a common DL application.
Accordingly, DL has been successfully applied to land cover classifica-
tion and achieved impressive results (Zhang et al., 2018a; Zhao and Du,
2016; Zhao et al., 2015). Unlike traditional methods of using low-level
spectral and spatial features for land cover classification, a notable
advancement in the DL approach is its capability to learn discriminative
features adaptively from images through supervised learning (Zeiler
and Fergus, 2014). Noted that utilizing DL for land cover classification
in remotely sensed images is similar to semantic segmentation in nat-
ural images, however, the latter usually segment natural images mainly
based on spatial information, while the former further uses the rich
spectral and temporal information in remotely sensed images to obtain
better classification results. In addition, the inputs of the DL approach
for land cover classification can be single source image data or a
combination of multisource data, including optical, radar, and DEM
data. The outputs are the scene-level category labels or pixel-level class
map of the input image(s), in which a scene/pixel is categorized as a
class label of maximal class probability. Accordingly, the DL approaches
applied to the land cover classification in recent studies can be broadly
divided into two categories according to spatial representation levels:
scenes and pixels.

The scene-level approaches are often used to deal with land-use
scene classification problems, which have been studied by Hu et al.
(2015), Scott et al. (2017a), Wu et al. (2016), and Zhao et al. (2017). In
this category of approaches, the input image is stepwise downsampled
through the pooling layers in the model to support the extraction of
multi-scale and multi-level features by convolutional layers, and then
the fully connected layers are utilized for the final prediction of class
probabilities. The present paper mainly reviewed the studies in terms of
the pixel-level approaches, which are mostly used for pixel-to-pixel land

cover classification, and classified each pixel in images by learning end-
to-end deep models (Kussul et al., 2017; Li et al., 2016). This category
of approaches usually labels each pixel/object of the input image based
on the local window of the center pixel/object, more efficiently, pixel-
to-pixel classification can be performed by fully convolutional net-
works. Specifically, in order to maintain the integrity of land structures
and patterns in produced land cover maps, object-based image analysis
(OBIA) (Zhang et al., 2018b), skeleton-based decomposition (Huang
et al., 2018), and hierarchical segmentation (Tong et al., 2020) are
combined with DL models to improve classification accuracy, sepa-
rately, in which the input image is divided into more reasonable pro-
cessing units or the classification results of DL are refined according to
segmented units. Furthermore, Tracewski et al. (2017), Xing et al.
(2018), and Xu et al. (2017) suggested that the auxiliary geotagged
photographs benefit the land cover and use characterization and vali-
dation. Several well-known deep models are examined for complex land
cover mapping (Mahdianpari et al., 2018). In several previous studies
(Gaetano et al., 2018; Huang et al., 2018), a two-branch CNN archi-
tecture is designed to better cope with remote sensing imagery by se-
parately dealing with panchromatic and multispectral information
sources, and visible channels and multispectral channels in image, re-
spectively. Recent studies (Ienco et al., 2019; Scott et al., 2018; Scott
et al., 2017b) also investigated the fusion of multiple CNN classifiers
into an aggregate classifier for land cover classification, which further
enhances the classification ability of single classifier in a manner of
multi-classifier ensemble. More recently, Interdonato et al. (2019) and
Qiu et al. (2019) exploited the complementarity of convolutional and
recurrent NN which capture different aspects of the data, and combined
CNN and RNN into one end-to-end architecture to learn diverse spec-
tral–spatial–temporal feature representation for accurate land cover
classification.

Overall, DL approaches have been widely used in land cover clas-
sification and achieved advanced results. Combining CNNs with tradi-
tional image analysis techniques, such as OBIA and conditional random
field (CRF), or integrated CNNs with other DL or ML classifiers, is
conducive to improve the classification accuracy further. The combined
use of multitemporal and multisource data also enhances the accuracy
of land cover mapping. However, the manually labeled land cover da-
taset for the training of deep models is still inadequate for most tasks.
This inadequacy limits the wide practical application of DL for land
cover classification.

4.2. Vegetation parameters

Vegetation parameters, such as LAI, biomass, fractional vegetation
cover (FVC), vegetation height, vegetation water content (VWC), and
chlorophyll, can be retrieved from remote sensing data owing to the
relationships between vegetation characteristics and remote sensing
observations, such as backscattering, bright temperature, and various
vegetation indexes calculated by combining visible and near-infrared
bands. ANNs and DL succeeded in vegetation parameter retrieval and
outperformed the traditional linear regression methods.

The sensitivity of different vegetation parameters to different re-
mote sensing observations is distinct, and the auxiliary variables used
for inversion are also diverse. Therefore, the selection of the most sui-
table auxiliary variables and models for inversion is an essential re-
search topic. Frate and Solimini (2004) discussed the application of NN
algorithms for retrieving forest biomass from multi-frequency (L- and P-
bands) and multi-polarization (HH, VV, and HV) backscattering data. Li
et al. (2010) developed a vegetation height inversion method based on
BPNN to fit the relationship between the complex correction coeffi-
cients of polarimetric SAR interferometry and vegetation height. They
also found that the inversion error caused by the ground interferometric
estimation was reduced. Liu et al. (2002) presented the retrieval of
wheat VWC from horizontally and vertically polarized brightness
temperatures at L- and X-bands by an error propagation learning BPNN.
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Various vegetation indexes, such as NDVI, enhanced vegetation index
(EVI), and transformed chlorophyll absorption reflectance index to-
gether with diverse band reflections of Moderate-resolution Imaging
Spectroradiometer (MODIS), Landsat Enhanced Thematic Mapper (ETM
+), and Landsat 8, are used to retrieve vegetation biomass, chlorophyll,
and LAI using ANN and radial basis function (RBF) (Liu et al., 2010; Liu
et al., 2017; Xie et al., 2009; Yang et al., 2007; Yang et al., 2012).
Moreover, Chen et al. (2015) used a nonlinear autoregressive network
with exogenous input (NARX) model to learn the relationship between
the input variables of four spectral bands and weight difference vege-
tation index and the output LAI. Accordingly, the feasibility of re-
trieving spatio-temporal LAI is demonstrated by a DL approach with
field validation. Hosseini et al. (2019) used 14 polarimetric parameters
from a time series of uninhabited aerial vehicle synthetic aperture radar
airborne L-band data to estimate biomass for an intensively cropped site
in western Canada. Their results show that NN provided more accurate
estimates compared with those of multiple linear regression (MLR). Jin
et al. (2019) estimated biomass based on 15 hyperspectral vegetation
indexes by using the deep NN (DNN) algorithm. The three-band water
index was the optimal vegetation index for biomass estimation. The
results also show that the biomass estimation accuracy was further in-
creased when LAI was combined with the 15 vegetation indexes.

NN and DL models usually require a large number of training
samples. Some physical and empirical models can simulate canopy re-
flectivity, backscattering information, and vegetation parameter values,
providing a considerable convenience for building datasets. Therefore,
many studies concentrate on combining physical and statistical NN
models to realize retrieval. Liao et al. (2013) retrieved wetland vege-
tation biomass based on NN combining the simulated data from the
Michigan microwave canopy scattering model and the alternating po-
larization Envisat ASAR data. Trombetti et al. (2008) adopted ANN to
retrieve VWC, linking radiative transfer model (RTM) and MODIS data.
Yang et al. (2017) used simulations from the scattering by arbitrarily
inclined leaves model and PROSPECT model to train BPNN-based FVC
retrieval models. Fine spatial resolution FVC products were acquired by
inputting Landsat 7 ETM+ and Landsat 8 OLI reflectance into the
trained model. Jia et al. (2016) applied the same method to Chinese GF-
1 wide-field view data and obtained high-quality FVC products.
Wolanin et al. (2019) combined process-based modeling with the soil-
canopy energy balance RTM (SCOPE) with Sentinel-2 and Landsat 8
optical remote sensing data and NN methods for crop estimation. The
NN model can estimate GPP at the tested flux tower sites and outper-
form traditional empirical models.

A single remote sensing data source usually has temporal, spatial,
and spectral resolution conflicts owing to the sensor characteristics.
These conflicts result in limitations in the data application. The defects
between the data can be remedied by fusing multisource remote sensing
data. Many researchers also deal with this problem by using NN. An
multilayer perceptron (MLP) model was used to integrate hyperspectral
domain fusion and high spatial domain fusion techniques to deal with
the non-linear canopy scattering between overstory and understory
vegetation (Huang et al., 2011). Chai et al. (2012) proposed to train the
NARX model for six typical vegetation types by fusing MODIS and SPOT
time-series LAI to solve the discontinuity in time for single sensor-based
LAI products. They also found that the predicted LAI of the NARX
model is more continuous and accurate than the MODIS LAI. Xiao et al.
(2014) trained a GRNN model over fused multitemporal data to esti-
mate temporally continuous LAI. MODIS, CYCLOPES, and field-mea-
sured LAI, as well as MODIS reflectance products, were used to create
the dataset. Similarly, Xiao et al. (2016) improved the model to produce
a long time series Global Land Surface Satellite (GLASS) LAI product
with an eight-day temporal resolution from Advanced Very High Re-
solution Radiometer (AVHRR) and MODIS reflectance data. The results
indicated that the GLASS LAI values were closer to the high-resolution
LAI maps than the MOD15 LAI values.

The NN, especially DL models, has advantages over the traditional

linear regression methods in terms of retrieval accuracy of various ve-
getation parameters. However, the nondestructive acquisition of au-
thentic in situ vegetation samples of the long time series is still a dif-
ficult problem in current studies. A new type of environmental remote
sensing technique, namely, Global Navigation Satellite System
Reflectometry (GNSS-R), provides a new mode for acquiring in situ
vegetation parameters. Therefore, fusing the observations of multi-
source data, including optical, microwave, and GNSS-R, based on NN
and DL, to retrieve vegetation parameters, is a valuable direction.

4.3. Agricultural yield prediction

Agricultural yield forecasts over large areas can help policymakers
and grain marketing agencies plan for exports and imports
(Chlingaryan et al., 2018; Johnson et al., 2016). Most of the current
methods predict crop yield a few months before harvest by creating
models between yields and influencing (such as weather, soil condi-
tions, topography, disease, and vegetation growth conditions) and an-
thropogenic (such as irrigation and fertilizer management) factors.
Some factors can be derived using remote sensing data over large areas.
Desachy and Simpson (1994) developed a cerebellar model articulation
controller NN. They found that the precision of the prediction model
will be improved with the addition of remote sensing data (i.e., Landsat
Thematic Mapper (TM) observation) based on agricultural data and
meteorological variables. Moreover, NNs outperformed the traditional
linear regression methods in the prediction of crop yield by using re-
mote sensing vegetation indexes and other factors (Fortin et al., 2011;
Kaul et al., 2005; Safa et al., 2014). Chlingaryan et al. (2018) reviewed
the use of remote sensing data and the ML technique to estimate agri-
cultural yields.

Spectral vegetation indexes related to agricultural yields are math-
ematical combinations of red, green, and infrared spectral bands based
on the biophysiological relationships between crop characteristics and
remote sensing features (Chlingaryan et al., 2018). The most frequently
used index is NDVI. Li et al. (2007a) developed the shuffled complex
evolution method developed at The University of Arizona (SCE-UA)
optimization NN method to estimate corn and soybean yields using the
historical yield data and MODIS and AVHRR NDVI. Fernandes et al.
(2017) predicted sugarcane yields using MODIS NDVI and an ensemble
model of NN. An NN wrapper with sequential backward elimination
was applied to remove irrelevant and redundant features from the in-
itial data set. Similar studies have also been conducted for other special
vegetation indexes. Johnson et al. (2016) tested the MODIS NDVI,
MODIS EVI, and AVHRR NDVI by creating Bayesian NNs in each
hierarchically grouped region using crop yield data. They found that
MODIS NDVI was an effective predictor for all three crops, and MODIS
EVI served as an enhanced predictor. Panda et al. (2010) developed the
BPNN model by using NDVI, green vegetation index, soil-adjusted ve-
getation index, and perpendicular vegetation indexes. The results in-
dicated that the corn yield was accurately predicted using grid images
of perpendicular vegetation index. Akhand et al. (2016) predicted the
potato yield using AVHRR NDVI, vegetation health indices, vegetation
condition index and temperature condition index. Kizil et al. (2012)
explored the influence of irrigation on the lettuce yield by constructing
an NN model using NDVI, simple ratio, chlorophyll green, and chlor-
ophyll red edge. They found that a decrease in irrigation water led to a
reduction in the lettuce yield.

Some other forms of NNs are also used to develop prediction models
between auxiliary variables and crop yields. Savin et al. (2007) con-
structed a fuzzy NN (FNN) or granular NN (GNN) to predict crop yields
by using Crop Growth Monitoring System simulation parameters and
SPOT NDVI. Bose et al. (2016) applied the spiking NN (SNN) model to
achieve a timely prediction of crop yields. The spatial accumulation of
time series of MODIS NDVI and historical crop yield data were used to
predict the crop yield with prolonged time. Although soil and climatic
conditions play an important role in crop growth and yield, online
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proximal soil sensing for the estimation of relevant soil properties re-
mains a missing component in the management system. Pantazi et al.
(2016) predicted wheat yield variation within the field based on multi-
layer soil data and remote sensing crop growth features. They also
compared the following three NN models: counter propagation ANN,
supervised Kohonen network (SKN), and XY-fusion network. Their re-
sults showed that SKN performed the best among the three models.
Tiwari and Shukla (2019) used different geospatial features derived
from NDVI, standard precipitation index, and vegetation condition
index to predict the crop yield. A standard error BPNN was applied to
construct the retrieval model to initiate learning from previous weather
conditions.

DL includes representation learning, which extracts important fea-
tures for object estimation from the input data. Kuwata and Shibasaki
(2015) used a DL model of two inner product layers to simulate the
relationship between meteorological parameters of MODIS EVI and
crop yield. Their model can effectively predict crop yield and be further
improved because the absolute spectral information is not exploited by
the spectral vegetation indexes. You et al. (2017) used CNN and LSTM
to discover relevant features from raw data automatically and then
placed a Gaussian process layer on top of the neural architectures to
account for spatial and temporal dependencies across data points ex-
plicitly. This approach outperformed competitive techniques in the
predictive accuracy of county-level soybean yield prediction in the
United States. Wang et al. (2018) later tested the transferability of the
method proposed by You et al. (2017) to Argentina and Brazil. They
found that the transfer learning approach achieved good results in the
prediction of soybean yields in Brazil with a small amount of training
data. A fast region-based CNN was chosen for the detection and
counting of the number of flowers and mature and immature straw-
berries (Chen et al., 2019c). Kim et al. (2019) proposed the DNN model
to develop the crop yield prediction model for the Midwestern US. This
approach indicates that corn and soybean yield for a given year can be
forecasted in advance.

With the addition of remote sensing data based on the meteor-
ological data, the use of NN and DL to predict the crop yield is con-
siderably improved compared with the traditional methods. At present,
many types of retrieval models are available. However, the robustness
of the prediction model is weak due to certain conditions, such as dif-
ferent crop types, terrain, and climate. Moreover, the predictions with
high precision are usually limited merely in the study area. Therefore,
improving the universality and migration of the crop yield prediction
model is a popular but difficult point in future research.

4.4. Land surface and air temperature

LST and air temperature (Ta) are significant parameters that play
crucial roles in related environmental studies and management activ-
ities, including surface energy fluxes, climate change, agricultural
productivity, urban heat island monitoring, and industrial studies
(Schoof and Pryor, 2001; Zhan et al., 2013). However, obtaining LST
and Ta with both high spatial and temporal resolutions is usually dif-
ficult due to certain problems, such as limited measuring instruments,
cloudy conditions, and sensor characteristics. Various NN and DL based
methods have been developed for the estimation of LST and Ta in the
last few years to overcome these issues. To date, numerous visible, near
infrared and thermal infrared data, microwave measurements and sa-
tellite-derived products have been increasingly used in the LST and Ta
field. With the application of different algorithms and data in previous
literature, various LST and Ta products can be reconstructed with
continuous high spatio-temporal resolutions.

LST retrieval has been widely discussed in previous literature. Aires
et al. (2001) applied NNs to retrieve the surface skin temperature from
the Special Sensor Microwave Imager observations. Venkateshwarlu
et al. (2004) found a marked improvement in LST mapping by using
ANN based on Landsat-5 TM thermal infrared data. Furthermore, the

retrieval analyses have indicated that NN was a viable technique to
resolve the typical ill-posed inversion problem by extracting potential
information from training datasets (Mao et al., 2007; Mao et al., 2008a;
Mao et al., 2008b). Also, Wang et al. (2013) established the MLP with
two hidden layers to retrieve LST from hyperspectral thermal infrared
data acquired by the Infrared atmospheric sounding interferometer
instrument and achieved acceptable accuracy. Shwetha and Kumar
(2016) demonstrated the applicability of combining infrared data and
Microwave Polarization Difference Index derived from Advance Mi-
crowave Scanning Radiometer (AMSR)-Earth Observing System and
AMSR2 sensors to predict LST with high spatio-temporal resolution
under cloudy conditions based on the NN model. Especially, a deep
dynamic learning NN coupled with five frequencies (10 channels, 10.7,
18.7, 23.8, 36.5, and 89 V/H GHz) acquired by AMSR2 data was uti-
lized to retrieve the LST in a recent study (Mao et al., 2018). Recently,
the CNN algorithm has been increasingly developed for LST retrieval.
Tan et al. (2019) constructed CNN to retrieve LST from AMSR2 data in
China. The stable and accurate result was achieved by using the com-
bination of 12 V/H channels of 7.3, 10.65, 18.7, 23.8, 36.5, and
89 GHz. Furthermore, Wu et al. (2019) proposed a multiscale feature
connected CNN model to reconstruct the LST of FengYun-2G and the
Meteosat Second Generation-Spinning Enhanced Visible and Infrared
Imager (MSG-SEVIRI) geostationary satellite datasets. In addition to the
LST retrieval, some applications for LST downscaling and forecasting
are presented. A genetic algorithm and self-organizing feature map NN
was utilized to generate the high spatial-resolution LST at a subpixel
scale by using the advanced spaceborne thermal emission and reflection
radiometer (ASTER) visible, near infrared and thermal infrared data
(Yang et al., 2010). Additionally, Goyal and Ojha (2012) also assessed
the effectiveness of NNs to downscale LST. The NN-based model was
statistically superior compared with the MLR-based model. Recently, a
hybrid data-driven model using ensemble empirical mode composition
coupled with a four-layer LSTM, is proposed by Zhang et al. (2018d) to
forecast daily LST. The proposed model in their study significantly
improved the prediction accuracy compared with that of the five other
NNs.

In the Ta field, investigations are mainly focused on the forecasting
and estimation of Ta. For the first type, Smith et al. (2006) once de-
veloped the Ward-style ANN architecture. They improved the Ta pre-
diction by training multiple networks with different initial randomly-
assigned weights. Other types of NNs such as BPNN, GRNN, and RBF
method were employed and evaluated by Ustaoglu et al. (2008) for
forecasting Ta time series. The results indicated that the three methods
could provide reliable predictions. In contrast with the Ta forecast,
satellite images were increasingly used for Ta estimation. Jang et al.
(2004) employed a multilayer feed-forward NN (BPNN) to estimate Ta
from AVHRR images. Satisfactory results were achieved when five
bands of the AVHRR image, solar zenith angle, surface altitude and
Julian day were used as input variables, along with 22 nodes selected in
the hidden layer. In addition, an algorithm based on BPNN was also
used for the retrieval of near-surface daily Ta from Landsat ETM+
images with reliable accuracy (Zhao et al., 2007). Subsequently, Mao
et al. (2008b) developed an algorithm to estimate Ta based on ASTER
data by synergizing a dynamic learning NN and the radiance transfer
model. More particularly, the latest work of Shen et al. (2020) at-
tempted to use the DL technique to estimate daily Ta across China by
fusing remote sensing, station, simulation, and socioeconomic data. A
5-layer DBN was structured to establish the complex and non-linear
physical relationships effectively, and significant improvements of the
model accuracy could be obtained using such a technique compared
with conventional models (Fig. 8).

Substantial progress in LST and Ta field has been observed in recent
years. However, further studies are still necessary. With the rapid de-
velopment of sensor techniques, the spatial and temporal resolutions of
LST and Ta product must be improved in the future. Additionally,
multi-source (i.e., reanalysis/forcing, vector, and dynamic POI data)
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data fusing is also facing considerable challenges. A few DL-based Ta
studies are available, and algorithms, such as LSTM, should be utilized
due to the considerable variations of Ta spatially and temporally.
Lastly, the LST and Ta datasets should be applied in practical applica-
tions, such as climate conditions, urbanization development and eco-
system changes.

4.5. Aerosol

Aerosol is one of the most important atmospheric variables, and
aerosol optical depth (AOD, or aerosol optical thickness), which is
commonly monitored by satellite remote sensing, is usually retrieved
through an atmospheric RTM (Levy et al., 2007). The mainstream re-
trieval methods for AOD include Dark Target and Deep Blue algorithms,
which mainly utilize the information from red and blue bands. The AOD
can also be estimated by statistical models with numerous observations
of predictors and in-situ AOD due to the limitations of physical models
in many assumptions regarding aerosols and surface properties (Nabavi
et al., 2018). As previously mentioned, DL and NN have shown pro-
mising performance in inferring the statistical relationships. To our
knowledge, the traditional NN has also been frequently used in the
aerosol quantitative remote sensing problem. The input for NN-based
aerosol remote sensing mainly includes the satellite radiance from
multiple bands. Other auxiliary variables, such as angle information
and topographical and meteorological conditions, are also occasionally
included. The two main aspects of applications are as follows: i) AOD
retrieval and ii) bias correction for AOD product.

Two different threads are present in the AOD retrieval problem. The
first thread is to create a model between satellite radiance and AOD
directly through NN models without considering the aerosol physical
properties. The NN input is mainly satellite radiance, and auxiliary
variables, such as solar viewing, cloud fraction, and land cover. Han
et al. (2006) adopted a multilayer perceptron (MLP) network to retrieve
AOD from multi-angular imaging spectroradiometric data. Vucetic et al.
(2008) applied an ensemble of ten NN models to retrieve AOD with
MODIS radiances for seven wavelengths between 0.47 and 2.1 μm, solar
viewing, scattering angles, cloud-contamination indicators (MOD35),
and surface type as inputs. Kolios and Hatzianastassiou (2019) also
conducted a similar attempt by using Meteosat imagery, and brightness
temperatures at the pixel level for the channels with spectral centers at
8.7, 10.8, and 12 μm were used. The retrieved results showed good

consistency with the ground measured AOD. The above-mentioned re-
sults showed that NN-based AOD retrieval methods could serve as a
useful complement to traditional retrieval methods. However, the
physical properties of aerosols, which are vital for AOD, are ignored.
Therefore, another thread is to create the NN model considering the
aerosol physical properties. Taylor et al. (2014) introduced aerosol
parameters, such as complex refractive indexes, single scattering al-
bedo, and size distribution, into the NN model and found that model
shows a good performance in the Saharan region. The aerosol type data
can also be used to improve the NN retrieval (Patricia Castellanos and
Silva, 2017).

In addition to the AOD retrieval problem, NN has also been widely
applied in the bias correction problem. The main differences between
NN-based AOD correction and retrieval are as follows: the former
makes a bias correction with the NN input of the existing AOD product,
whereas the latter estimates AOD by training a relationship between
satellite radiance data and AOD. Satellite reflectance and angle in-
formation were used as the input variables for the NN-based AOD
correction model. Lary et al. (2009) introduced the land cover in-
formation and the solar zenith, solar azimuth, and sensor zenith angles
to correct the MODIS AOD product. The results showed that NN could
largely improve the correlation with AEerosol RObotic NETwork
(AERONET). Ristovski et al. (2012) also trained an NN-based estimator
of retrieval uncertainty, and NN showed similar satisfactory perfor-
mance. Some researchers later found that the bias between MODIS and
AERONET AOD could be affected by numerous factors. Consequently,
the input for the NN-based AOD correction model becomes compli-
cated. Lanzaco et al. (2016) inputted modified day of the year (MDOY),
MDOY direction, temperature, relative humidity, wind speed, and di-
rections into a one-layer NN for MODIS AOD correction. The results
showed that NN could be a valuable tool for enhancing MODIS AOD
retrievals. The method was also adopted to obtain corrected AOD va-
lues taken from the MODIS AOD product (Lanzaco et al., 2017). Qin
et al. (2018) recently utilized meteorological factors and cloud fraction
for the correction of Modern-Era Retrospective analysis for Research
and Applications Version 2 (MERRA-2) AOD with an optimized BPNN
based on genetic algorithm. Accordingly, a largely improved product
quality was achieved.

Although NN has been widely used in the aerosol retrieval and
correction problem and achieved some satisfying results, DL has been
hardly applied to this problem. DL has a stronger information

Fig. 8. Comparison of the annual daily maximum Ta map (unit: °C). (a) Assimilated Ta and (b) DBN-based Ta. The pixels in white indicate no data values (Shen et al.,
2020).
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extraction capability and large potential to perform better on fitting the
relationships between the multiband radiance information and AOD
compared with NN. Therefore, exploring DL is a promising direction
due to the success of NN in the above-mentioned AOD studies.

4.6. Particulate matter (PM)

PM is identified as a dust-related air pollutant that can increase
morbidity and mortality risks. The satellite-derived AOD is the widely
used parameter for ground-level PM retrieval from satellite remote
sensing due to the inclusion of PM in the aerosol. Besides, the original
satellite signals (i.e., red and blue channels of TOA reflectance and
observation angles) for AOD retrieval were also adopted to estimate the
ground PM concentrations. Statistical models have been popularly ap-
plied to infer ground PM from the satellite AOD or reflectance. In
comparison with the parametric regression-based statistical models, NN
and DL show advantages of fitting nonlinear relationships and involving
fewer assumptions on the distribution of input and output variables.
Therein, NN has achieved a relatively mature application in satellite-
based PM estimation, and PM remote sensing with DL is now starting
the stage with a rapid evolution. This review focuses on the NN and DL
methods for PM remote sensing, and other methods can be found in a
previous review (Chu et al., 2016).

Two main categories of NN have been introduced to estimate
ground PM. The first category is the BPNN model. One of the earliest
attempts to apply NN for remote sensing estimation of PM2.5 was car-
ried out by Gupta and Christopher (2009), which used the surface PM2.5

data, satellite AOD product, and meteorological products in a BPNN
model. Wu et al. (2012) later trained the BPNN model with Bayesian
regularization for AOD-based PM2.5 estimation, and a BPNN with
convolutional layers was developed to consider spatiotemporal auto-
correlation for the PM2.5 estimation in the continental US (Di et al.,
2016a). Moreover, a BPNN model (Wang et al., 2019b) for PM2.5 esti-
mation was recently trained with ground PM2.5, satellite AOD ob-
servations, meteorological condition data, and emission data, which
include auxiliary geographical parameters, such as land use, NDVI,
elevation, and population density in China. The second category is a
GRNN, which has also been applied for the estimation of ground PM2.5

with the assistance of satellite AOD observations and meteorological
variables in China (Li et al., 2017b). On this basis, a principal compo-
nent analysis GRNN (PCA-GRNN) model was utilized to estimate
ground-level PM1 (aerodynamic diameters< 1 μm) concentrations
from Himawari AOD observations in China (Zang et al., 2018; Zang
et al., 2019).

DL has recently been employed to describe the complicated and
nonlinear relationship between PM2.5 and predictors effectively.
Satellite-based DL models generally focus on the spatial estimation of
PM2.5. Li et al. (2017a) proposed a geo-intelligent DL approach for the
estimation of PM2.5 across China. Specifically, a DBN model was
adopted with the input of satellite AOD, meteorological variables, and
geographical correlation of PM2.5. Fig. 9 shows the schematic of this
model for PM2.5 estimation, and DBN-based PM2.5 estimates report a
high consistency to ground station measurements (Fig. 10). Based on
this model, an extended study was conducted to directly estimate PM2.5

from satellite TOA reflectance (i.e., red, blue, and 2.1 μm channels of
TOA reflectance) rather than satellite AOD (Shen et al., 2018b). The DL
showed an excellent capacity to fit the complicated association among
satellite reflectance, ground PM2.5, and auxiliary factors. A recent work
(Li et al., 2018a) developed an AE-based residual deep network, which
was demonstrated by the PM2.5 estimation using satellite AOD data in
the Beijing–Tianjin–Tangshan area of China. Sun et al. (2019) proposed
a DNN-based PM2.5 prediction model based on Himawari AOD data and
meteorological variables (denoted as PM25-DNN), and hourly PM2.5

estimates were obtained in the Beijing–Tianjin–Hebei region of China.
A newly published work (Park et al., 2020) applied a CNN model to
estimate the daily PM2.5 concentration of the conterminous US in 2011

by incorporating the AOD data, meteorological fields, and land-use
data. On the other hand, Wen et al. (2019) developed a spatiotemporal
convolutional LSTM extended model for the temporal prediction of
PM2.5. This model extracted spatiotemporal features by combining CNN
and LSTM. The authors also incorporated satellite AOD data and me-
teorological variables to improve model prediction performance.

DL has attained early success for PM remote sensing in recent years,
and this success may usher in rapid development in the near future.
First, DL shows considerable potentials for the direct retrieval of PM
from satellite TOA reflectance due to its remarkable capability for fit-
ting nonlinear relationships and simulating physical models. The ap-
plication of DL for direct PM retrieval in large geographical regions and
on more satellite sensors deserves further attention. Second, the re-
lationship between PM2.5 and predictors is affected by a number of
factors. Introducing earth “big data” (e.g., remote sensing, social sen-
sing, and meteorological data) into PM remote sensing is a useful so-
lution. In order to capture the nonlinear relationship from earth “big
data”, DL is believed to be an effective tool. Therefore, PM remote
sensing with the support of earth “big data” and DL is an important
tendency.

4.7. Precipitation

Precipitation, a fundamental component of the global water cycle, is
an essential parameter of meteorology, ecology, and hydrology. Remote
sensing technology provides global-scale high-resolution satellite-based
precipitation products to supplement the sparse and uneven networks
of ground-based gauges and the absent validation of weather radar-
rainfall. NNs have been successfully applied in satellite rainfall esti-
mation (SRE). Multiple channels of geostationary orbit (GEO) satellite
data, longwave infrared (IR), water vapor (WV) channels, and pre-
cipitation radar data are often incorporated for accurate precipitation
retrieval. The NNs used in SRE have been classified into two categories:
the first one relates to the different inverse problem approaches in-
cluding physically-based methods and empirical or statistical methods;
the second one relates to the different satellite inputs used to generate
the rainfall estimates, including infrared imagery, passive microwave
information and satellite fusion data (Tapiador et al., 2004). Compared
with the classic approaches, NNs can maintain the quality of satellite
measurements and improve the computational speed after training.
Exploration of the underlying relationships between the geophysical
parameters and precipitation is not required in the empirical approach
for rainfall estimation using NNs. The University of Arizona established
a system entitled Precipitation Estimation from Remotely Sensed In-
formation using Artificial Neural Networks (PERSIANN) through a
flexible three-layer feedforward NN model to estimate rainfall rates
with IR satellite imagery and ground surface data (Hsu et al., 1997).
The PERSIANN system considerably improved the SRE performance
and could be updated using spatiotemporal limited observation gauge
data simultaneously. A new SRE algorithm also based on NN called
Precipitation Estimation from Remotely Sensed Information using Ar-
tificial Neural Networks Cloud Classification System (PERSIANN-CCS)
was developed to improve the PERSIANN system due to its ability to
extract cloud features (Hong et al., 2004). Bellerby et al. (2000) com-
bined Tropical Rainfall Measuring Mission (TRMM) precipitation radar
data and multispectral Geostationary Operational Environmental Sa-
tellite (GOES) imagery for NN training data to acquire high spatial and
temporal resolution rain rates. The NN-based fusion results out-
performed the optimized GOES Precipitation index (GPI) in the aspect
of correlation with the gauge validation data.

DL techniques have been effectively used recently to improve the
SRE accuracy and reduce the bias and false alarms. Tao et al. (2016b)
used Stacked Denoising Auto-Encoders (SDAE) coupling with PERSI-
ANN (referred to as PERSIANN-SDAE) to estimate large-scale pre-
cipitation from GEOS imageries. The performance of PERSIANN-SDAE
showed the lowest averaged bias and Kullback-Leibler divergence
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compared with the three-layer NN model and PERSIANN-CCS model.
This finding demonstrated that the PERSIANN-SDAE model could ef-
fectively capture the shape and the peak of the precipitation event with
preserving the precipitation distribution. Tao et al. (2016a) also utilized
the SDAE structured with a four-layer fully connected DNN to improve
the quality of satellite precipitation products. The corrected results by
SDAE model showed that the bias and false alarms were reduced.
Furthermore, the SDAE was designed to identify useful features from
bispectral satellite information to delineate precipitation regions, IR
and WV channels included. The DL-IR method and the DL-IR+WV
method based on SDAE model are superior to PERSIANN-CCS product
with respect to the performances of rain/no-rain (R/NR) detection and
the metric of critical success index (Tao et al., 2017; Tao et al., 2018).
Real-valued precipitation estimation after R/NR classification based on
SDAE model showed lower average bias, average mean squared error
and higher correlation coefficient compared with those of the PERSI-
ANN-CCS product (Tao et al., 2018). Sadeghi et al. (2019) proposed
CNNs to estimate precipitation with the IR and WV channels and found
that the proposed PERSIANN-CNN is more accurate than the PERSI-
ANN-CCS and PERSIANN-SDAE models. Chen et al. (2019a) applied a

non-parametric DNN approach in dual-polarization radar rainfall esti-
mation to replace the physical model of the raindrop size distribution or
the parametric model between the physical model and radar para-
meters. Their results showed the promising performance of this new
method. Ayzel et al. (2019) used an all deep CNNs for radar-based
precipitation nowcasting by utilizing a quality-controlled rainfall depth
product composited from the 18 Doppler radars operated by the
German Weather Service. Their results showed that parsimonious DL
models could forecast a complex nature of a short-term precipitation
field evolution and compete for the state-of-the-art performance with
well-established nowcasting models based on optical flow techniques.
Chen et al. (2019b) designed a two-stage DNN system to estimate
rainfall using TRMM precipitation radar measurements, ground radar
reflectivity, and gauge information. This DL method showed promising
performance in regional and global rainfall mapping.

Therefore, DL techniques can achieve state-of-the-art performances
in precipitation estimation. Furthermore, fusing multisource satellite-
based precipitation products, radar data, and gauge station information
to generate spatiotemporal continuous products on the global scale is a
valuable yet challenging topic for studies.

Fig. 9. Schematic of the geo-intelligent DBN model for PM2.5 estimation.
(Reprinted from Li et al. (2017a).)

Fig. 10. Annual mean PM2.5 distribution of China in 2015. (a) satellite-derived PM2.5 and (b) ground-measured PM2.5 in China.
(Reprinted from Li et al. (2017a).)
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4.8. Soil moisture (SM)

SM, especially surface (0–5 cm) SM, plays a vital part in the global
water budget and water cycle. Accurate SM estimation is of utmost
importance for many practical applications, such as flooding fore-
casting and drought monitoring.

SM retrieval is a complex process that depends on several inter-
acting factors, such as soil texture, surface roughness, topography, and
vegetation coverage. The lack of accurate understanding of the physical
relationships between the terrestrial state and remote sensing ob-
servations and the unavailability of their associated parameters result
in inaccurate SM estimation. Over the past two decades, NNs have been
increasingly employed in the modeling of hydrological processes be-
cause of their capability in mapping the input–output relationship with
limited understanding of the physical process. The NN relates SM to
satellite observations (mainly C-/X-/L-band brightness temperatures for
passive sensors and C-band backscattering coefficients for active in-
struments) and associated land surface properties, such as surface
temperature and VWC. This condition allows for a simplification of the
ill-posed inversion problems.

Scientific studies that investigate the use of ANNs for SM modeling
and retrieval could be classified into three categories according to the
types of used training data. First, ANNs could be trained with model-
generated training data. A range of SM values is used to simulate
brightness temperatures or backscattering coefficients based on radia-
tive transfer or backscattering models. The former and the latter are
taken as the output and input to ANNs, respectively. A substantial
number of studies have implemented this approach to retrieve small-
scale SM, which is further evaluated by experimental data from passive
(Angiuli et al., 2008; Chai et al., 2009; Del Frate et al., 2003; Liou et al.,
2001; Liu et al., 2002) or active (Baghdadi et al., 2002; Meng et al.,
2018; Notarnicola et al., 2008; Paloscia et al., 2008; Paloscia et al.,
2010; Pierdicca et al., 2008) microwave observations. Compared with
other retrieval algorithms, such as the Bayesian method and the Nel-
der–Mead simplex algorithm, the effectiveness of ANN in terms of ac-
curacy, stability, and speed for SM retrieval has been verified
(Notarnicola et al., 2008; Paloscia et al., 2008; Pierdicca et al., 2008).

Second, the training of ANNs could be directly run with in-situ
measurements. Rodríguez-Fernández et al. (2017a) and Gruber et al.
(2014) attempted to retrieve continental and global SM from the Ad-
vanced SCATterometer (ASCAT) backscatter data and the Soil Moisture
and Ocean Salinity (SMOS) brightness temperatures, respectively, using
only in-situ SM data for ANN training. Santi et al. (2012) developed an
ANN-based algorithm called “HydroAlgo” for hydrological purposes.
HydroAlgo uses satellite-observed and simulated brightness tempera-
tures and/or backscattering coefficients coupled with in-situ SM mea-
surements to calibrate the ANNs. The model simulations are utilized to
enrich the training datasets. This approach has been extensively used to
investigate the potential of ANN in estimating regional SM from AMSR-
E (Santi et al., 2016; Santi et al., 2012), Sentinel-1 SAR (Paloscia et al.,
2013), and the Soil Moisture Active Passive (SMAP) observations (Santi
et al., 2014). Merging of the different satellite observations to produce
one single SM estimation is also tested on the basis of the HydroAlgo
algorithm, including the fusion of SMAP and the AMSR2 observations
(Santi et al., 2018a), and the combination of SMAP, AMSR2, and Sen-
tinel-1 data (Santi et al., 2018b). Nevertheless, whether to train an ANN
with in-situ data remains unclear due to the spatial scale mismatch
between point-scale measurements (on the order of m2) and large ob-
served footprints by microwave remote sensing sensors (tens of km2).
Several strategies that can upscale in-situ SM observations to a coarse
resolution have been developed to account for the aforementioned
problem (Crow et al., 2012). However, performing global inversion
using this approach is still difficult considering the sparse distribution
of in-situ SM networks worldwide. Eroglu et al. (2019) first proved the
potential of using ANNs to retrieve high spatio-temporal resolution
from spaceborne GNSS reflections recorded by the Cyclone Global

Navigation Satellite System (CYGNSS) mission. They used in-situ SM
measurements from 18 International SM Network (ISMN) sites for ANN
training, and encouraging results of CYGNSS-derived SM have been
reported.

Finally, the use of global land surface model (LSM) simulations as
the target data to train the ANNs has been increasingly applied for SM
retrieval at large scales. Several studies have utilized this approach to
develop global SM retrieval algorithms from either passive or active
microwave sensors or a combination of the two. Aires et al. (2005),
Kolassa et al. (2013), and Jiménez et al. (2013) realized a combined SM
retrieval from passive microwave Special Sensor Microwave/Image
(SSM/I) emissivities and active European Remote Sensing (ERS)-1
backscattering coefficients by using three different LSM-based SM re-
analysis data. Rodriguez-Fernandez et al. (2015) and Kolassa et al.
(2018) recently established the global SM retrieval from two SM-dedi-
cated missions, namely, the SMOS and SMAP. The well-known Eur-
opean Center for Medium-range Weather Forecasts (ECMWF) and the
Goddard Earth Observing System version 5 (GEOS-5) model are utilized
as references to train the ANNs for SMOS and SMAP, respectively. Some
studies also use ANNs to test the a priori merging of active and passive
instruments, such as Advanced Scatterometer (ASCAT) and AMSR-E
(Kolassa et al., 2016; Kolassa et al., 2017). Such a synergy strategy
could provide considerably better results than a posteriori merging of
SM products from each sensor. Compared with LSM simulations, several
studies also utilize remotely sensed global SM products as a reference to
train the ANNs. Accordingly, a consistent and long-term SM record at a
global scale could be generated. Rodriguez-Fernandez et al. (2014)
performed experiments using ANNs trained with two different reference
SM products, namely, SMOS Level 3 SM and ECMWF model SM simu-
lations. The SM retrievals based on the two inversion strategies were
similar. Furthermore, Rodríguez-Fernández et al. (2016) used ANNs to
extend the AMSR-E SM record in time by taking the global SMOS Level
3 SM dataset as the reference for training the algorithm. In another
study, Rodríguez-Fernández et al. (2017b) utilized an SMOS Level-2 SM
product to train an ANN and generated the new SMOS near-real-time
SM product.

In addition to the SM retrieval, ANNs have also been exploited for
downscaling information between sensors and SM reconstruction.
Srivastava et al. (2013) first attempted to downscale the SMOS SM by
applying the ANN to combine the SMOS SM and MODIS surface tem-
perature at a local or regional scale. Alemohammad et al. (2018) then
developed an ANN-based downscaling algorithm by disaggregating
SMAP SM to 2.25 km spatial resolution. The downscaled SM shows
better or equal accuracy compared with that of SMAP 9 km SM through
ground validation. Cui et al. (2016) reconstructed Fengyun-3B SM
across the Tibetan Plateau by using the ANN based on reconstructed
MODIS products for the SM reconstruction (or infilling). Xing et al.
(2017) proposed a novel SM image reconstruction algorithm by taking
ANNs as a model to project complex and non-linear relationships be-
tween the in-situ measured and remotely sensed SM data.

From the above-mentioned discussion, the most widely used ANN
structure is generally based on an MLP with two or more hidden layers,
a non-linear activation function, and a BP learning rule. Some studies
also focus on the use of GRNN. Özerdem et al. (2017) reported that a
relationship between Radarsat-2 data and in situ SM over two agri-
cultural sites was established by GRNN to estimate SM over agricultural
areas. Xu et al. (2018a) utilized the GRNN to fuse the SMAP Level 3
passive SM product with in-situ SM measurements from five SM net-
works across the western continental US. Their results showed that this
technique could improve the quality of SMAP retrieval. They also in-
dicated that GRNN outperformed the MLR and traditional ANNs with
the BP algorithm. Yuan et al. (2020) developed a point-surface colla-
borative inversion method for SM retrieval by using GRNN. Notably,
the GRNN was trained on only “reliable” SM sites, which are de-
termined through the application of the triple collocation method. The
superiority of this approach over traditional RTMs and LSMs were
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demonstrated (Fig. 11). Several powerful DL techniques, such as DBN,
deep feedforward NN (DFNN), LSTM, and CNN, have also been recently
considered for SM modeling and retrieval. Song et al. (2016) used DBN
to generate field-measured SM, with inputs of LST and LAI obtained
from one experimental site. Fang et al. (2017) used LSTM to create a
continental-scale seamless SM product that has high fidelity to SMAP
with atmospheric forcing, model-simulated SM, and static physio-
graphic attributes as inputs. The LSTM performance was further as-
sessed in Fang et al. (2018). Zhang et al. (2017a) utilized DFNN to
upscale in situ SM data for cropland in China by using the visible in-
frared imaging radiometer suite (VIIRS) raw data. In another study, a
DFNN was used to estimate SM from AMSR2 data for the rapid, reliable,
and spatially detailed drought monitoring in South Korea (Lee et al.,
2018). Hu et al. (2018b) employed a CNN to AMSR-E brightness tem-
perature images to retrieve the daily global SM. Similarly, Sobayo et al.
(2018) developed a CNN-based regression model for estimating SM
from the thermal infrared images of the farm area.

SM modeling and retrieval from different microwave sensors and
across varied scales based on various ML/DL techniques have been ef-
fectively examined. However, DL techniques must account for the high
heterogeneity of SM in space to accomplish an accurate SM estimation.
Such techniques must also explore the comprehensive relationship be-
tween SM and all related parameters, such as albedo, soil texture, to-
pography, surface roughness, and vegetation. Considering the model
and observation errors, uncertainty assessment using DL-based retrieval
algorithms needs further investigation.

4.9. Snow cover

Snow cover is an informative indicator of climate change because it
can affect surface energy balance, hydrological processes, and

ecosystem function (Xiao et al., 2018). On this basis, the accurate es-
timation of snow parameters, such as snow depth (SD), snow water
equivalent (SWE), and fractional snow cover, is of considerable im-
portance for research into climatology and hydrology. To date, ANNs
have been widely applied in the estimation of SD, SWE, and fractional
snow cover to improve the estimation accuracy of these snow para-
meters effectively.

The retrieval of SD (or SWE) is based on the nonlinear relationship
constructed between passive microwave brightness temperature and SD
(or SWE). Compared with the traditional linear models that in-
accurately fit the nonlinear relationship, ANNs have been increasingly
applied to estimate SD and SWE due to its good capability for nonlinear
mapping. The input of ANN mainly includes vertically and horizontally
polarized brightness temperature of 19 and 37 GHz and some auxiliary
data, and the applications of ANN models have improved the estimation
accuracy of SD and SWE. For example, ANNs have been utilized to
retrieve SD (or SWE) with a spatial resolution of 25 km by fusing in-situ
measurements and 19 and 37 GHz brightness temperatures from pas-
sive microwave sensors, including SSM/I and AMSR-E (Cao et al., 2008;
Tedesco et al., 2004). In addition, ANNs have been trained with model
simulations to retrieve SD (or SWE) (Davis et al., 1993; Tanikawa et al.,
2015; Tedesco et al., 2004). Some studies have considered ancillary
parameters, including physiographic and atmospheric data, as input
parameters, together with brightness temperature, to train ANN-based
retrieval models and correct the effects of terrain and forest cover on SD
(or SWE) retrieval (Bair et al., 2018; Evora et al., 2008; Gan et al.,
2009). The effectiveness of the ANN in retrieving SD (or SWE) com-
pared with linear algorithms, such as Chang algorithm, has been vali-
dated in these studies. In addition to the retrieval of SD (or SWE), ANNs
have been exploited for the fusion of several SWE products and SD
reconstruction. Snauffer et al. (2018) applied ANN to improve SWE

Fig. 11. Annual mean SSM map of the year 2017 for the following: (a) GRNN-based SSM retrieval, (b) official SMAP Level 3 radiometer SSM product (SPL3SMP), (c)
ERA-Interim model simulations, and (d) in-situ measurements from ground SM networks across the continental US.
(Reprinted from https://doi.org/10.1016/j.jhydrol.2019.124351 (Yuan et al., 2020).)
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products based on the fusion of six gridded SWE products. Li et al.
(2019) applied ANN to map the change in SD on the present and the
prior day and reconstruct the historical SD in the Tianshan Mountains
of China based on the reanalysis of the temperature and precipitation
datasets.

Fractional snow cover mapping can be generated by developing the
relationship between fractional snow cover and satellite reflectance
combined with auxiliary data, including normalized difference snow
index (NDSI) constructed from MODIS bands 4 and 6 (or 7) and NDVI.
Some studies have also applied ANNs to model the relationship between
fractional snow cover and satellite reflectance effectively. For example,
ANNs have been applied to estimate fractional snow cover using MODIS
surface reflectance, NDSI, and NDVI as inputs, with reference fractional
snow cover maps generated from high spatial resolution Landsat ETM+
binary snow cover maps (Çiftçi et al., 2017; Dobreva and Klein, 2011).
Their estimates compared favorably with those of the standard MODIS
fractional snow cover product. In addition, ANN has been trained with
samples simulated by a coupled atmosphere–surface RTM to estimate
fractional snow cover (Gatebe et al., 2018). Some studies developed
ANN models combined with MODIS and ancillary topographic data to
estimate fractional snow cover in complex mountainous environments
(Czyzowska-Wisniewski et al., 2015; Hou and Huang, 2014). DL models
have shown their capability in automatic feature extraction and strong
nonlinear expressiveness capability; however, these models have been
applied in only a few snow studies. Nijhawan et al. (2018) proposed a
multilayer DL framework approach to classify snow and non-snow for
snow cover mapping by using diverse satellite imagery. Their proposed
approach provided high classification accuracy, which outperformed
ANN.

On this basis, ANNs have been widely applied to estimate snow
parameters, including SD, SWE, and fractional snow cover. Thus, the
capability of ANN to improve the estimation accuracy of snow para-
meters is demonstrated. DL models may be applied to improve the es-
timation accuracy of quantitative snow parameters further in the fu-
ture, except for snow cover mapping. The combination of passive
microwave data (or SD and SWE data) with low resolution and optical
remote sensing data with high resolution based on ANN or DL models to
downscale SD and SWE may be beneficial.

4.10. Evapotranspiration (ETo)

Modeling of the reference ETo process has remained to be a major
priority of researchers because it plays a key role in the water cycle. At
present, the FAO-Penman–Monteith (FAO-PM) method is recommended
as an accepted standard technique for computing ETo (Allen et al.,
1998). However, a major limitation of this method is the requirement of
various meteorological data, which are unavailable in many regions.
The ETo inversion is also a highly non-linear phenomenon because the
ETo process is regulated by numerous climatological factors. Thus, NNs
have been increasingly employed in ETo estimation to overcome these
difficulties.

The capability of NNs to estimate small-scale ETo has been tested by
a multitude of studies. On the one hand, a combination of climatic
variables, such as relative air humidity, air temperature, wind speed,
solar radiation, and soil water content, can be treated as an input to
NNs (Han and Felker, 1997; Kumar et al., 2008; Kumar et al., 2009;
Kumar et al., 2002; Sudheer et al., 2003; Trajkovic et al., 2000;
Trajkovic et al., 2003). On the other hand, numerous meteorological
forcing can be reduced only on the basis of individual inputs, such as
temperature data, because an explicit parameterization of physical re-
lationships is unnecessary in NNs (Khoob, 2008a, 2008b; Rahimikhoob,
2010; Trajkovic, 2005). The superiority of NNs for estimating ETo over
traditional inversion approaches, including the FAO-PM method, the
Hargreaves equation, multiple linear regression, and other empirical
methods, has been demonstrated by these studies effectively.

Remote sensing techniques have recently provided an effective way

for estimating ETo on a large scale. This phenomenon is attributed to
the terrestrial information from large extents related to ETo obtained
through remote sensing, such as NDVI, LST, surface net radiation, and
land surface reflectance derived from MODIS. Therefore, the use of NNs
and remotely sensed observations to facilitate the ETo estimation has
received considerable attention. Lu and Zhuang (2010) employed a
BPNN to produce a daily ETo product for the period of 2004–2005 by
using remotely sensed observations from MODIS and meteorological
data from 28 AmeriFlux sites in the conterminous US. Other studies also
focus on the combination of AmeriFlux measurements and site-specific
land surface products (NDVI and LST) derived from MODIS to train
BPNNs for ETo estimation (Chen et al., 2012; Panda et al., 2018; Wagle
et al., 2017). A remote sensing-based BPNN model that aims to retrieve
spatially distributed ETo in Northwest China was recently established
by linking the MODIS LST and reflectance data and site-specific ETo

calculated from meteorological data (Zhang et al., 2018e). The pro-
posed approach could mitigate the dependence on meteorological data
because they were required only in the training process and not in the
application process. The comparison result between the BPNN and the
well-known M5 model tree for estimating ETo using MODIS products
(Alipour et al., 2014) or modeling daily ETo from National Oceanic and
Atmospheric Administration (NOAA)/AVHRR satellite images
(Rahimikhoob, 2016) showed that the correlation coefficients of the
BPNN approach were slightly superior to the latter. In addition to the
NN-based method, García-Pedrero et al. (2017) developed and eval-
uated a DL-based methodology that generated spatially distributed ETo

estimates by using CNN. The obtained results show that CNN models
can estimate satisfactory ETo maps.

However, the problem in estimating large-scale ETo using ML/DL
techniques is the scale mismatch issue, which results from the scale of
in-situ measurements that does not match that of remote sensing sa-
tellites. Thus, many studies have discussed the possibility of using ML/
DL-based approaches to upscale in-situ measured ETo to the satellite
footprint. Li et al. (2018c) conducted a comparison experiment by using
six upscaling algorithms based on the AmeriFlux site measurements and
remotely sensed data from MODIS in the Heihe River Basin. These al-
gorithms include the area-weighted method, the integrated Priest-
ley–Taylor equation, weighted area-to-area regression kriging (WA-
TARK), BPNN, random forest (RF), and DBN. They found that the
WATARK method efficiently performed over moderately heterogeneous
areas. By contrast, the RF method efficiently performed over highly
heterogeneous areas. Xu et al. (2018b) evaluated five ML algorithms,
including BPNN, Cubist, DBN, RF, and SVM, for upscaling ETo from
point to regional scale. The ML methods are trained by relating daily
ETo derived from 36 AmeriFlux sites with remotely sensed variables
and then applying it to the entire Heihe River Basin from 2012 to 2016.
The results indicated that the five methods had nearly identical per-
formances in estimating ETo. However, the RF algorithm obtained
slightly lower relative uncertainty than that of the four other ML al-
gorithms.

Overall, although NNs have been extensively applied in ETo mod-
eling and retrieval, DL techniques are still at the initial stage of de-
velopment for estimating ETo but with substantial potential. Almost all
the above-mentioned studies are also limited to the local or regional
estimation of ETo using ML/DL approaches. Future articles should focus
on developing DL-based algorithms with global validity in ETo mod-
eling.

4.11. Radiation parameters

Radiation parameters are indispensable components for under-
standing the process of surface-atmosphere energy exchange and opti-
mizing the sustainable energy utilization systems (Wang et al., 2012;
Zhang et al., 2017b). The spatial distribution of radiation data is
sparsely provided for most regions despite its importance. Over the past
few years, many studies have been conducted to acquire accurate
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surface and solar radiations. The NNs and DL methods along with sa-
tellite data have increasingly become popular in previous literature.
One improvement is the capability of satellite data to provide con-
tinuous high-level retrieval products for reconstructing radiations over
large areas. On the other side, NN and DL can better handle nonlinear
and complex relationships than conventional methods (Kaba et al.,
2018; Yadav and Chandel, 2014). For example, the visible, thermal,
infrared channels and satellite-derived parameters obtained from Me-
teosat series of satellites, NOAA/AVHRR satellite, MODIS product and
some geostationary satellites are widely used to estimate or forecast
radiation parameters. This review mainly focused on summarizing the
studies on solar and surface radiation.

For solar radiation estimation, researchers applied different NN
architectures and satellite-derived data in previous literature. Şenkal
and Kuleli (2009) once indicated that the use of NN with Meteosat-6
satellite data in the visible range is a cheap and effective way to esti-
mate solar radiation over Turkey. Subsequently, Şenkal (2010) devel-
oped the GRNN and Şahin et al. (2013) investigated a multilayer feed-
forward network to estimate solar radiation based on NOAA/AVHRR
satellite-derived LST and achieved good results. In addition, the opti-
mized NN ensemble model, which combines several NN models into an
NN ensemble is also built in many studies. For instance, Eissa et al.
(2013) once proposed an NN ensemble method to retrieve the direct
normal, diffuse horizontal, and global horizontal irradiances by uti-
lizing 6 thermal channels of the SEVIRI images. Linares-rodriguez et al.
(2013) and Quesada-Ruiz et al. (2015) also exploited 11 channels of the
Meteosat 9 satellite to estimate daily global solar radiation and hourly
global horizontal irradiance, respectively. Notably, the optimized ANN
ensemble models yielded reliable results even for overcast conditions.
Compared to the NN, extreme learning machine (ELM), as a feed-for-
ward NN, has been more successful in solar radiation estimation in
other studies (Şahin, 2013; Şahin et al., 2014). In particular, DL was
recently introduced for solar radiation estimation. In the work con-
ducted by Kaba et al. (2018), a DL model was employed to estimate
solar radiation for 34 stations in Turkey. The DL model applied in this
study achieved comparable and precise results. Thus, DL can be a good
alternative for similar studies. However, to obtain solar radiation for a
large area, satellite data could be taken into consideration. Recently,
Jiang et al. (2019) proposed a hybrid deep network named ResnetTL,
which is mainly based on the CNN and MLP, to estimate hourly global
solar radiation from the Multi-functional Transport Satellites (MTSAT).
Notably, Yeom et al. (2019) used the complete L1b data set of Com-
munication, Ocean, and Meteorological Satellite Meteorological Imager
(MI) geostationary satellite, which comprised one visible and four in-
frared channels, to estimate solar radiation. In contrast with the above-
mentioned studies, four data-driven models, namely, ANN, RF, SVR,
and DNN were applied and compared with the physical model. The
result expected the increasing utilization RF and DNN for solar radia-
tion field estimation due to the accurate simulation of thin clouds.
However, the physical model failed to achieve such a result.

In terms of solar radiation forecast field, a hybrid exponential
smoothing state space model together with the BP MLP technique was
applied for forecasting solar irradiance by using the geostationary sa-
tellite images; this approach showed superior accuracy than traditional
forecasting models (Dong et al., 2014). According to Deo and Mehmet
(2017), the feed-forward back-propagation (FFBP), as a popular ANN
algorithm, was employed together with MODIS LST to forecast solar
radiation. The result showed that FFBP outperformed MLR and auto-
regressive integrated moving average algorithms.

In comparison with solar radiation, studies that use NN or DL along
with satellite data to estimate surface radiations are relatively few. The
existing literature could be classified into three main categories, which
are upward, downward, and net radiation estimation. For instance,
Wang et al. (2009) evaluated three methods to estimate instantaneous
clear-sky surface upwelling longwave radiation (LWUP) with a high-
resolution based on MODIS data. Smaller biases and root mean squared

errors were found in the ANN model compared with the temperature-
emissivity method and linear model. By contrast, Jiao et al. (2015)
estimated the LWUP from TOA radiances of MODIS and VIIRS by using
a hybrid method, which is the combination of extensive radiative
transfer simulation and the ANN, and produced satisfactory retrieval
results. Additionally, Nussbaumer and Pinker (2012) implemented a
two-layer feed-forward NN to calculate the surface downwelling long-
wave radiation. Some studies subtracted upward fluxes from the dow-
elling fluxes to determine the net radiative fluxes. By contrast, Wang
et al. (2012) directly estimated the surface longwave and shortwave net
radiations by using a proposed typical feed-forward network, which
was trained with a resilient BP algorithm.

Although several models have been proposed and efficiently per-
formed for accurate radiation estimation and forecast, additional work
is required in this field. Proper selection of the most relevant input
variables with enhanced accuracy must be considered. Besides, in-
creasing radiation estimation accuracy on different surfaces (i.e., tiled
and tilted) should be further explored. Most existing studies focus on
daily radiation and hourly radiation data. However, instantaneous ra-
diation should also be given attention, especially for climate change
and poor weather conditions.

4.12. Ocean color parameter

The essence of ocean color remote sensing is to retrieve the ocean
color parameter content, which, in turn, is used to derive various bio-
geochemical constituents such as net primary production. Many ocean
color sensors, such as Sea-viewing Wide Field-of-view Sensor
(SeaWiFS), Medium Resolution Imaging Spectrometer (MERIS), ocean
color monitor (OCM), and MODIS, with Hyperion images, have been
used to retrieve some ocean color parameter products. Chlorophyll
concentration is one of the most important ocean color data products,
and its standard data products are derived using regression models
(O'Reilly et al., 1998). The standard data products carry large un-
certainties that are reduced by the NN. For example, Keiner (1999)
derived oceanic chlorophyll a concentration by developing a simple
three-layer NN algorithm with 10 nodes in the hidden layer using five
SeaWiFS visible bands as inputs and found that the NN-based algorithm
outperformed the cubic model and power polynomial models. Simi-
larly, Musavi et al. (2002) constructed a feed-forward NN with an MLP
network to estimate chlorophyll-a concentration from SeaWiFS data
and the NN model outperformed the other empirical models. Corsini
et al. (2003) compared RBF NN and MLP networks for chlorophyll
concentration estimation in case II waters using MERIS data. The two
NN algorithms outperformed the multi-linear regression model. The
MLP-NN is a useful tool to estimate chlorophyll-a concentrations from
MERIS and MODIS data in case II waters (Giménez et al., 2008). The
coarse-resolution satellite images are unsuitable for chlorophyll-a esti-
mation in the coastal water. Thus, Awad (2014) considered Earth Ob-
serving-1 satellite (EO-1) Hyperion images to estimate chlorophyll-a in
the coastal zone based on supervised BPNN. The study proved the su-
periority of the BPNN to other regression models.

Physical or environmental parameters can improve the derivation of
ocean color parameters using NN models. Tanaka et al. (2004) in-
troduced an NN model by using Stuttgart Neural Network Simulator to
estimate chlorophyll-a concentration, suspended matter and yellow
substance from normalized water-leaving radiances (nLw) of the Ocean
Color and Temperature Sensor data. Nagamani et al. (2007) estimated
chlorophyll-a concentration using a 3-layer ANN trained with nLw from
Ocean Colour Monitor satellite data. Nagamani et al. (2007) found that
the ANN model is effective in modeling the non-linear relationship
between nLw and chlorophyll-a concentration. Ferreira and Galo
(2013) combined multispectral image and fluorometric measurements
as ANN inputs to provide a good spatial inference result of chlorophyll-
a concentration even in regions with small variations of chlorophyll-a
concentration. Krasnopolsky et al. (2016) proposed an MLP model to fill
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gaps in satellite data by relating the satellite-derived surface parameters
(sea-surface temperature (SST), sea-surface height, and sea-surface
salinity) to chlorophyll-a concentration to eliminate the systematic
component and reduce the noise in satellite data. Jo et al. (2018) es-
timated chlorophyll-a concentration by using an NN algorithm trained
with five microwave remote sensing measurements (SST, cloud, WV,
precipitation, and winds) and geolocation data, offering a promising
approach for filling gaps due to weather conditions.

DL techniques were gradually employed in the estimation of ocean
color parameters. Cho et al. (2018) predicted four-day chlorophyll-a
concentration by using a LSTM approach, which outperforms conven-
tional NN methods. However, this study only used nine environmental
variables from station measurements. Nock et al. (2019) developed a
CNN architecture to parameterize the water column, including depth,
bottom type, and inherent optical properties, from 89 spectral band
hyperspectral imagery of water. The CNN performed better than RF and
SVM methods. The retrieval of ocean color parameters using DL tech-
niques is restricted due to the sparse and inadequate stations for mea-
suring some parameters as sample data or validating the robustness and
generalization capability of DL techniques. Additional efforts should be
exerted to explore the potential of DL algorithms in ocean color remote
sensing data.

5. Discussion and recommendations for future work

5.1. DL or physical models?

Environmental remote sensing involves many physical models that
are grounded in systematic physical theories. In contrast with the
physical models, DL has a long-standing problem of working as a black
box. In other words, why and how the DL models work need further
explanations. Consequently, the use of DL or physical models has trig-
gered a wide debate in recent years. The issue of whether DL can re-
place the physical models bears the brunt. In the current stage, DL has
been often used to supplement the physical models because it can ef-
fectively simulate the physical process and simplify the physical cal-
culation for environmental remote sensing (Section 2.2). This has in-
dicated some physical implications in the DL design. Therefore, we hold
the belief that DL cannot completely replace the physical models, and
the combination of physics-based models and DL may open a promising
door for environmental remote sensing.

The synergy between physical models and DL deserves to be re-
commended for environmental remote sensing, which may be achieved
by the following four main ways. (1) Physical model simulation with
DL. Physical models generally take enormous computation in the for-
ward simulation process for environmental modeling tasks. As an al-
ternative, DL could be used for the forward simulation of physical
models, in part or in whole, to save the computational cost. For ex-
ample, an NN was trained by using simulated data from the radiance
transfer model (i.e., MODerate resolution atmospheric TRANsmission
version 4 (MODTRAN4)). The NN was then used for the LST retrieval
based on satellite observations (Mao et al., 2007). In this process, the
MODTRAN4 model is surrogated by an NN model. (2) Physical model
output calibration with DL. Uncertainty often exists in the physical
model parameters, thus resulting in errors in model outputs. With real
observations and other auxiliary data, DL techniques could be adopted
for the calibration of model outputs. Di et al. (2016b) utilized a BPNN
model to calibrate GEOS-Chem outputs from 2001 to 2010 for the
Northeastern US, in which ground monitoring data and other related
predictors were used. Notably, the physical model outputs could also be
used as input variables to aid DL modeling for the prediction of other
parameters. For instance, Shen et al. (2020) indicated that the estima-
tion of maximum air temperature could be improved by incorporating
the Global Land Data Assimilation System simulations (e.g., SM content
and albedo) into a DL architecture. (3) Physics-guided DL archi-
tecture design. With respecting the physical laws and mechanisms,

certain DL architectures are designed for environmental remote sen-
sing, which involves a deep combination of physics and DL. The DL
architecture has a natural advantage to capture the potential physical
relationship and of being interpretable. Schütt et al. (2017) proposed a
molecular deep tensor NN, in which molecular properties are governed
by the laws of quantum mechanics. (4) Physics-constrained DL
modeling. The physical regularization constraints are designed in the
loss function of DL models based on the physical mechanisms and
knowledge to maintain the physical consistency in environmental
modeling. The physically constrained cost function is then optimized to
obtain a satisfying result that simultaneously has high model perfor-
mance and physical consistency. For example, Karpatne et al. (2017)
established a physics-constrained NN model for the problem of lake
temperature modeling. The physics-based loss function was designed
according to physical relationships among the temperature, density,
and water depth. Overall, the combination of physical simulations and
DL may not only boost the model accuracy but also improve the phy-
sical understanding in the environmental remote sensing.

5.2. Incorporating geographical laws into DL

Environmental phenomena occur in the realm of space and time,
and they thus respect the geographical laws that describe the spatio-
temporal autocorrelation and heterogeneity of environmental variables.
The former suggests that the environmental variables are spatio-
temporally correlated with themselves; the latter means that the re-
lationship between environmental parameters varies in space and time.
However, DL models are usually employed to establish global numeric
relationships between variables without considering the geographical
laws. The incorporation of geographical laws into DL enhances the
exploration of environmental remote sensing studies.

First, the spatiotemporal autocorrelation of environmental variables
is recommended to be introduced into DL models via the following two
main ways. (1) Introducing spatiotemporal autocorrelation as
input variables into DL models. The spatiotemporal autocorrelation
of the environmental parameter could be captured as model-in-
dependent variables based on an inverse distance weighting or kernel-
based weighting technique. They, along with other model predictors,
are then inputted into the DL model for the environmental parameter
prediction. For example, Li et al. (2017a) established a DBN model for
the estimation of PM2.5 by using satellite AOD, in which the spatio-
temporal autocorrelations of PM2.5 were used as two separate input
variables captured by an inverse distance weighting strategy. However,
only a shallow combination of spatiotemporal autocorrelation and DL is
performed in the above process. (2) Spatiotemporally constrained DL
modeling. The spatiotemporal structure of environmental variables
may be included in the DL architecture or the dynamic learning of DL
parameters to increase the interaction between spatiotemporal in-
formation and DL. Specifically, certain DL architectures could be de-
signed to capture the spatiotemporal dependency of environmental
parameters. For example, LSTM was designed to address the temporal
dependency (Lipton et al., 2015); however, extending LSTM to the
spatial context is difficult. In fact, the DL model design considering the
spatiotemporal structure of environmental variables is highly challen-
ging, and an alternative possible solution is to construct the constraint
rules for spatiotemporal dependency in a DL model, like the above-
mentioned physics-constrained DL modeling. Specifically, introducing a
loss function with regularization constraints for spatiotemporal de-
pendency may actually work for the combination of spatiotemporal
autocorrelation and DL models.

Second, DL models considering spatiotemporal heterogeneity of
environmental variables will also be of substantial interest to the re-
mote sensing of the environment. Accordingly, geographically and
temporally weighted DL (GTW-DL) models are believed to be a good
choice. The DL models are separately established for individual loca-
tions and times to address the spatiotemporal heterogeneity, and these
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DL models are then trained using spatiotemporally localized samples. Li
et al. (2018b) recently proposed a geographically and temporally
weighted GRNN model to cope with the spatiotemporal heterogeneity
in the satellite-based PM2.5 estimation. Two essential issues need to be
addressed in the establishment of GTW-DL models. The first issue is the
limited samples due to the difficulty in collecting sufficient samples in a
spatiotemporally localized context. The other issue is computational
cost, which is considerably enlarged for the establishment of spatio-
temporally varying DL models. In short, the GTW-DL models hold re-
markable potentials to cope with spatiotemporal heterogeneity, but
they still need further explorations.

5.3. Small sample size and transfer learning

DL models often have a deep and complex structure and hence re-
quire a multitude of training data. However, the number of matchup
samples in environmental remote sensing datasets is often limited. This
limitation could be attributed to many aspects, such as missing satellite
data due to cloud cover and sparse ground stations. This limitation of a
small sample size could be improved to a certain degree by using
transfer learning (Goodfellow et al., 2016). In this approach, para-
meters in a model pre-trained on large datasets can be fine-tuned with
limited samples for optimal performance in the new task.

Specifically, the transfer learning applied in environmental remote
sensing includes the following aspects. (1) Region-based transfer
learning. The first approach first utilizes easily acquired geodata in a
region to learn a robust deep model. The model is then extended to
other regions to realize the transferring of the relation between en-
vironmental parameters and achieve high-precision environmental
parameter retrieval results. An example of knowledge transfer from a
city with sufficient samples to other similar cities with the small sample
size problem has been presented in the study of Wei et al. (2016). (2)
Data-based transfer learning. Data-based transfer learning is utilized
to solve the problem of model generalization between multiple sensor
images because the model trained on a sensor of images may not effi-
ciently work when directly applied to other sensor images. Several land
classification approaches (Huang et al., 2018; Tong et al., 2020) utilized
such a technique to improve the performances of the model when ap-
plied to multi-sensor images.

The techniques and strategies in transfer learning, such as pre-
training and fine-tuning, domain adaptation, are beneficial for solving
small sample size problems in environmental remote sensing. The
parameters in a model pre-trained on large datasets could be fine-tuned
with limited samples to achieve optimal performance in the new task.
Domain adaptation can also facilitate effective model performance
trained on the source domain when applied to the target domain to
accomplish a similar task. To date, although both approaches are
helpful for promoting model performances, their acquired achieve-
ments are not that impressive as those of supervised learning.

6. Conclusion

A systematical review on the traditional NN and the most advanced
DL methods in environmental remote sensing applications is presented
in this paper. The DL techniques, which originated from ML fields, were
initially used for image processing tasks. These techniques have been
applied in remote sensing information classification and quantitative
parameter retrieval in recent years, both from land cover mapping and
environmental parameter retrieval. The investigation results showed
that DL techniques have acquired tremendous achievements in en-
vironmental remote sensing. Finally, some new insights into the im-
provement of the DL tools for environmental remote sensing applica-
tions are also provided. For example, the combination of the physical
and the DL models is a promising direction. Another potential research
point is the incorporation of the geographical law into intelligent DL
architecture. The traditional DL models are also largely dependent on
many training samples. Combining transfer learning and DL may be a
good choice to make these models effectively work in the limited
sample condition.
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Appendix A. Nomenclature

AE Autoencoder
AMSR2 Advanced microwave scanning radiometer 2
AOD Aerosol optical depth
ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer
AVHRR Advanced Very High Resolution Radiometer
BNN Bayesian neural networks
BPNN Back-propagation neural network
CMAC Cerebellar model articulation controller neural network
CNN Convolutional neural network
CPANN Counter propagation artificial neural network
DBN Deep belief network
DFNN Deep feedforward neural network
DL Deep learning
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DNN Deep neural network
ECMWF European Center for Medium-Range Weather Forecasts
EEMD Ensemble empirical mode composition
ELM Extreme learning machine
ETo Evapotranspiration
ETM+ Enhanced Thematic Mapper
FFBP Feed-forward back-propagation
FNN Fuzzy neural network
FVC Fractional vegetation cover
GLASS Global land surface satellite
GNN Granular neural network
GOES Geostationary operational environmental satellite
GRNN Generalized regression neural network
GRU Gated recurrent unit
LAI Leaf area index
LSM Land surface model
LST Land surface temperature
LSTM Long short-term memory
LWDN Downwelling longwave radiation
LWUP Upwelling longwave radiation
MCPN Modified counter propagation network
MDOY Modified day of year
MIMICS Michigan microwave canopy scattering model
ML Machine learning
MLP Multilayer perceptron
MODIS Moderate resolution imaging spectrometer
NARX Nonlinear autoregressive networks with exogenous inputs
NDVI Normalized difference vegetation index
nLw Normalized water-leaving radiances
NN Neural network
PM Particulate matter
PVI Perpendicular vegetation index
RBF Radial basis function
RBM Restricted Boltzmann machine
RF Random forest
RNN Recurrent neural network
RTM Radiative transfer model
SD Snow depth
SDAE Stacked denoising auto-encoders
SeaWiFS Sea-viewing wide field-of-view sensor
SKN Supervised Kohonen network
SM Soil moisture
SMAP Soil moisture active passive
SMOS Soil moisture and ocean salinity
SNN Spiking neural networks
SNNS Stuttgart neural network simulator
SRE Satellite rainfall estimation
SVM Support vector machine
SWE Snow water equivalent
TM Thematic Mapper
TOA Top-of-atmosphere
TRMM Tropical rainfall measuring mission
VWC Vegetation water content
WATARK Weighted area-to-area regression kriging
XYF XY-fusion network
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