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Abstract:

Monitoring the variability of snow cover is necessary and meaningful because snow cover is
closely connected with climate and ecological change. In this work, 500m resolution MODIS
daily snow cover products from 2000 to 2014 were adopted to analyze the status in Hengduan
Mountains. In order to solve the spatial discontinuity caused by clouds in the products, we
propose an adaptive spatio-temporal weighted method (ASTWM), which is based on the

initial result of a Terra and Aqua combination. This novel method simultaneously considers



the temporal and spatial correlations of the snow cover. The simulated experiments indicate
that ASTWM removes clouds completely, with a robust overall accuracy (OA) of above 93%
under different cloud fractions. The spatio-temporal variability of snow cover in the Hengduan
Mountains was investigated with two indices: snow cover days (SCD) and snow fraction. The
results reveal that the annual SCD gradually increases and the coefficient of variation (CV)
decreases with elevation. The pixel-wise trends of SCD first rise and then drop in most areas.
Moreover, intense intra-annual variability of the snow fraction occurs from October to March,
during which time there is abundant snow cover. The inter-annual variability, which mainly
occurs in high elevation areas, shows an increasing trend before 2004/2005 and a decreasing
trend after 2004/2005. In addition, the snow fraction responds to the two climate factors of air
temperature and precipitation. For the intra-annual variability, when the air temperature and
precipitation decrease, the snow cover increases. Besides, precipitation plays a more

important role in the inter-annual variability of snow cover than temperature.
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1. Introduction

Snow is a significant element of the cryosphere, affecting the energy balance, climate,
ecology, and hydrology, and even the activities of human beings (Barnett et al., 1988; Robinson
et al., 1993; Brown, 2000). In the Hengduan Mountains, snowmelt water is an essential water
resource, contributing a lot to the runoff and supporting lives downstream (Flerchinger et al.,
1992; Singh et al., 2006). Moreover, snow cover is sensitive to regional climate change, which
perhaps differs from global climate change (Barnett et al., 1989; Barnett et al., 2005; Dahe et al.,
2006). In addition, as a global biodiversity hotspot, the Hengduan Mountains provide a stable

beneath-the-snow refuge for plants and animals, which gives essential relief from biting winds
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and subzero temperatures in harsh winter weather (Pauli et al., 2013). However, with the rapid
growth of human activities, the ecological balance is broken and climate is changed, which
results in a decline in natural resources and an acceleration of species extinction. Consequently,
it is necessary and meaningful to monitor the spatial and temporal variability of snow cover in
the Hengduan Mountains.

Because of the high spatial and temporal resolution, MODIS snow cover products are widely
used in the monitoring of snow cover (Hall et al., 2002). Many studies have proved that the
products show a relatively high agreement with the in situ observations or other remote sensing
images under clear-sky conditions in different scales (Bitner et al., 2002; Klein and Barnett,
2003; Simic et al., 2004; Déry et al., 2005; Parajka and Bloschl, 2006; Tong et al., 2009a;
Parajka and Bloschl, 2012). However, the clouds in these products are so severe that their
application is limited, which is a very common phenomenon in remote sensing data (Parajka
and Bloschl, 2006; Cheng et al., 2014; Li et al.; 2014). Therefore, a number of methods have
been proposed to remove clouds from MODIS snow cover products, but these cloud-removal
methods differ from the regular cloud-removal methods of remote sensing data (Cheng et al.;
Zeng et al., 2013; Li et al., 2015; Shen et al., 2015; Li et al., 2016). The MODIS
cloud-removal methods can be classified into three main categories: spatial methods, temporal
methods, and spatio-temporal hybrid methods.

For the spatial methods, the simplest spatial filter is based on the cloud-free observations in
the four or eight neighboring pixels (Parajka and Bloschl, 2008; Gafurov and Bardossy, 2009;
Tong et al., 2009a; Paudel and Andersen, 2011; Lépez-Burgos et al., 2013). With this method,
clouds with a fraction of less than 10% can be removed. With the introduction of an auxiliary
DEM, the snow transition elevation method and the regional snowline mapping method assign
cloud pixels based on the snowline and the landline, respectively. All the cloud pixels above the
snowline are considered to be snow, and all the cloud pixels below the landline are considered
to be “no snow” (Gafurov and Bérdossy, 2009; Parajka et al., 2010). These methods perform

well in both high and low elevations. However, the greater the cloud fraction, the lower the



accuracy. Paudel and Andersen (2011) and Da Ronco and De Michele (2014) took into
consideration topography and land use to improve this approach. The locally weighted logistic
regression method estimates the snow occurrence probability of a cloud pixel by its
topographic relationship with the surrounding cloud-free pixels (Lopez-Burgos et al., 2013).
This method obtains a satisfactory accuracy, but comes with a high computational cost. The
above methods mainly make use of the spatial correlations; however, when the cloud fraction
is high, it is difficult to guarantee their accuracy.

The temporal methods are based on the time-series correlations of snow cover. The most
widely used temporal method is the Terra and Aqua combination, which can remove between
5-20% of the cloud cover (Parajka and Bloschl, 2008; Gafurov and Bardossy, 2009; Wang et al.,
2009; Xie et al., 2009; Gao et al., 2010; Paudel and Andersen, 2011; Da Ronco and De Michele,
2014) with a slightly lower accuracy than the original products. This approach benefits from
the fact that cloud distribution is changeable within an interval of three hours. Adjacent
temporal deduction is another useful method, exploiting the information in predefined
preceding and following temporal windows (Gafurov and Béardossy, 2009; Gao et al., 2010;
Paudel and Andersen, 2011; Lépez-Burgos et al., 2013; Da Ronco and De Michele, 2014). This
approach is based on the assumption that snow remains constant in the temporal windows, so
the accuracy in a “snow-stable” period is higher than that in a “snow-transitional” period. In
addition, both the temporal filter and multi-temporal combination only use the snow cover
information of the preceding days to remove clouds. The temporal filter, which replaces cloud
pixels by the most recent preceding cloud-free observations (Parajka and Bloschl, 2008; Hall et
al., 2010; Parajka et al., 2012; Da Ronco and De Michele, 2014), can keep the temporal
resolution of snow cover products. The multi-temporal combination replaces the cloud pixels
by the cloud-free observations in a fixed or flexible temporal window from between 1 to 8 days
while decreasing the temporal resolution (Sorman et al., 2007; Liang et al., 2008; Wang et al.,
2009; Gao et al., 2010). However, the two methods cannot remove the clouds completely and

may lose the information about short snowfall events. In contrast, the seasonal filter uses a



longer time series to remove the remaining clouds completely. It assumes that a hydrologic
year has only one snow cycle, and sets two thresholds for each pixel, i.e., the snow melt day and
snow accumulation day (Gafurov and Bardossy, 2009). Nevertheless, it ignores the multiple
snow cycles in a hydrologic year for some regions. Thus, Paudel and Andersen (2011)
introduced the thresholds of the snow accumulation day, the minimum snow extent day, and the
maximum snow extent day in each snow cycle. This approach works well when a hydrologic
year has several snow cycles. In general, these temporal methods can obtain a good cloud
removal accuracy by the use of simple ideas, but they fail in the condition of cloud cover
persisting for a long time in the same area.

Most of the spatial or temporal methods cannot remove clouds completely, despite the high
cloud removal accuracy. Moreover, it is known that the spatial and temporal methods have
some advantages which can complement each other. Hence, the two kinds of methods can be
combined step by step for a better removal effect (Gafurov and Béardossy, 2009; Paudel and
Andersen, 2011; Lopez-Burgos et al., 2013; Da Ronco and De Michele, 2014). The sequential
combination methods remove clouds completely and can acquire a better accuracy than the
spatial or temporal methods. However, they independently utilize the spatial or temporal
characteristics of the snow cover in the corresponding step, and they cannot make full use of
the spatial and temporal correlations of snow cover. To this end, an innovative joint
spatio-temporal method named the adaptive spatio-temporal weighted method (ASTWM) is
proposed in this paper. The basic idea of ASTWM is that topography has a prominent influence
on the spatial distribution of snow cover, while the characteristics of snow cover remain
relatively similar in a short time series. This approach has the great advantage of considering
the spatial and temporal correlations of the snow cover simultaneously. Furthermore, it can be
adopted as a separate cloud removal method or as the last step when combined with other
methods.

On the other hand, the hydrological applications of MODIS snow cover products mainly

concentrate on the analysis of the variability of snow cover, snowmelt runoff simulation, input



parameters of the hydrological and meteorological model, and the aided generation of snow
water equivalent or snow depth product, and so on. Maskey et al. (2011) made an analysis of
snow cover changes in the Himalayan region (2000-2008) using MODIS 8-day composite
snow products and in sifu temperature data, which demonstrates the snow cover has a strong
negative correlation with the temperature. Paudel and Andersen (2011) researched the snow
cover variability in the Trans Himalayan region of Nepal using MODIS data with improved
cloud removal methodology, and the peak snow period has been delayed by about 6.7 days
per year from 2000 to 2010. Wang and Xie (2009) monitored the spatio-temporal variation of
snow cover in northern Xinjiang, China, with the snow cover index (SCL); snow cover
day/duration (SCD), snow cover onset dates (SCOD) and snow cover melting dates (SCMD).
Further, Wang et al (2015) also monitored Tibetan Plateau, and discovered the maximum
number of SCD in a year followed a decreasing tendency from 2003 to 2010. Tong et al.
(2009b) investigated the relationship between snow cover and terrain in an alpine watershed
of western Canada, and it indicates the snow cover duration is positively correlated to the
elevation. In addition, there is no evidence of a statistically significant long-term trend over
the Moroccan Atlas mountain range (Marchane et al., 2015). Snow cover duration anomalies
reveal a deficient snowpack on the Spanish side of the Pyrenees, which seems to have caused
a drop in the national hydropower production (Gascoin et al., 2015). The previous research
has exposed that snow cover can quantify the possible effects of abnormal weather conditions
and predict future scenarios (Dietz et al., 2012).

On the whole, this paper aims to achieve two goals. The first is to propose the ASTWM
cloud removal method, which is more suitable for mountainous regions. For a higher OA,
ASTWM is combined with the Terra and Aqua combination. Then, based on the result of the
proposed method, the second goal is to detect the spatial and temporal variability of snow cover

in response to climate change from 2000 to 2014 in the Hengduan Mountains.



The rest of this paper is organized as follows. In Section 2, the study area and the data, which
include remote sensing data, digital elevation data, and meteorological data, are introduced.
The cloud removal methods of the Terra and Aqua combination and ASTWM are described in
Section 3. The cloud removal accuracy of the proposed method is evaluated and the variability
of snow cover in the Hengduan Mountains is analyzed in Section 4. Finally, the discussion and

conclusion are provided in Section 5.

2. Study area and data

2.1. Study area

The study area is the Hengduan Mountains, located between 25°W to 33°W and 96°E to
104°E, with a total area of approximately 35000km’ (Fig. 1). The name Hengduan means “to
transect”, and this range is one of China’s few north—south ranges, cutting perpendicular to the
Himalayas. The northern part of the Hengduan Mountains lies to the west of the Sichuan Basin
and includes the Min and Qionglai mountain ranges. The southern part borders complex river
gorge country where rivers from southeastern Tibet spill into Southeast Asia. The area includes
a complex of ridges and river valleys, with the maximum altitude falling gradually from over
7000m in the north to 500-2000m in the south. The elevation of most of the ridges is between
4000m to 5000m. The Gongga Mountain, located about 30°W, reaches 7556m above sea level,
and is the culmination of the study area. The Yulong Mountain, located about 27°W, reaches
5596 m above sea level, and is the area of glaciers in the most southern latitude of China. With
regard toclimate, with the influence of the upper west wind, the Indian Ocean, and the Pacific
monsoon circulation, the area is arid in winter and wet in summer. In general, during the
monsoon from mid-May to mid-October, most of the precipitation occurs, accounting for more
than 85% of the yearly total. In fact, the precipitation occurs mainly in June, July, and August.
The subtropical latitude and the monsoonal climate, together with the great altitudinal range,
have produced a natural flora and fauna that ranks among the richest and most varied in the

world.
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Fig. 1. The location and elevation distribution of Hengduan Mountains.

2.2. Data

The snow cover data in MODIS Terra/Aqua Snow Cover Daily L3 Global 500m Grid
Version 5 (MOD10A1/MYDI10A1) (Hall et al., 2007) were used in this study. The snow cover
data comprise 11 classes in total, including snow, lake ice, no snow/land, lake, ocean, sensor
data missing, no decision, night, detector saturated, and fill, based on a snow mapping
algorithm that employs the normalized difference snow index (NDSI) and other criteria tests
(Hall et al., 2001; Hall et al., 2002; Riggs et al., 2006; Salomonson and Appel, 2006). All the
MODIS snow cover products from September 1, 2000, to August 31, 2014, were obtained from
the National Snow and Ice Data Center (NSIDC, http://nsidc.org), with tiles H26 V05, H26 V06,
and H27V06 covering the whole study area. Because MYD10AL1 is only available from July 4,
2002, MOD10A1 were utilized from that time. The MODIS Reprojection Tool (MRT) was
used to mosaic the three tiles and reproject them into Universal Transverse Mercator (UTM)
coordinates. After the pre-processing, the original snow cover data were reclassified into three
categories. Specifically, the snow and lake ice classes were reclassified into the snow category;

the no snow (land), lake, and ocean classes were reclassified into the no snow category; and the
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cloud and other classes were reclassified into the cloud category. The coded integer values for
the three categories were 200, 50, and 1, respectively.

The ancillary data were the NAS A Shuttle Radar Topographic Mission (SRTM) 90m digital
elevation data, which were obtained from the CGIAR Consortium for Spatial Information

(CGIAR-CSI, http://srtm.csi.cgiar.org). Aiming to match the MODIS snow cover products, the

DEM data were resampled into a 500m spatial resolution and reprojected into UTM
coordinates.

In addition, monthly average air temperature and monthly precipitation data were
downloaded from 26 meteorological stations of the China Meteorological Data Sharing Service

System (see Fig. 1, http://cdc.nmic.cn). The air temperature and precipitation data for the

period of September 2000 to August 2014 were used to analyze the relationship with the snow

fraction.

3. Methodology

A two-step method is proposed to remove clouds completely from the MODIS snow cover
products. The output of the first step, the Terra and Aqua combination, is the input of the

second step, ASTWM. The schematic diagram is shown in Fig. 2.

o —
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Cloud-free image

O Cloud
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B Snow
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Fig. 2. Schematic diagram of the two-step cloud removal method.



3.1. Terra and Aqua combination

The first step combines the Terra and Aqua snow cover products on the same day into one
product with less clouds, based on the fact that the Terra and Aqua satellites observe the same
area of the Earth approximately three hours apart, during which time the clouds can move. The
combination rule is: 1) if a pixel is observed as snow by either satellite, the pixel is assigned as
snow ; 2) if a pixel is observed as no snow by one satellite and cloud by another, the pixel is
assigned as no snow; 3) if a pixel is observed as cloud by both satellites, the pixel is assigned as
cloud; and 4) if only the Terra (or Aqua) snow cover product is available on a certain day, it is
regarded as the output of this step. In other words, if a pixel in one of the product (Terra or
Aqua) is classified as snow and the pixel in other product is classified as land, it will be
considered as snow.

3.2. The adaptive spatio-temporal weighted method (ASTWM)

Many studies have demonstrated that snow fraction exhibits a positive linear correlation with
elevation (Tong et al., 2009b; Sharma et al., 2014; Jin et al., 2015). Moreover, the closer the
time interval, the more similar are the characteristics of snow. The present methods just make a
sequential combination of the spatial and temporal correlations of the snow cover, which does
not make full use of theavailable information. Thus, we propose ASTWM, which
simultaneously takes advantage of the spatial and temporal correlations of the snow cover. In
the proposed approach, the cloud removal is realized by estimating the probability of the snow
cover. When the probability is equal to or greater than a threshold, a cloud pixel is assigned as
snow; otherwise, it is assigned as no snow. Specifically, the probability is the weighted
combination of the spatial probability and temporal probability, which are estimated by the

snow cover information in the spatial and temporal dimensions, respectively.

The snow cover product used in the cloud removal is defined as I"*', on the assumption
2T+1
that there is a temporal sequence of products {I , }k_l , where T is the number of the

preceding and following days for I"*'. Hence, the snow probability of a cloud pixel can be

expressed by Eq. (1):
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2T+1
where i and j are the indices of the rows and columns in {I "}I: ; P(ij) is the resulting

probability of snow for the cloud pixel; P(fj) and P(Zj) are the spatial and temporal

probabilities of snow for the cloud pixel, respectively; and W) is the weight of P(fj).

Since the binary snow cover data only include snow and no snow pixels, to classify the

cloud pixels into snow or no snow is an equal possibility event. Therefore, the threshold of
ﬂij) is set to 0.5. When Qij) is equal to or greater than 0.5, the cloud pixel is assigned as
snow; otherwise, the cloud pixel is assigned as no snow. In the following, P(fj), P(Zj), and

W, ;) are described in detail.

3.2.1. The spatial probability of snow

P(fj) is actually estimated by the relationship between the elevation and the snow fraction.
First of all, the snowline, which is similar to the regional snowline of (Parajka et al., 2010), is
utilized. The snowline H is the elevation above which all the cloud-free pixels are observed
as snow. Similarly, the landline H, is the elevation below which all the cloud-free pixels are
observed as no snow. The elevation between H, and H, is then divided into several
elevation zones with a 100-m interval. At the same time, the elevations above H and below
H, arealsoregarded as single elevation zones, respectively. Accordingly, in any elevation
zone, the spatial probability of snow is estimated by the ratio of the number of snow pixels
N;, to the number of cloud-free pixels N, . However, due to the heavy cloud and complex
land-cover types, the snow fraction does not always exhibit a linear correlation with elevation.

Therefore, a constraint is added to P(f’j) to reduce its contribution to the resulting probability of

snow. The improved spatial probability of snow P(fj) can be expressed by Eq. (2):

11



2)

where & is the cloud fraction in the snow cover product I"*'. It is noteworthy that if there are
no cloud-free pixels in an elevation zone, only P(ij) is used to reclassify the cloud pixels.

3.2.2. The temporal probability of snow

P(ij) is estimated by the information in the cloud-free observations in the preceding and
following days. In the time series, every observation provides a component of the temporal
probability of the cloud pixel, and their weighted sum is the final temporal probability. As we
know, snow characteristics are closely related to time, and a shorter interval usually means a
closer relationship. Thus, the time interval d(,-,j) between the cloud-free day and the current
day is regarded as the weight to acquire the temporal probability of snow. According to the
characteristics of the temporal correlation, the weightis calculated in a similar way to the

inverse distance weighted method. As a result, P(Ij) can be expressed by Eq. (3):

- ’ ’ k
B =klzr+1—(l(ia/') * 1) ®)

where

o [uif =200
Pij = ’ “)
I O

For the Hengduan Mountains, 7 =15 was chosen to remove clouds for the reason that 15
days could guarantee sufficient cloud-free observations.
3.2.3. The weighting

As stated above, if a cloud pixel is assigned as snow, Pén should be no less than 0.5,

namely:

H T T
(B, —Bl,)xw,,+Pl, 205 )
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For Eq. (5), three situations occur:

(@if P >P' > —0'5 ~Fin :
(i.J) (M’Wm—ﬁ%_ﬁ%’
i,j i,j

(b) if P(fj) = P(Zj), ;. does not make a contribution to Eq. (5);
T
0.5-Fip

ij)S H T
Fin=Hon

: H T
©IfF ) <Ky W

W i) is estimated by the cloud-free pixels of I”*'. For different snow cover products, the
distributions of cloud and snow cover vary, so that Wi i) should also be different. In order to

weight the spatial and temporal probability of snow automatically, a sensitivity analysis is

applied to calculate W ; under situations (a) and (c), respectively. It is assumed that cloud

pixels of """ have the same W ; asthe cloud-free pixels, defined as w,, . Firstly, in the

same way we acquire P(ij), the resulting snow probability of the cloud-free pixel (F;i/.) ) is
acquired by Eq. (1). Secondly, we change the value of w,, to maximize the OA of the
cloud-free pixels, i.e., w, is varied from O to 1 with a step size of 0.01. The corresponding
w,, 1s regarded as the weight Wi i) of P(ij). In other words, the weight Wij) is calculated

by the cloud-free pixels.
3.3. The validation methods
3.3.1. The cloud removal accuracy of snow cover

The in situ observation datasets are sparsely distributed in the elevation from 1500 m to
4000 m in the study area, as shown in Fig. 1. In addition, it is not reasonable to use an in situ
observation to represent a pixel value of a product with an area of about 0.25 km®. For the
above reasons, the validation method proposed by Gafurov and Bérdossy (2009) was adopted
in the simulated experiments. Firstly, the original cloud-less Terra snow cover product (with a
cloud fraction of less than 5%) was considered as the “truth”. The cloud masks (with different

fractions) from the other products were then used to cover the “truth” and produce the new

13



products as “observations”. Finally, the cloud removal results of the “observations” were
compared with the “truth” by the OA, the overall clear-sky accuracy (OC), the underestimation

error (UE), and the overestimation error (OE), which are expressed as follows:

NS + N)lS
OA = S ns (6)
Na
NS + N)lS
OC e S ns (7)
N,
N)lS
OE =— 8
N ®)
NS
UE=—"* 9
o ©)

¢

where N is the total number of cloud pixels which are assigned as snow in the “observations”

and are observed as snow in the “truth”; N° is the total number of cloud pixels which are

ns

assigned as no snow in the “observations” and are observed as no snow in the “truth”; N* is
the total number of cloud pixels which are assigned as snow in the “observations” and are

observed as no snow in the “truth”; N is the total number of cloud pixels which are assigned

ns

as no snow in the “observations” and are observed as snow in the “truth”; N is the total

number of cloud pixels in the “observations”; and N, is the total number of cloud pixels which
are assigned in the “observations”.
3.3.2. The variability of snow cover

The snow cover variability is analyzed by the use of the snow cover days (SCD) and snow
fraction. SCD is the total number of days with snow cover in a hydrologic year (Wang and Xie,
2009; Tang et al., 2013), and snow fraction is the percentage of snow pixels in a given area. In
this study, September 1 to the following August 31 is regarded as a hydrologic year. The SCD

is calculated by individual pixels and is expressed as shown in Eq. (10):
SCD ;, = Zp(ki.j) (10)
k=1

where n is the sum of days in a hydrologic year, and p(",..j) is defined as shown in Eq. (4).

For SCD, we show the distribution of the average SCD from 2000 to 2014 with the

14



coefficient of variation (CV), followed by the pixel-wise trends obtained by the use of a
piecewise linear regression model with one breakpoint (Toms and Lesperance, 2003; Wang et

al., 2011):

{ﬁ0+ﬁ]t+8, t<a an

B+Bt+p(t—a)+e, t>a
where y is the SCD or snow fraction; ¢ is the year; « is the breakpoint of the trend, as
determined by the least square error method; £, f,,and [, are the regression coefficients;
and ¢ is the residual error. B and S, + 8, are the trends before and after the breakpoint,

respectively.

For the snow fraction, both the intra-annual variability and the inter-annual variability are
monitored. The intra-annual variability is based on the average daily snow fraction. The
inter-annual variability is based on the average annual snow fraction in the whole region and
under the different elevation zones. The piecewise linear regression model was again applied to

study the trends.

4. Results and analysis

4.1. Evaluation of the cloud removal methods

A number of verification experiments were conducted. Firstly, the effectiveness of the
proposed method was evaluated with regard to the cloud fraction. In terms of the proposed
method, the first step is the Terra and Aqua combination, and the second step is ASTWM. This
method was compared with the temporal filter (Parajka and Bloschl, 2008), which was also
applied after the Terra and Aqua combination. Secondly, the accuracy of the cloud removal was
further assessed by simulated experiments, in which only ASTWM and the temporal method

(Parajka and Bloschl, 2008) were used for the cloud removal, with the first step omitted. The

comparison method also includes the combination of temporal filter and spatial filter (Parajka

and Bloschl, 2008).
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4.1.1. Effectiveness of the cloud removal methods

Fig. 3 shows the real average monthly cloud fraction of Terra, Aqua, and the remaining
fraction after each step, including the Terra and Aqua combination, the temporal filter, and the
proposed ASTWM. For the original snow cover products, the intra-annual cloud fraction in the
Hengduan Mountains is high in summer and low in winter. Furthermore, the cloud fraction of
the Aqua products is higher than the Terra products. After the Terra and Aqua combination, the
cloud fraction is reduced by 7-13% compared to the Terra product. However, the cloud fraction
is higher than 20% in most months. Based on the result of the first step, the temporal filter
clearly reduces the cloud fraction, but not completely. It remains at 1% _in winter and almost
20% in summer, which does influence the analysis of the snow cover variability to some degree.
In contrast, ASTWM removes all the clouds successfully, and it is the only method that
achieves this goal. This experiment demonstrates that ASTWM is the most effective method
and can remove the clouds completely.

100

—@—— Temra
Aqua
Combined
Temporal filter (Parajka and Bloschl, 2008)
ASTWM

Cloud fraction (%)

Sep Oct Nov Dem Jan Feb Mar Apr May Jun Jul Aug
Month

Fig. 3. The average monthly cloud fraction of Terra, Aqua, and the removal results of each step from

2000 to 2014 in the Hengduan Mountains.

4.1.2. Accuracy of the cloud removal methods

Firstly, in the simulated experiments, a comparison was made between ASTWM and the
temporal filter with a predefined temporal window of 5 days (Parajka and Bloschl, 2008). In

order to ensure the reliability, the clouds of 25 dates of Terra snow cover products (except for
16



July and August) (see Table 1) were removed. In Table 1, every year several snow cover
products with clouds less than 5% are chosen as the observed data during 2001-2013, and
then 20%—80% clouds masks from other dates are added to them so that the simulated
experiments can be done. Specially, only July and August are not chosen as the validation
dates. For an intuitive comparison with the removal results, the two methods were used
without the first step (the Terra and Aqua combination). First of all, the visual effects of the
cloud removal results of the two methods were compared. For brevity, only two examples are
shown in Fig. 4 and Fig. 5, respectively. Fig. 4 shows the results on May 14, 2002, where the
simulated cloud fraction was 44.43%. It can be seen that ASTWM removes the clouds
completely, while the temporal filter leaves a cloud fraction of 8.27%. Moreover, the temporal
filter apparently increases the snow fraction compared to the “truth”, especially in the boundary
of the western region. In contrast, the ASTWM result is closer to the “truth”, except for the fact
that the scattered snow pixels in the southern part are not estimated. Fig. 5 shows the results of
the two methods on February 22, 2010, with an extraordinarily high cloud fraction of 93.89%.
In this case, the temporal filter results in a remaining cloud fraction of 0.25%, which can be
ignored. Similarly, the ASTWM result is closer to the “truth”, excluding some scattered snow
pixels, while the temporal filter overestimates the snow cover, especially in the east. Overall,
ASTWM removes the clouds completely, and the results are closer to the “truth” in visual

effect than those of the temporal filter.

N
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Fig. 4. Cloud removal results on May 14, 2002, in the Hengduan Mountains. (a) The “truth” product. (b)

The “observation” product. (c) The result after the temporal filter. (d) The result after ASTWM.
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The quantitative evaluation of the two methods is shown in Table 1, with the indicators of
OA, OC, UE, and OE. It can be seen that ASTWM performs well on every date, with cloud
fractions from 20% to more than 90%. Specifically, ASTWM removes clouds completely, with
the average OA/OC reaching 96.08% on average. For all the selected dates, the OA/OC of
ASTWM is above 93%, with a highest score of 98.92%, which indicates that ASTWM
embodies robustness and universality. It can be seen that the UE is slightly higher than the OE
by 2% on average. That is to say, ASTWM has a tendency to assign snow pixels as no snow
pixels. Compared with the temporal filter, the OA of ASTWM is 6.68% higher due largely to
the temporal filter leaving clouds ranging from 0.01% to 21.02%. In terms of OC, ASTWM is
2.24% higher than the temporal filter on average, except for March 20, 2000, and February 21,
2011. On December 1, 2002, November 11, 2004, and November 17, 2012, the OC of ASTWM
is higher than the temporal filter by 2.58%, 1.83%, and 2.44%, respectively, on the condition
that the remaining clouds of the temporal filter-are negligible. In addition, the UE of the
temporal filter is lower than the UE of ASTWM by 0.83% on average, except for November 11,
2004, while the OE of the temporal filter is much higher than the OE of ASTWM by 3.07% on
average, except for March 20,2001, and December 3, 2008. This indicates that when compared
with the temporal filter, ASTWM can greatly reduce the OE, while slightly increasing the UE at

the same time.

0 100 200 400 km
[ Cloud M No snow [ | Snow

Fig. 5. Cloud removal results on February 22, 2010, in the Hengduan Mountains. (a) The “truth”
product. (b) The “observation” product. (c) The result after the temporal filter. (d) The result after

ASTWM.
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Furthermore, for an in-depth comparison, the proposed ASTWM is compared to the 5-day
temporal filter, a combination of 5-day temporal filter and spatial filter (Parajka and Bloschl,
2008), 15-day temporal filter, at the aspects of remaining fraction (RF) of clouds and OA. The
three compared methods are called TF(5), TF(5)+SF, and TF(15) in turn in Table 2, which
shows the objective evaluations of the cloud removal. On one hand, as far as the RF is
concerned, only ASTWM removes clouds completely. For temporal filter, longer temporal
window means lower RF, and spatial filter is very helpful to decrease the RF of temporal filter.
On the other hand, for OA, ASTWM obtains the highest accuracy among the four methods,
and on the whole, a rough ranking from the worst to the best is TF(5), TE(5)+SE TF(15) and
ASTWM. When spatial filter is applied, the OA of 5-day temporal filter is-improved for the
sake of considering spatial information. Since more temporal reference information is used,
15-day temporal filter has a higher OA than 5-day temporal filter.

Additionally, the cloud removal accuracies of ASTWM with different temporal windows
are further analyzed. Table 3 shows the OA of ASTWM with temporal windows by 5 days, 10
days, 15 days, 20 days, 25 days and 30 days. For the same simulated data, the best accuracy is
bold. As shown in Table 3, for the shortest temporal window (5 days), it hardly gets the best
accuracy. For other temporal windows (10 days, 15 days, 20 days, 25 days, 30 days), they can
get the best accuracy more or less. Relatively speaking, the longer temporal window more
easily obtains the best OA. Although long time might lose information of short time snow
cover, the adaptively temporal weights can relieve this status to some degree. In the
experiments, the temporal window is set as 15 days for a tradeoff between accuracy and
computational efficiency. Since the accuracy differences with different temporal windows are
not obvious, shorter temporal window is recommended for the snow cover information in
lower elevations and south facing slopes.

Overall, ASTWM can remove clouds completely, with an excellent OA, and has an
advantage over the temporal filter and spatial filter in cloud removal accuracy, despite the fact
that it may assign snow pixels as no snow pixels. Since the Terra and Aqua combination
obtains the best OC of the present methods, we adopted it before ASTWM in the analysis

experiments.
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Table 1 The basic details of the selected products and the accuracy of ASTWM in comparison with the 5-day temporal filter in the Hengduan Mountains. CF
represents the cloud fraction of the “observations’’; RF represents the remaining cloud fraction; TF represents the temporal filter.

RF | OA 1 ocC 1 UE | OE |

Cloud-less dates  Cloud mask dates  CF ASTWM TF ASTWM TF ASTWM TF ASTWM TF ASTWM TF
Mar 20,2001 Jul 11, 2002 2886 0.00 542 9337 7646 9337  94.03  5.69 519 . 0095 0.78
May 14,2002  May 14,2003 4443  0.00 8.27 94.67 7479 9467 8999  3.99 132 134 8.69
Dec 1,2002  Dec 12, 2000 7970 0.00 0.03 9530 9270 9530 9272  3.09 282 1.6l 4.46
Jan 13,2003 Mar 11, 2002 3635 0.00 0.40 9679 9446 9679 9501  1.93 135 128 3.64
Apr19,2003  May23,2004 8549  0.00 0.85 96.89 9416 9689 9506  2.30 146 081 3.48
Mar 16,2004  Aug 10, 2002 93.09 0.0 0.93 9534 9212 9534 9290 3.4 3.01 141 4.09
May8, 2004  Dec 4, 2005 21.94  0.00 2.50 9349 8121 9349 9193 . 3.44 222 3.07 5.85
Nov 11,2004  Oct 22, 2005 9353 0.00 0.02 96.02 9416  96.02 9417 3.2 323 0.76 2.60
Jan 28,2005  Feb 14, 2006 61.87  0.00 3.30 93.17  89.59 9317 9254 - 5.70 514 113 2.33
Mar 4, 2007 Oct 7, 2008 5576 0.00 1.15 93.11 90.09  93.11 9090  6.29 6.07  0.60 3.02
Apr 19,2007 Jun 6, 2006 7261 0.00 0.08 9779 9457 9779 9467 1.0 042 101 491
Dec 3, 2008 Sep 21, 2007 4339 0.00 051 97.00 9466  97.00 - 9519  2.08 1.46  0.92 3.35
Apr 16,2009  Apr 12,2010 3448  0.00 0.36 96.17 9555 . 9617 9608  2.68 253 145 1.39
May 20,2009  Jan 28, 2008 81.01  0.00 1238 9612 7410 9612 8747  3.45 1.08  0.43 11.45
0ct 29,2009  Nov 8, 2010 2661 0.00 1.50 97.82 9418 9782 9763  1.78 137 0.40 1.00
Feb22,2010  Feb 25, 2009 93.89 0.0 0.25 9434 89.83 9434 9005  3.51 136 215 8.58
Mar 17,2010 Jul 24, 2009 97.81 0.0 4.05 9481 8744 9481 9131  4.40 261 0.79 6.08
Dec 21,2010 Jan 26, 2009 83.67  0.00 0.09 9588 9465 9588 9466 291 302 121 231
Mar 1, 2011 Dec 27, 2012 43.00  0.00 0.22 97.42 9497 9742 9541  1.54 0.56  1.04 4.03
May 18,2011  Feb 12, 2012 6505  0.00 9.15 9815 7867 98.15 9168 1.0 023  0.65 8.09
0ct20,2012  Aug7, 2013 9523 0.00 1.09 98.92 9749 9892 9809  0.74 0.37  0.34 1.54
Nov 17,2012 Dec 12, 2013 4595 0.00 0.01 97.62 9516 97.62 9518  1.86 125 0.52 3.57
Mar 5, 2013 Feb 13, 2014 3258 0.00 0.28 9554 9387 9554 9472  3.80 376 0.66 1.52
May 26,2013 Apr 25, 2014 84.40  0.00 2.68 97.17 9356 9717 9572  2.20 098  0.63 3.30
Sep 13,2013 Oct 3, 2012 89.98 0.0 21.02 9883 7438 9883 9618  1.05 033 0.12 3.49
Average 63.63  0.00 3.06 96.07 8931 9607 9373  2.93 213 1.01 414
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Note: 1 means that the higher value represents better result, and | means that the lower value represents better result.



Table 2 The accuracy comparison results of different methods. CF represents the cloud fraction of the “observations’’; RF represents the remaining cloud fraction;
TF represents the temporal filter, and the number in the bracket represents its temporal window; SF represents the spatial filter (Parajka and Bloschl, 2008).

RF | OA 1

Cloud-less dates Cloud mask dates CF

ASTWM TFE(5) TF(5)+SF TF(15) ASTWM TF(5) TF(5)+SE. TFE(15)
Mar 20, 2001 Jul 11, 2002 28.86 0.00 542 249 0.00 93.37 76.46 85.61 91.49
May 14,2002  May 14, 2003 44.43 0.00 8.27 4.87 0.28 94.67 74.79 82.12 90.22
Dec 1,2002 Dec 12, 2000 79.70 0.00 0.03 0.01 0.00 95.30 92.70 . 92.57 92.72
Jan 13, 2003 Mar 11, 2002 36.35 0.00 0.40  0.06 0.01 96.79 94.46 . 95.09 94.93
Apr 19, 2003 May 23, 2004 85.49 0.00 0.85 0.39 0.08 96.89 94.16  94.79 94.87
Mar 16, 2004 Aug 10,2002 93.09 0.00 093 0.23 0.02 95.34 9212 92.59 92.70
May 8, 2004 Dec 4, 2005 21.94 0.00 2.50  0.90 0.02 93.49 81.21 88.12 91.59
Nov 11, 2004 Oct 22, 2005 93.53 0.00 0.02  0.00 0.00 96.02 94.16 93.93 94.17
Jan 28, 2005 Feb 14, 2006 61.87 0.00 330 1.79 0.05 93.17 89.59 90.57 91.92
Mar 4, 2007 Oct 7,2008 55.76 0.00 1.15  0.56 0.00 93.11 90.09 90.29 90.80
Apr 19, 2007 Jun 6, 2006 72.61 0.00 0.08  0.04 0.00 97.79 94.57 95.36 94.67
Dec 3, 2008 Sep 21, 2007 43.39 0.00 0.51 0.15 0.00 97.00 94.66 95.07 95.13
Apr 16, 2009 Apr 12, 2010 34.48 0.00 0.36  0.04 0.06 96.17 95.55 96.19 95.95
May 20, 2009 Jan 28, 2008 81.01 0.00 12.38 7.21 041 96.12 74.10 80.64 88.05
Oct 29, 2009 Nov 8, 2010 26.61 0.00 1.50  0.70 0.53 97.82 94.18 96.17 95.94
Feb 22, 2010 Feb 25, 2009 93.89 0.00 0.25  0.04 0.00 94.34 89.83  90.48 89.96
Mar 17, 2010 Jul 24, 2009 97.81 0.00 4.05 264 1.86 94.81 87.44 88.43 89.34
Dec 21, 2010 Jan 26, 2009 83.67 0.00 0.09  0.00 0.00 95.88 94.65 94.33 94.66
Mar 1, 2011 Dec 27, 2012 43.00 0.00 0.22  0.07 0.00 97.42 94.97 95.53 93.10
May 18, 2011 Feb 12, 2012 65.05 0.00 9.15 ~ 3.58 0.04 98.15 78.67 87.94 92.13
Oct 20, 2012 Aug7,2013 95.23 0.00 1.09 0.52 0.85 98.92 97.49 97091 97.65
Nov 17, 2012 Dec 12, 2013 45.95 0.00 0.01  0.00 0.00 97.62 95.16 95.18 95.18
Mar 5, 2013 Feb 13, 2014 32.58 0.00 0.28 0.13 0.00 95.54 93.87 94.51 94.70
May 26, 2013 Apr 25, 2014 84.40 0.00 2.68  0.64 0.45 97.17 93.56 95.36 95.47
Sep 13, 2013 Oct 3,2012 89.98 0.00 21.02 0.64 18.33 98.83 74.38 82.71 77.17
Average 63.63 0.00 3.06 1.10 0.92 96.07 89.31 91.66 92.58
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Table 3 The overall accuracy (OA 1) of ASTWM with different temporal windows. CF represents the cloud fraction of the ‘“observations”.

Cloud-less dates  Cloud mask dates CF 5 days 10 days 15 days 20 days 25 days 30 days
Mar 20, 2001 Jul 11, 2002 28.86 87.13 92.45 93.37 93.52 93.60 93.51
May 14,2002  May 14, 2003 44.43 94.71 94.72 94.67 94.61 94.63 94.60
Dec 1, 2002 Dec 12, 2000 79.70 95.13 95.29 95.30 95.32 95.29 95.23
Jan 13, 2003 Mar 11, 2002 36.35 96.56 96.75 96.79 96.83 96.85 96.84
Apr 19, 2003 May 23, 2004 85.49 96.72 96.89 96.89 96.91 96.94 96.98
Mar 16, 2004 Aug 10, 2002 93.09 95.22 95.31 95.34 95.38 95.39 95.40
May 8, 2004 Dec 4, 2005 21.94 92.50 93.65 93.49 93.84 93.88 93.95
Nov 11, 2004 Oct 22, 2005 93.53 95.80 96.00 96.02 96.04 96.05 96.07
Jan 28, 2005 Feb 14, 2006 61.87 92.81 93.00 93.17 93.15 93.20 93.15
Mar 4, 2007 Oct 7, 2008 55.76 92.53 92.75 93.11 93.11 93.13 92.93
Apr 19, 2007 Jun 6, 2006 72.61 97.48 97.49 97.79 98.03 98.05 98.06
Dec 3, 2008 Sep 21, 2007 43.39 96.73 96.95 97.00 97.03 97.04 97.04
Apr 16, 2009 Apr 12,2010 34.48 96.06 96.14 96.17 96.18 96.16 96.16
May 20, 2009 Jan 28, 2008 81.01 95.96 95.91 96.12 96.23 96.33 96.42
Oct 29, 2009 Nov 8, 2010 26.61 97.79 97.84 97.82 97.76 97.77 97.81
Feb 22, 2010 Feb 25, 2009 93.89 94.14 94.20 94.34 94.46 94.45 94.38
Mar 17, 2010 Jul 24, 2009 97.81 94.69 94.78 94.81 94.717 94.81 94.85
Dec 21, 2010 Jan 26, 2009 83.67 95.62 95.82 95.88 95.91 95.91 95.91
Mar 1, 2011 Dec 27, 2012 43.00 97.32 97.44 97.42 97.37 97.36 97.35
May 18, 2011 Feb 12, 2012 65.05 97.80 98.15 98.15 98.15 98.14 98.12
Oct 20, 2012 Aug 7, 2013 95.23 98.84 98.89 98.92 98.93 98.94 98.95
Nov 17, 2012 Dec 12, 2013 45.95 97.51 97.55 97.62 97.66 97.68 97.68
Mar 5, 2013 Feb 13,2014 32:58 95.25 95.47 95.54 95.60 95.64 95.66
May 26, 2013 Apr 25,2014 84.40 96.67 97.01 97.17 97.14 97.11 97.13
Sep 13, 2013 Oct 3, 2012 89.98 98.74 98.79 98.83 98.83 98.82 98.85
Average 63.63 95.59 95.97 96.07 96.11 96.13 96.12
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4.2. Variability of snow cover
4.2.1. Snow cover days (SCD)

SCD reflects the spatial distribution of the snow cover in a hydrologic year. Fig. 6(a) shows
the average SCD from 2000 to 2014 in the Hengduan Mountains, which is positively correlated
with elevation (R=0.47). The SCD of less than 60 days occupies the most area, at about 84.32%,
and is regarded as the unstable snow cover area. In contrast, the SCD of over 60 days, at only
15.68%, is regarded as the stable snow cover area and the source of the water resource. The
SCD of over 240 days, occupying 0.34%, is mainly in the peaks of the high mountains (above
4500m), including Gaoligong, Yunling, Qionglai, and Daxue mountains. In the surroundings of
the area with SCD of over 240 days, the SCD gradually decreases as the elevation decreases,
forming belts along the mountain ranges. The CV based on the multi-annual SCD is shown in
Fig. 6(b). The greater the CV, the stronger the inter-annual fluctuation. The inter-annual
fluctuation greatly decreases as the elevation increases, and the CV exhibits a negative linear
correlation with elevation (R=—0.56). In conclusion, the SCD increases and the CV decreases
as the elevation increases in most parts of the study area, indicating that the snow cover is
relatively stable in the high elevation areas and the inter-annual fluctuation is greatest in the low
elevation areas.
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Fig. 6. The SCD and the CV from 2000 to 2014 in the Hengduan Mountains. (a) The spatial

distribution of the mean SCD. (b) The spatial distribution of the CV.
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We also analyzed the pixel-wise trends of SCD using the piecewise linear regression model.
The breakpoints of the trends mainly occur between 2004/2005 and 2008/2009 [Fig. 7(a)].
Overall, the SCD shows an increasing trend in 93.74% of the study region before the breakpoint,
with an average increase of +5.20 days yr’' [Fig. 7(b)]. In contrast, the SCD shows a decreasing
trend after the breakpoint in 83.60% of the area, with an average rate of change of —3.00 days
yr'' [Fig. 7(c)]. It is worth mentioning that the distributions of the trends before and after the
breakpoints are similar. In summary, the pixel-wise trends of the SCD before the breakpoints

are mainly positive, while the trends after the breakpoints are mainly negative.
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Fig. 7. The pixel-wise trends of the SCD. (a) The breakpoints of the trends. (b) The trends before the

breakpoints. (c) The trends after the breakpoints in the Hengduan Mountains.

4.2.2. Snow fraction

The snow fraction is widely used to analyze the intra-annual and inter-annual variability of
snow cover. Fig. 8 shows the intra-annual variability of snow cover in the Hengduan Mountains,
according to the average daily snow fraction from 2000 to 2014, in which the error bars
represent the standard deviation. The snow cover is mainly concentrated from late October to

late March. During this period, the snow fraction is always greater than 10%, with large
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standard deviations, which indicates that the variability is high. In late November, the snow
fraction peaks at a maximum of 24.33%. From early December to late February, the snow
fraction fluctuates slightly, and remains around 13% due to the low precipitation. In early
March, there is another peak of 19.97%. From late March, the snow gradually melts. In general,
the peak of the snow fraction reaches only 25% (in November), and the intra-annual variability

is significant over the hydrologic year, especially from late October to late March.
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Fig. 8. The intra-annual variability of the snow fraction from 2000 to 2014 in the Hengduan Mountains.

The inter-annual variability of the average annual snow fraction from 2000 to 2014 is shown
in Fig. 9. The inter-annual variability fluctuates greatly. Using the piecewise linear regression
model, it is apparent that there is an increasing trend of +1.14% yr”' from 2000/2001 to
2004/2005 and a decreasing trend of —0.25% yr'' from 2004/2005 to 2013/2014. During the
increasing period, the minimum average annual snow fraction is 6.12% in 2001/2002 and the
maximum is 11.27% in 2004/2005. Additionally, during the decreasing period, the maximum
average annual snow fraction is 11.27% in 2004/2005 and the minimum is 6.63% in 2012/2013.

The decreasing trend is clearly slower than the increasing trend.
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Fig. 9. The inter-annual variability of the snow fraction from 2000 to 2014 in the Hengduan Mountains.

4.3. The response of snow cover to climate change

Climate change is one of the major drivers for snow cover variability (Immerzeel et al., 2009;
Gao et al., 2012). It is therefore necessary to analyze the relationship between air temperature,
precipitation, and snow cover, as well as explain how snow cover responds to climate change.
On the one hand, from the average monthly snow fraction and air temperature from 2000 to
2014 [Fig. 10(a)], it is clear that when the air temperature decreases, the snow fraction increases,
and vice versa. On the other hand, from the average monthly snow fraction and precipitation
from 2000 to 2014 [Fig. 10(b)], the variation of the snow fraction and precipitation is very
similar to the variation of the air temperature. These phenomena reveal that the inter-annual

variation of snow cover shows a negative correlation to air temperature and precipitation.
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Fig. 10. The intra-annual variation of the snow fraction and two climate factors from 2000 to 2014 in

the Hengduan Mountains. (a) The average monthly snow fraction and air temperature. (b) The average

monthly snow fraction and precipitation.

The inter-annual Pearson correlation coefficients (PCCs) for the average monthly snow
fraction and air temperature/precipitation from October to March are shown in Table 4. In
October, temperature clearly has a better correlation than precipitation with the snow fraction.
From November to December, the PCCs of precipitation are larger than those of air
temperature. As a result, precipitation is the primary factor affecting the snow cover variation.
From January to February, the temperature gradually increases, but is still low when the

precipitation becomes sufficient to accelerate the formation and sublimation of snow cover. In

27



March, the PCCs of both air temperature and precipitation are very high and similar,
embodying the fact that they have a balanced influence on snow cover variation. Interestingly,
the average snow fraction from October to March has a weak negative correlation with air
temperature and a strong positive correlation with precipitation. It is therefore suggested that
when compared with temperature, precipitation plays a dominant role in the variability of

snow cover as a whole.

Table 4 The Pearson correlation coefficients for the average monthly snow fraction and air

temperature/precipitation (October to March) from 2000 to 2014 in the Hengduan Mountains.

Months Air temperature Precipitation
October -0.43 +0.29
November -0.10 +0.33
December -0.36 +0.41
January —0.55% +0.37
February —0.79%%* +0.38
March —0.63 +0.66**
Average -0.12 +0.66%*

** and * represent the statistical significance at the 0.01 and 0.05 levels, respectively.

5. Discussion and conclusion

This work has proposed an adaptive spatio-temporal weighted method (ASTWM) to remove
clouds completely from MODIS snow cover products. To ensure a better accuracy, a Terra and
Aqua combination is introduced as the first step prior to ASTWM. The Terra/ Aqua
combination step can reduce the cloud cover by 7% to 13%, and its high accuracy in clear-sky
conditions has been validated by many researchers (Parajka and Bloschl, 2008; Wang et al.,
2009; Gao et al., 2010; Lopez-Burgos et al., 2013). ASTWM is based on snow cover
probability, and it makes the best use of the spatial and temporal correlations of snow cover.
Compared with the currently successive utilization of the two types of correlations, ASTWM

undertakes a joint utilization. For the cloud removal of snow cover products, it can be used as
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a separate method and also in combination with other methods. As shown in the simulated
experiments with different cloud conditions, ASTWM performs well, obtaining an average OA
of 96.07%, which is better than the temporal filter and spatial filter. In conclusion, ASTWM
has the following advantages when used in mountainous regions: 1) it can remove clouds
completely; 2) it simultaneously considers the spatial topography and the temporal
sustainability of snow cover; and 3) owing to the absence of snow cover subcycles in a
hydrologic year, it has a superiority in the snow melt and accumulation period. However,
ASTWM also has some disadvantages. For example, in some circumstances, it may assign
snow pixels as no snow pixels by mistake. This is likely a result of darker conditions caused by
the shading of terrain and vegetation cover (Krajci et al., 2014). In addition, its time cost is a
little high when compared to the present methods, due to the computational complexity of the
weight solution. A better tradeoff mechanism of accuracy and efficiency is needed in the near
future.

Based on the two steps, a cloud-free MODIS snow cover product was generated to
investigate the spatio-temporal variability of snow cover in the Hengduan Mountains from
2000 to 2014. In this work, the variability was monitored from the aspects of snow cover days
(SCD) and snow fraction. It was found that SCD was positively correlated with elevation and
CV was negatively correlated with elevation. This indicates that the higher the elevation, the
less the inter-annual variability of SCD. This phenomenon is in accordance with the
innovative work by Kraj¢i et al (2016) in Slovak basins, in which they find that snow cover
area and duration increases with increasing mean basin elevation by three groups of basins.
Furthermore, based on the piecewise linear regression model, the pixel-wise trends of SCD
were established. The trends before the breakpoints are 93.74% positive and the trends after the
breakpoints are 83.60% negative, especially in the high elevation area. This is clearly similar to
the inter-annual variability of the snow fraction. As far as the snow fraction is concerned, the
intra-annual variability is particularly intense from late October to late March. The peaks of the

snow fraction usually happen in November and March, reaching around 25% and 20%,
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respectively. Furthermore, the inter-annual variability was divided into two periods by a
piecewise linear regression model, showing an increasing trend of +1.14% yr"' before
2004/2005 and a decreasing trend of —0.25% yr'" after 2004/2005. The snow fraction also
increases with elevation, and the variation trend becomes more significant.

It is well known that snow cover is very sensitive to climate change, e.g., atmospheric
circulation, air temperature, precipitation, wind, and solar radiation. In comparison, air
temperature and precipitation are the most important factors for the variability of snow cover,
which can identify the temporal climatic controls and enable long-term versus shott-term
trend detection (Crawford et al., 2013). Thus, the intra-annual and inter-annual variability of
snow cover can be explained by the relationship between air temperature, precipitation, and
snow fraction. For the intra-annual variability, the snow fraction increases when the air
temperature and precipitation decrease, and the relationships are stable. For the inter-annual
variability, according to the Pearson correlation coefficients, in October, air temperature affects
the formation and accumulation of snow cover more strongly than precipitation. In contrast, in
November and December, precipitation is the primary factor accounting for the variability of
snow cover. From January to February, the air temperature is the dominant factor accelerating
the formation and sublimation of snow cover. In March, air temperature and precipitation both
influence snow cover. On the whole, from October to March, precipitation plays a leading role
in the variation of snow cover when compared to air temperature. However, due to the huge
changes of both elevation and latitude, Hengduan Mountains feature a very variable climate, in
which the local variation may be inconsistent with the overall variation. In conclusion, under
the background of global warming, the air temperature in the Hengduan Mountains has shown
little change from 2000 to 2014. Meanwhile, there has been a large reduction in inter-annual
precipitation from 2005, which predominantly accounts for the decreased snow cover. If the
snow cover continues to decline, the water resource will decrease, the biology of the area will
change, and the ecology will be adversely affected. For the future work, more detailed

analysis will be conducted with the help of the in sifu observations of snow depth, it’s because
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the advantages in the analysis on the temporal variations.

Additionally, Version 6 MODIS snow cover data sets are now available at the NASA
NSIDC Distributed Active Archive Center (DAAC). In this version, Fractional Snow Cover
has been replaced by Normalized Difference Snow Index (NDSI) snow cover. For the new
MODIS 006 products, the proposed ASTWM method should be modified accordingly. The
weights should be applied to the NDSI, rather than the spatial or temporal probability. The

key point is to compute the spatial weights and temporal weights.
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Highlights

- Proposing an adaptively spatio-temporal weighted method for cloud removal.

« Cloud removed completely with an average overall accuracy of 96.07%.

* Intense intra-annual and inter-annual variability of snow cover in Hengduan Mountains.

* Snow cover change responding well to air temperature and precipitation.



