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Abstract: Uncertainties in model parameters can easily result in systematic differences between
model states and observations, which significantly affect the accuracy of soil moisture estimation
in data assimilation systems. In this research, a soil moisture assimilation scheme is developed to
jointly assimilate AMSR-E (Advanced Microwave Scanning Radiometer-Earth Observing System)
brightness temperature (TB) and MODIS (Moderate Resolution Imaging Spectroradiometer) Land
Surface Temperature (LST) products, which also corrects model bias by simultaneously updating
model states and parameters with a dual ensemble Kalman filter (DEnKS). Common Land Model
(CoLM) and a Radiative Transfer Model (RTM) are adopted as model and observation operator,
respectively. The assimilation experiment was conducted in Naqu on the Tibet Plateau from 31 May
to 27 September 2011. The updated soil temperature at surface obtained by assimilating MODIS LST
serving as inputs of RTM is to reduce the differences between the simulated and observed TB, then
AMSR-E TB is assimilated to update soil moisture and model parameters. Compared with in situ
measurements, the accuracy of soil moisture estimation derived from the assimilation experiment has
been tremendously improved at a variety of scales. The updated parameters effectively reduce the
states bias of CoLM. The results demonstrate the potential of assimilating AMSR-E TB and MODIS
LST to improve the estimation of soil moisture and related parameters. Furthermore, this study
indicates that the developed scheme is an effective way to retrieve downscaled soil moisture when
assimilating the coarse-scale microwave TB.

Keywords: data assimilation; soil moisture; state-parameter estimation; AMSR-E; MODIS; Common
Land Model

1. Introduction

Accurate soil moisture estimation at the land surface plays a very important role in studies of
land surface conditions, natural resource management, and the interactions in the land-atmosphere
system [1–3]. Soil moisture not only governs the partition of rainfall water into runoff and infiltration
but also affects the transfer of heat between soil layers and the division of latent heat flux and
sensible heat flux at the land surface. Observation and modeling are two typical methods that are
used to acquire soil moisture information, while the former one can be divided into ground station
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measurements and remote sensing measurements according to the acquisition way [4–6]. However,
the unsatisfactory accuracy of modeling, limited coverage area of ground station measurements and
coarse spatio-temporal resolution of remote sensing measurements confine their practical applications.
Data assimilation effectively controls such shortages by merging the observations into a dynamic
model to acquire spatio-temporal continuous state variables [7–10].

Sequential data assimilation provides near real time integration of observations to correct the
states of a system. Two of the most common nonlinear filters in sequential data assimilation are
ensemble Kalman filter (EnKF) and particle filtering (PF). The EnKF, originated from Kalman filter
to adapt to the application of non-linear systems, was first introduced by Evensen [11] in the context
of ocean modeling. The EnKF shows its strength by resolving the recursive issue of the forecast
covariance matrix using the propagation of a random ensemble. Nowadays, EnKF is widely used
in different fields of application, mainly because of its ease of implementation and computational
efficiency [12–17]. Notably, EnKF hold the assumption of a linear Gaussian state-space model which
can be relaxed by the use of sequential Monte Carlo method in the form PF [18–21]. PF use a number
of particles to represent the probability density function of the system states. But, it is well known that
the weights degenerate in high-dimensional problems [22].

Brightness temperature (TB) from passive microwave observations have been widely used to
estimate soil moisture for the following three reasons: (1) the relaxation frequency of water lies in the
microwave region (0.3–300 GHz), resulting in a significant difference in the dielectric constant between
dry and wet soils [23]; (2) the features of microwave remote sensing techniques such as penetrability
advantage, imaging capability at night and free from atmospheric disturbances (cloud liquid water
or integrated water vapor); and (3) the current development of satellite-based microwave missions
provides microwave data sets at the global scale, such as SSM/I (Special Sensor Microwave/Image),
AMSR-E, SMOS (Soil Moisture and Ocean Salinity), SMAP (Soil Moisture Active Passive), etc. Although
the assimilation of soil moisture retrievals from TB has been applied in land surface and hydrological
model [24–27], the performances of data assimilation framework involve risk due to the uncertainties
brought about by the inversion algorithm. Retrieved soil moisture data may be inconsistent with model
simulations because they may utilize different land surface parameters and auxiliary information such
as vegetation, soil texture, and surface temperature. Furthermore, errors in retrieved data will be
correlated to errors in the auxiliary information, which in turn can be expected to be correlated with
the background information used in the data assimilation system [28]. Thus, the direct assimilation
of microwave observations into dynamic models is typically considered and has been demonstrated
with several studies in improving soil moisture simulations [29–32]. In the framework of directly
assimilating TB, the simulated TB data from the Radiative Transfer Model (RTM) are affected by the
hydrothermal condition at the surface and the vegetation cover [33,34]. As the foundation of surface
radiation property, incorrect soil temperature at the first layer can directly result in the deviations
of simulated TB which will eventually adversely impact the soil moisture estimation. Therefore,
it is necessary to correct temperature information before it is input into the RTM. Han et al. [35]
designed a joint assimilation experiment of land surface temperature and brightness temperature into
Community Land Model. The results showed that the joint assimilation experiment resulted in the best
characterization of soil moisture and soil temperature profiles under dry conditions. However, such
experiment is just synthetic test, thus this research attempts to establish a joint assimilation framework
to take full advantage of diverse satellite data.

In addition, the performance of data assimilation largely relies on the effectiveness of the
model forecast. However, discrepancies between model descriptions and land surface processes
in reality, and the uncertainties in model parameters, forcing data, and initial conditions always cause
sustained systematic bias in soil moisture modeling which can deteriorate the performance of data
assimilation. Furthermore, the fundamental assumption of the sequential data assimilation algorithm
is that no bias exists between the simulations and observations. Thus, it is necessary to eliminate
such system deviation before the combination of data and model information in an assimilation
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procedure. Parameters uncertainty in land surface model is supposed to be the main source of bias
in state variables which calls for a correction procedure. Parameters calibration has been widely
used in hydrologic modeling, assimilation and forecast fields with single-objective or multi-objective
optimization algorithms [36–38]. However, the optimization process is time consuming and requires
abundant historical observational data which is beyond accessibility in most regions. Thus, several
approaches have been proposed for simultaneous state and parameter estimation to deal with the
issue of parameter correction with state assimilation in land data assimilation [39–43]. Chen et al. [44]
compared three ensemble-based state and parameter estimation methods and found that the dual-EnKF
can accurately estimate soil moisture and soil texture and has some advantages, including flexibility,
simple implementation, and reduced inner storage and operational time requirements. Next,
Chu et al. [45] found that dual-EnKS outperformed dual-EnKF for the estimation of soil moisture
and that the estimated model parameters (soil texture) were more stable.

The objectives of this study were to explore how to: (1) jointly assimilate coarse-scale AMSR-E
TB (0.25 degree) and fine-scale MODIS LST (0.05 degree) to improve soil moisture estimations, and
(2) reduce model bias by using a simultaneous state-parameter estimation approach. To achieve this
goal, a combination assimilation framework for TB and LST with a parameters estimation procedure
is established. LST observations are assimilated to retrieve more accurate soil temperature profile
before the calculation of simulated TB in RTM while TB observations are employed to update soil
moisture and parameters with dual-EnKS. The performance of the developed soil moisture assimilation
framework is evaluated based on observations measured at Naqu, Tibet during the monsoon season.
This paper is structurally organized into five Sections. The land surface model and radiative transfer
model are briefly described in Section 2, as well as the data assimilation strategy. The study area, data
used in this study and experimental design are introduced in Section 3. Section 4 displays the results
and discussions for the experiment while some conclusions are drawn in Section 5.

2. Models and Data Assimilation Strategy

2.1. Common Land Model

The CoLM was originally proposed to provide a framework for a truly community developed
land component and then effectively implemented as a state of the art model that combined the best
features of the LSM (Bonan’s Land Surface Model), BATS (Biosphere-Atmosphere Transfer Scheme),
and IAP94 (the 1994 version of the Chinese Academy of Sciences Institute of Atmospheric Physics
LSM) codes [46]. CoLM has one vegetation layer, ten unevenly spaced vertical soil layers, and up to
five snow layers. Land cover, soil texture and terrain elevation, etc. are necessary for producing the
surface conditions. In CoLM, Darcy’s law is used to calculate the soil moisture profile; the temperature
variation in a soil layer can be described as a discretization form by the Crank-Nicholson scheme.

The climate conditions contribute to the shallow root systems of meadows in the Tibetan Plateau,
which result in high soil organic carbon content (SOC) in the surface soil layer. Remarkably, high
SOC may significantly affect soil thermal/hydraulic properties, which brings bias in the estimation of
soil hydrothermal variables from CoLM. Therefore, some modifications are necessary for the CoLM
parameterization to involve the impacts of SOC on soil condition. The thermal/hydraulic parameters of
soil depend on soil composition and are originally calculated based on the soil texture (the percentage
of sand and clay) in CoLM. In this study, the modified calculation equations for the related parameters
are defined to be the volume-weighted average of the corresponding parameters of soil minerals and
peat (the mass of SOC equals 100%) as following [47].

θm,sat = 0.489− 0.00126×%sand (1)

θsat = (1−Vsoc)× (0.489− 0.00126×%sand) + Vsocθsoc,sat (2)

ρd = 2700× (1− θm,sat) (3)
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λdry = (1−Vsoc)× (
0.135× ρd + 64.7
2700− 0.947× ρd

) + Vsocλsoc,dry (4)

λs = (1−Vsoc)× (
8.8×%sand + 2.92×%clay

%sand + %clay
) + Vsocλsoc (5)

Cs = (1−Vsoc)× (
2.218×%sand + 2.385×%clay

%sand + %clay
)× 106 + VsocCsoc (6)

κsat = (1−Vsoc)×
(

0.0070556× 10−0.884+0.0153×%sand
)
+ Vsocκsoc,sat (7)

ψsat = (1−Vsoc)×
(
−10.0× 101.88−0.0131×%sand

)
+ Vsocψsoc,sat (8)

b = (1−Vsoc)× (2.91 + 0.159×%clay) + Vsocbsoc (9)

where Vsoc is the volume fraction of SOC; θm,sat is the soil porosity of mineral soil; ρd is the bulk
density of a dry soil; λdry and λs are the soil thermal conductivity values for dry soil and soil solid
fraction, respectively; Cs is the soil heat capacity; κsat is the saturated hydraulic conductivity; ψsat is the
saturated soil matric potential; and b is the Clapp and Hornberger exponent. The related parameters
values for peat (labeled with subscript SOC) used in this study are listed in Table 1.

Table 1. Soil hydraulic and thermal parameters used in CoLM for organic soil.

λs
(W·m−1·K−1)

λdry

(W·m−1·K−1)
Cs

(J·m−3·K−1) θm,sat
κsat

(m·s−1)
ψsat

(mm) b

Peat 0.25 0.05 2.5 × 106 0.9 0.1 × 10−3 −10.3 2.7

2.2. Microwave Radiative Transfer Model

A RTM was selected as an observation operator to link the soil moisture output from CoLM with
the brightness temperature from AMSR-E. In this RTM, vegetation is represented as a single-scattering
layer above a rough surface, and the simulated brightness temperature can be expressed as follows:

TB,H(V) = Tg(1− ΓH(V)) exp(−τc)+Tc(1−ω)[1− exp(−τc)][1 + ΓH(V) × exp(−τc)] (10)

where TB is the brightness temperature, and the subscript H(V) denotes the vertical (horizontal)
polarization. Tg and Tc are the soil temperature and canopy temperature, respectively. τc is the
vegetation optical thickness relevant to the vegetation water content wc, the incident angle γ and the
wavelength λ[m] as proposed by Jackson and Schmugge [48]:

τc = b(100λ)χwc/ cos γ (11)

where b and χ are empirical coefficients, which are set to 3.98 and −1.41, respectively. These values
are suitable for the leaf-dominated field and chosen based on a summary of the relationship between
vegetation parameter and wavelength for a variety of vegetation types, as described by Jackson and
Schmugge [48]. wc can be obtained according to Paloscia and Pampaloni [49].

wc = exp(LAI/3.3)− 1 (12)

where LAI (m2/m2) is the leaf area index.
ω is the single-scattering albedo of the vegetation and is calculated using the following empirical

formula proposed by Yang [50].

ω = 0.00083/λ (13)
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The Q-h model developed by Wang and Choudhury [51] is used to calculate the soil reflectivity Γ:

ΓH(V) = [(1−Q) · RH(V) + Q · RV(H)] exp(−h) (14)

Q = 0.35[1− exp(−0.6s2λ)] (15)

h = (2ks cos γ)2 (16)

where Q and h are empirically determined surface roughness parameters, k is the wave number
defined as 2π/λ, and s is the root-mean-square height (RMS). R is the Fresnel power reflectivity which
describes the soil reflectivity of a smooth surface and is calculated by:

RH =

∣∣∣∣∣∣cos γ−
√

εr − sin2 γ

cos γ +
√

εr − sin2 γ

∣∣∣∣∣∣
2

(17)

RV =

∣∣∣∣∣∣ εr cos γ−
√

εr − sin2 γ

εr cos γ +
√

εr − sin2 γ

∣∣∣∣∣∣
2

(18)

εr is angle soil dielectric constant that depends on the soil moisture θ [52]:

εr = [1 + (1− ρ)(εα
s − 1) + θβεα

f w − θ]
1/α

(19)

where εs = 4.7 + 0.0j denotes the dielectric constant for a mineral soil in which j is the imaginary part
of plural, ρ is the soil porosity, ε f w is the dielectric constant of free water. α = 0.65, and β is a soil
texture-dependent coefficient [53].

2.3. Data Assimilation Strategy

The assimilation strategy is illustrated in the flowchart shown in Figure 1. Firstly, to diminish the
influence of temperature on the simulated TB, MODIS LST observations are assimilated to retrieve
more accurate soil temperature profile. EnKF was used to update the soil temperature because the
step-by-step feedback can be used to immediately modify the temperature information input into the
RTM. Then, the updated soil temperature, the soil moisture and the related parameters are imported
into the RTM to calculate the simulated TB. Next, given that parameters uncertainty always causes
the long-term bias of soil moisture as well as the simulated TB, a scheme with two-parallel-filters
was designed to synchronously estimate the states and parameters and the related parameters using
AMSR-E TB observations. In this part, dual-EnKS is used to consider the relationship between
states/parameters and observations distributing at the time scale. The first stage was used to estimate
the model parameters (they are supposed to be constant between two consecutive observations)
while the second stage was employed to update states variables. The two stages evolved in parallel
rather than successively, and the data assimilation procedure marched forward without restarting.
The updated soil moisture and parameters were only returned to CoLM at the end of every smoother
window and acted as the initial conditions for the next smoother window.
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Figure 1. Flowchart of the assimilation Strategy. Swindow and Pwindow represent the smoother window
of dual-EnKS for soil moisture and parameters, respectively.

2.3.1. Ensemble Kalman Filter

The CoLM implemented with EnKF starts with an initial ensemble (obtained by perturbed the
initial state field) and then the simulated states variables propagate through the model, which can be
described as follows:

X f
i,k+1 = M(Xa

i,k, αk+1, βk+1) + wi wi ∼ N(0, Q) (20)

where M(•) represents a nonlinear model operator (the CoLM in this study) which determines how
the states evolve over time. The subscript k + 1 represents the time step of model. The superscripts
a and f refer to the analysis and forecast states, respectively. x f

i,k+1 is the ith member of the forecast
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ensemble. α and β stand for atmospheric forcing data and model parameters, which are essential to
drive the CoLM. The model error representing the uncertainties related to the model parameters and
the model structure is indicated by wi which conforms to a Gaussian distribution noise field with a
mean of zero and the covariance matrix Q.

When observations are available, a linear correction equation is used to update the forecasted
state ensemble members as follows:

Xa
i,k+1 = X f

i,k+1 + Kk+1(Yi,k+1 −
∧
Yi,k+1) (21)

where Yi,k+1 is generated by adding the stochastic perturbation into the actual observation Yk+1 with a
mean of zero and the covariance matrix R. The observation error matrix R is assumed to be mutually
independent and temporally steady. Ŷi,k+1 is the projection of the model state in the observational
space based on the conversion of the observation operator H(•), which establishes a relationship

between the model states and observations as
∧
Yi,k+1 = H(X f

i,k+1). Kk+1 is the Kalman gain matrix,
which is calculated as follows:

Kk+1 = P f
k+1HT(HP f

k+1HT + R)
−1

(22)

P f
k+1 is the forecast error covariance matrix. P f

k+1HT is the cross covariance between the model

state forecasts x f
k+1 and their projections H(x f

k+1) in the observation space, and HP f
k+1HT is the error

covariance of H(x f
k+1).

Finally, the analysis state variable at the time k + 1 is given by the averaged value of the ensemble
members. The analyzed ensemble is then integrated forward until the next observation becomes
available, and the update process is repeated.

2.3.2. Ensemble Kalman Smoother

To consider the relationships among states or observations that are distributed in time or space
and to solve the “sawtooth effect” brought about by the step-by-step update of EnKF, a smoother
solution—the EnKS [54–56] is applied to update all the states in a predefined calculation window
using the whole observations including in such window.

The implementation of the EnKS requires that the states and observations ensembles must be
stored during the evolution of the current smoother window. The CoLM runs forward throughout the
current assimilation window at a time to obtain the overall forecasting states in the smoother window,
and the augmented state vector X contains the states extending in the temporal space and can be
expressed as X = [x1x2 · · · xk]

T . Correspondingly, the augmented observation vector Y contains all
the observations available in the smoother window with Y = [y1y2 · · · yk]

T . The update of the states
stored in the vector X is affected by their relationship with all the observations distributing in the
vector Y. The Kalman gain matrix used to update the state vector is calculated by the same formula in
EnKF mentioned above.

2.3.3. Inflation of Background Error Covariance

The performance of the assimilation experiment is largely influenced by the presentation of
background error covariance, which tends to be underestimated because of the inappropriate presence
of model errors and the sampling error caused by the limited ensemble size. This problem can
progressively get worse, potentially resulting in a condition called “filter divergence”, in which the
ensemble variance becomes vanishingly small and observation information is completely ignored [57].
Therefore, additive inflation was applied to relax the posterior (analysis) perturbations.

x′ai = (1− α)x′ai + αx′ fi (23)
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where x′ai and x′ fi are the ith member of the deviation ensemble calculated by subtracting the posterior
ensemble mean and the prior ensemble mean from the corresponding raw ensemble. α is the inflation
factor which is set to 0.5 in this research.

2.3.4. Relaxation Factor for Parameters Updating

The strong update of parameters may cause problems in two aspects [58]: overcorrection for
parameters by data assimilation technique because the relationship between TB and parameters is more
implicit compared with the relationship between TB and soil moisture; ignorance the observations
information at the later stage of experiment period because of the small variance of parameters
ensemble. Thus, to prevent non-feasible updates of parameters, a relaxation factor β was used for
parameters update.

Ψa
i,k+1 = Ψ f

i,k+1 + βKk+1(Yi,K+1 −
∧
Yi,k+1) (24)

where Ψa
i,k+1 and Ψ f

i,k+1 are the ith member of the analyzed and forecasted parameters ensemble at the
time step k + 1, respectively. β is set to 0.45, which was calibrated by minimizing the root-mean-square
error between the simulated TBs and AMSR-E TBs.

3. Data and Experimental Design

3.1. Data

The Tibetan Plateau is known as the Third Pole with an average elevation of over 4000 m
above sea level and covers an area of approximately 2.5 × 106 km2. The study area is located in
the central region of the Tibetan Plateau and spreads around the town of Naqu over an area of
~100 km × 100 km (91◦30’E–92◦30’E and 31◦N–32◦N) (Figure 2). The mean elevation of the study area
is about 4650 m and the land cover is primarily alpine meadow with a fraction of water bodies in
the western part. This region has a typical semiarid monsoon climate with an annual precipitation
amount of approximate 500 mm while most precipitation events take place during May to October.
In addition, permafrost is an important part of the natural ecosystems on the Tibetan Plateau with
soil thawing-freezing process occurring around May and November in this region. High altitude and
high atmospheric transparency contribute to low temperature and strong solar radiation, which are
associated with very low biomass on the ground and less water vapor in the atmosphere. The soil is
predominantly composed of sand and silt, meanwhile all the climate conditions lead to the shallow
root system of vegetation in this region. Thus, the soil organic/carbon content at the top layer turns to
be fairly high.

3.1.1. Soil Moisture and Temperature Network

Ground measurements were collected through a mesoscale Central Tibetan Plateau Soil
Moisture and Temperature Monitoring Network (CTP-SMTMN) that exactly coincides with the
domain of the study area [59]. The SMTMN network was established to study the mechanism
of soil-vegetation-atmosphere interactions and to validate satellite soil moisture and temperature
products [60]. This network was accomplished in the following three stages: (1) initialization with
30 stations in July 2010 along four branches of the roads gathering at Naqu; (2) enhancement of the
observations within a 0.25◦ quadrate grid by adding 20 stations in July 2011; and (3) the installation of
another 5 stations in an ~5 km × 5 km area in June 2012 (Figure 2). At each site, four sensors (ECH2O
EC-TM/5TM capacitance probes) were used to monitor soil moisture and temperature at depths of
0–5 cm, 10 cm, 20 cm, and 40 cm, respectively. The time interval of measurement was 30 min, and
each record reflects the average state of the soil over the most recent half-hour. The observations were
processed to hourly values by arithmetic average to be used in the following results comparison.
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Figure 2. Spatial distribution of the ground stations in the experiment area (the central Tibetan Plateau).
The blue and green rectangles indicate the intensive observation grids in CTP-SMTMN.

3.1.2. Forcing Data

The forcing data used to drive CoLM were developed by the hydrometeorological research group
at the Institute of Tibetan Plateau Research at the Chinese Academy of Sciences (ITPCAS), which
include seven essential meteorological variables (pressure, precipitation, wind speed, specific humidity,
near surface air temperature, downward shortwave radiation and downward longwave radiation).
This data set were produced by merging the observations collected at 740 operational stations of the
CMA (China Meteorological Administration) into the corresponding Princeton meteorological forcing
data, the GLDAS (Global Land Data Assimilation Systems) reanalysis forcing data, the TRMM (Tropical
Rainfall Measuring Mission) 3B42 precipitation products and the GEWEX-SRB (Global Energy and
Water Cycle Experiment—Surface Radiation Budget) radiation data [61]. The ITPCAS forcing data
completely cover the geographic scope of China with a spatial resolution of 0.1 degree and a temporal
resolution of 3 h [62]. To meet the demand of CoLM, MicroMet (A Meteorological Distribution
System for High-Resolution Terrestrial Modeling) [63] is adopted to downscale the atmospheric forcing
data, which is mainly based the relationships between meteorological variables and the surrounding
landscape (primarily topography). Finally, we obtained a set of forcing data with a higher spatial
resolution (0.05 degree) and higher temporal resolution (1 h) for this study area.

3.1.3. Satellite Data

MODIS LST and LAI data

The MODIS sensors reside aboard both Aqua (1:30 a.m./1:30 p.m.) and Terra (10:30 a.m./10:30 p.m.)
platforms, which provide a means for quantifying land surface characteristics (http://modis-land.gsfc.
nasa.gov/). MOD11C1, MYD11C1 and MCD15A3 are used in this research.

MOD11C1 and MYD11C1 produce daily land surface temperature (LST) deriving from Terra and
Aqua respectively in the form of a pair of daytime and nighttime observations configured on a 0.05◦

geographic CMG (climate modeling grid). The QC fields stored in MOD11C1 and MYD11C1 provide
careful scrutiny for the quality of the LST products. LST data from MODIS are often contaminated
by clouds, thus we only select the LST data as observations for the assimilation experiment when the
quality control flag was zero.

http://modis-land.gsfc.nasa.gov/
http://modis-land.gsfc.nasa.gov/
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MCD15A3 is a composited product that provides global LAI and FPAR data every 4 days at
a resolution of 1 km. To match the spatial resolution of CoLM in this research, the original LAI
values were resampled and re-projected to 0.05◦ from a sinusoidal projection to a UTM projection with
a WGS84 datum based on nearest neighbor interpolation. Unreasonable LAI values were filtered out
using asymmetric Gaussian model function and then were incorporated into CoLM to substitute the
default LAI values.

AMSR-E brightness temperature data

AMSR-E is a radiometer operating onboard the Sun synchronous and polar orbiting AQUA
satellite, which has provided passive microwave measurements at six bands, ranging from 6.9 to
89 GHz. AMSR-E/Aqua Daily Global Quarter-Degree Gridded Brightness Temperatures (NSDIC-0302)
were employed as observations in this study. These data are provided in one global cylindrical,
equidistant latitude-longitude projection with a resolution of 0.25 degree (quarter-degree), which
means the study area includes 16 AMSR-E grids.

3.1.4. The Upscaled Surface Soil Moisture Data

In order to validate the simulated and assimilated surface soil moisture in coarser grid (0.25 and
1.0 degree), an upscaling algorithm, proposed by Qin et al. [64], was adopted to upscale the point-scale
surface soil moisture to the grid-scale, in which the upscaled soil moisture was assumed to equal the
weighted-average of the measurements from the stations within the grid. This method can be used
to address the representative problem of ground stations that results from the heterogeneity of the
land surface. First, construct a functional relationship between the station-averaged daily soil moisture
and the pixel-averaged daily MODIS-derived apparent thermal inertia (ATI). This relationship was
used to calculate the representative soil moisture at a certain spatial scale, which served as the truth to
obtain the weight of different stations by Bayesian linear regression. The upscaled ground-based soil
moisture observations served as supplemental data are also employed in the results comparison to
resolve the mismatch between the ground stations and satellite pixel. A complete description of this
upscaled method is illustrated by Qin et al. [64].

3.2. Experimental Design

Given the distinct hydrothermal processes between the frozen stage and unfrozen stage of soil,
the experiment of this research was conducted during the soil-thawing period. The experiments
for simulation and assimilation were designed to last 120 days commencing on DOY 151, 2011
(31 May 2011). An entire year forcing data before the start date of the experiment (from 31 May 2010
to 30 May 2011) were looped ten times to spin up CoLM to obtain a stable and reasonable distribution
of the initial state variables. The initial ensemble size is set to 50 for the simulation/assimilation
experiment. To represent the uncertainty of initial condition, 2 K additive noise and 20% multiplicative
noise were added to the initial soil temperature profile and soil moisture profile which are independent
with each other. According to the sampling depths at the ground stations of CTP-SMTMN, the soil
layers of CoLM should be redistricted before the model initialization and the new soil nodes were set
to depth of 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4 and 1.6 m. The CoLM operate at resolution of 1 h time
step and 0.05 degree.

AMSR-E TBs and MODIS LSTs were introduced as observations in this research. MODIS LST
product took charge of providing the temperature information at the fine scale. Due to the fine
resolution of forcing data and MODIS LST, the soil moisture and temperature as well as the simulated
TBs differed from each other at the fine resolution. Thus, the simulation of soil moisture can be
improved at the fine spatial resolution (0.05 degree) despite the assimilation of coarse-scale AMSR-E
brightness temperature observations (0.25 degree). It is assumed that each AMSR-E grid has the same
impact on the 25 model calculation grids that it contains. Lower microwave frequency corresponds
with the higher relative sensitivity of brightness temperature to soil moisture. Therefore, the TBs with
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vertical polarization of 6.9 GHz were assimilated into CoLM to improve the estimation of soil moisture
and parameters. The observation ensembles were acquired by disturbing the original TBs and LSTs
with an additive error of 2 K. The smoother window of the EnKS for parameters estimation was set
to 10 days [56] while the window for soil moisture estimation was set to 5 days considering that the
model parameters were more stable than soil moisture on a time scale.

The parameter vector to be estimated in this research comprised five parameters, sand content,
clay content, soil porosity and SOC fraction from CoLM and RMS from RTM. The initial parameters
sets were uniformly sampled in the specific ranges, which are defined according to the model default
parameter and the physical range. In order to guarantee the physical meaning of the parameters
in the updating process, the sand and clay content were re-checked to ensure that their sum was
less than 100%. The extra quantity must be subtracted by adjusting the sand and clay content with
((%sand + %clay)− 100)/2.0 [44].

The variables output from a land surface model largely response to the characteristic of the
meteorological field. To account for the uncertainties implying in the meteorological data, a multivariable
random field was applied to the forcing data in this study. Generally, the meteorological variables
implicitly influence each other, e.g., a positive perturbation of the downward shortwave radiation
tends to be associated with negative perturbations to the longwave radiation and the precipitation, and
vice versa [65]. Therefore, normally distributed additive perturbations were applied to air temperature
and longwave radiation and log-normally distributed multiplicative perturbations were added to
precipitation and shortwave radiation. The mean values for the perturbed factors were equal to zero in
the additive case and one in the multiplicative case. The standard deviation error of variables and the
cross-correlations between variables about the perturbation for the forcing data are listed in Table 2.

Table 2. Summary of the perturbation parameters for the forcing data.

Variables Noise Type Standard Deviation Cross Correlation

Precipitation Multiplicative 0.5 [1.0 −0.8 0.5 0.0,
Shortwave radiation Multiplicative 0.3 −0.8 1.0 −0.5 0.4,
Longwave radiation Additive 30 W/m2 0.5 −0.5 1.0 0.4,

Air temperature Additive 2 K 0.0 0.4 0.4 1.0]

3.3. Evaluation Metrics

To assess the performance of the assimilation experiment, we defined several evaluation measures,
including the root mean square error (RMSE), the mean bias error (MBE), and the normalized error
reduction (NER):

RMSE =

√√√√ 1
T

T

∑
t=1

(Xt − Xtrue,t)
2 (25)

MBE =
1
T

T

∑
t=1

(Xt − Xtrue,t) (26)

NER = 1− RMSEa

RMSEo
(27)

where T is the step number; Xt and Xtrue,t represent the results of simulation/assimilation experiment
and the true values at step t, respectively. RMSEo and RMSEa represent the RMSE of the simulation
and assimilation scenarios, respectively.
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4. Results and Discussions

4.1. Evaluation of States in 0.05 Degree Model Grids

The spatio-temporal resolution of CoLM in this research was set to 0.05 degree and one hour, as
well as the output variables (soil moisture and soil temperature). Thus, the experiment area includes
400 CoLM grids, among which only 49 grids exist ground stations (in situ measurements). The results
of the simulation and assimilation experiment were compared with the arithmetic-average of all the in
situ measurements included in the corresponding grid.

Thus, the MBE and RMSE for soil moisture and temperature of the 49 grids calculated by the
hourly value during the whole experiment period are present by the box-plots in Figure 3. The box-plots
reflect the distribution of error in which the quartiles, median and extreme values are marked by solid
lines and the abnormal values are denoted by plus signs. The results of the four layers are arranged
from left to right with increasing soil depth in every subplot. OLa and DA represent the simulation and
assimilation experiment, respectively, and both are forced by same initial conditions (parameters, states)
and forcing data. The MBE from OLa in Figure 3a showed a clear underestimation of soil moisture
at the first two layers while the deeper layers showed the conflicting situations (overestimation) in
most case. Obviously, MBE for soil moisture at the first layer from DA distributed around the 0 value
which indicated a large reduction of bias after assimilation. In terms of the MBE for the first two
layers, their mean values dropped from −0.138, −0.075 (OLa) to −0.042 and 0.015 (DA). Meanwhile,
the RMSE for soil moisture in Figure 3b also showed a remarkable decrease at the first layer (mean
value from 0.149 to 0.085) and slight decrease at the second layer (mean value from 0.094 to 0.076).
Noticeably, the spread of the quartiles of MBE and RMSE for soil moisture at the first two layers were
narrowed after assimilation which indicated that the improvement of the soil moisture estimation at
most single grids surpassed the average level. However, the deeper layers showed dissatisfied results
from the assimilation experiment mainly due to the opposite trend of soil moisture simulation from
CoLM compared to the first layer. AMSR-E TB improved the accuracy of soil moisture at the first
layer by compensating the underestimation phenomenon, which meant the increase of soil moisture
at the first layer. Therefore, the infiltration of water from the first layer to deeper layers deteriorated
the soil moisture estimation at deeper layers from overestimation to more serious overestimation.
Given the penetration depth of microwave, TB can only represent the soil moisture information of a
few centimeters under the ground. Thus, the improvement of soil moisture at deeper layers largely
depends on the development of model structure especially the water transfer mechanism.

As shown by the MBE from OLa for soil temperature in Figure 3c, the soil temperature simulation
at all the four layers appear overestimation. Indicated by the MBE from DA, the overestimation
phenomenon of the soil temperature at four layers was obviously alleviated after assimilation. In terms
of the mean value of MBE, all the reductions for the four layers reached approximately 1 K with the
corresponding value from 1.053, 1.132, 1.365 and 1.769 to −0.166, −0.039, 0.211 and 0.673. Meanwhile,
the RMSE showed a less significant improvement as seen in Figure 3d, and the reduction of RMSE at
deeper layers slightly surpassed that at first layer which mainly reflected by the narrowed spread of
the quartiles. Considering that MODIS LST data represent the land surface temperature which should
be more relevant to the soil temperature at shallower layers. Thus the improvement of soil temperature
profile owed to the coaction of the assimilation of MODIS LST and the improved estimation of soil
moisture. Soil moisture influences the heat conductivity at the interfaces of layers and the heat storage
in different layers. Moreover, the raise of water content in the deeper layers results in the decline of
the soil temperature.
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variability of the corresponding measurements. The colors of the dots denote the magnitude of the 
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measurements (less than 0.25 cm3/cm3). Conversely, the NERs distributing above the horizontal dash 
line showed the RMSE reduction of DA maximizing to 80% and surrounding 50% in most grids. A 
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experiment completely failed to capture the soil moisture at the grids with both lower mean value 
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discrepancy among the calculating grids, thus either the grids with lower mean value and variability 
measurements failed to respond to the precipitation events or the precipitation data did not reflect 
the real condition at these grids. The former can be concluded as the error of measurements which 
can be the reason for the failure of assimilation experiment at these grids while the latter can be solved 
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capture the dominate information of soil moisture).  

Figure 3. Box plots of the mean bias error and the root mean square error for soil moisture (a,b) and
temperature (c,d) at four layers from simulation using default parameters (OLa), assimilation (DA)
and simulation using updated parameters (OLb).

The soil moisture measurements of the calculating grids (0.05 degree) within a single AMSR-E
grid appear to be diverged from each other in terms of their mean value and variability. Although
an overwhelming improvement was demonstrated for the soil moisture at the first layer, such
satisfied results did not benefit to every single grid among the experiment area. Therefore, we
further investigated the relationship between the performance of the assimilation experiment and the
characteristic of in situ measurements, taking the soil moisture at first layer as an example. The NER
values of soil moisture at the first layer for 49 grids are plotted in Figure 4 with the mean and variability
of the corresponding measurements. The colors of the dots denote the magnitude of the NER. By careful
scrutiny of the relationship, we artificially split the plot by two dash lines (0.25 cm3/cm3 for the mean
of measurements and 0.05 cm3/cm3 for the variability of measurements). Clearly, all the weak results
occurred at the grids with lower mean value of soil moisture measurements (less than 0.25 cm3/cm3).
Conversely, the NERs distributing above the horizontal dash line showed the RMSE reduction of
DA maximizing to 80% and surrounding 50% in most grids. A comparison of the two zones below
the horizontal dash line suggested that the assimilation experiment completely failed to capture
the soil moisture at the grids with both lower mean value and variability of in situ measurements.
To investigate the reason for the discrepancy in the soil moisture measurements at different grid,
we compare the precipitation of each grid which is the most sensitive forcing data for soil moisture.
However, precipitation used to force CoLM showed small discrepancy among the calculating grids,
thus either the grids with lower mean value and variability measurements failed to respond to the
precipitation events or the precipitation data did not reflect the real condition at these grids. The former
can be concluded as the error of measurements which can be the reason for the failure of assimilation
experiment at these grids while the latter can be solved by data assimilation. Another reason for
the poor results at these grids may explained by the representativeness from a 0.25 degree grid to
a 0.05 degree grid (AMSR-E TB of one grid tends to capture the dominate information of soil moisture).
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five parameters showed a large discrepancy with the default parameters which indicated the 
necessity of performing parameters estimation and demonstrated the effect of TBs for update these 
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Figure 4. Normalized error reduction for all the 49 grids varying with the mean and variability of the
measurement. The two dashed lines represent the specific values analyzed in the manuscript for the
mean of measurement (0.25 cm3/cm3) and the variability of measurement (0.05 cm3/cm3).

4.2. Evaluation of Parameters Estimation

Considering the resolution of the TBs used to estimate parameters, the comparison of the updated
parameters was conducted at the scale of 0.25 degree. The mean value of the estimated and default
parameters (sand content, clay content, soil porosity, SOC fraction and RMS) for all the 16 AMSR-E grids
within the experiment area are displayed in Figure 5. The parameters measurements are the average
values derived from a number of soil samples as described by Yang et al. [66]. First, five parameters
showed a large discrepancy with the default parameters which indicated the necessity of performing
parameters estimation and demonstrated the effect of TBs for update these parameters. The updated
parameters approached the measurements when compared with the corresponding default value,
except the clay content. Perfect match to the parameters measurements cannot be expected due to
the errors from model structure, etc. Moreover, parameters estimated by data assimilation technique
tend to produce results that can assist the state assimilation. To verify the usefulness of parameters
estimation, the updated parameters produced by DA were re-input into CoLM while the others
conditions were kept exact same as OLa. Then, the simulations of soil moisture and temperature
were compared with the in situ measurements. The error statistics are also displayed in Figure 3
and marked by OLb. Compared with the box-plots from OLa, OLb successively reduced the MBE
and RMSE for soil moisture particularly at the first two layers. Little improvement was found in
the deeper layers because the parameters retrieved by assimilating surface observations were not
supposed to always improve the state accuracy in the deeper layers due to the vertical heterogeneity
of the solum. However, negative influence of the updated parameters for soil temperature was also
presented in Figure 3c,d. TBs used to estimate parameters highly relate to the surface soil moisture
rather than the soil temperature. Thus, the retrieved parameters, contributing in match the surface
soil moisture to the in situ measurements but rarely confirmed the simultaneous improvements for
multiple states. The above results also indicated that the parameters calibration by a single type of
observation conspires against the global optimum for state variables simulation [67]. In conclusion,
there is still an ample space to explore for the robust interaction between states and states as well as
states and parameters to achieve the improved estimation of multiple-states.
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Figure 5. Comparison of the estimated parameters from DA and the default parameters with the
measurements which are from Yang et al. [66].

4.3. Evaluation of States within Three Coarser Grids

Two densely observed grids covering 0.1 degree and 0.25 degree are marked by the blue and
green rectangle in Figure 2. The results from these two grids and the entire experiment area (referred
to as the small, medium and large grid) are presented in detail to demonstrate the performance of the
assimilation experiment. The spatially-averaged and hourly value of soil moisture at four layers (5 cm,
10 cm, 20 cm and 40 cm) for the small, medium and large grid are plotted in Figure 6a–l, respectively.
OLa showed large system bias between the soil moisture simulations and the measurements at the
first layer in Figure 6a,e,i while DA accomplished great improvement in the soil moisture estimation.
DA cut down the MBE and RMSE value for soil moisture at the first layer from −0.1547 and 0.1594 to
−0.0155 and 0.0397 in the small grid, from −0.1324 and 0.1363 to −0.0299 and 0.0371 in the medium
grid and from −0.1308 and 0.1327 to −0.0567 and 0.0598 in the large grid, respectively. The dramatic
decrease of the RMSE value produced by assimilation both exceeded 70% at the small and medium
grid while inferior results of the RMSE reduction at the large grid still reached up to 55%. The shortage
of ground stations in a major portion of the large grid potentially led to an irrational comparison using
simple arithmetic mean of measurements which will be discussed later in this section. The smoother
windows for soil moisture and parameters estimation reduced the feedback frequency of the updated
soil moisture and parameters into CoLM which led to an unapparent improvement of soil moisture
during the earlier stage of the experiment period. However, the curves of DA rapidly approached the
curves of measurements after a short adjustment period, which proved the effectiveness of parameters
estimation in the assimilation experiment. The promising results of DA demonstrated the feasibility to
obtain highly accurate soil moisture information at surface by assimilating the microwave observations.

The depth of the second layer is relatively shallow (10 cm), and the measurements at the first
two layer are highly correlated which allows the correction of the soil moisture at the first layer
to coincidentally improve the accuracy at the second layer. It was obvious that soil moisture from
DA at the second layer also achieved satisfied results with the MBE for the three grids declining to
below 0.03 and the reduction of RMSE varying from 36% to 72%. The raise of soil moisture at the
first layer inevitably caused the increase of soil moisture at the deeper layers. However, the original
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simulations at deeper layers (OLa) were closer to the measurements which eventually caused the
problem of overcorrection for soil moisture. In addition, judging from the soil moisture at different
layers in the same grid, the variability of soil moisture at deeper layers resembled to the variation
at the first layer after the assimilation experiment. However, as indicated by the measurements, soil
moisture at the last two layers seemed to be insusceptible to the water quantity changes due to natural
processes in the upper layers. Obviously, the process of assimilation violated the inherent water flow
delivery mechanism in reality which also indicate the spurious correlations between observation
and soil moisture at the deeper layers. Thus, the utility of the observations that only imply the
surface information to retrieve the information of soil profile can be unreasonable or require a more
sophisticated assimilation scheme.

In Figure 6, OLb stands for the model simulations derived by using the updated parameters to
examine the impact of parameters estimation. Parameter calibration ameliorated the underestimation
of soil moisture at the first layer, reducing the RMSE by 46% in the small grid, by 33% in the medium
grid and by 25% in the large grid. The curves of the soil moisture profile were generally upraised
after the parameters substitution, which induced the overestimation of the soil moisture simulations at
deeper layers at the same time. Unsurprisingly, the parameters were reversed to optimize the surface
soil moisture using TB observations that were not suitable for the deeper layers. The heterogeneity of
the solum must be treated more carefully in further research. The curves of OLa and OLb responded
to precipitation similarly as the measurements but the latter can correctly grape the peaks. Differ from
the measurements at the surface with steady high soil moisture that can maintain the water in soil,
both OLa and OLb showed swift change of water with a rapid decrease after the water intake process
(e.g., precipitation) which reflected the unreasonable infiltration scheme inherent in the CoLM for the
experiment area.

Upscaled soil moisture derived by MODIS ATI-based upscaling algorithm was also applied
to validate the performance of the assimilation experiment. Considering the restricted coverage
and the sufficient quantity of ground stations in the small grid, the comparison with the upscaled
measurements was only conducted for the medium and large grid. Figure 7 displays the comparison
of soil moisture at the surface of the medium (Figure 7a) and large grid (Figure 7b) during the
experiment period. OBS and upOBS denote the daily soil moisture measurements calculated by
arithmetic-average and the upscaling algorithm for multiple stations, respectively. OL and DA are
the daily soil moisture from the model simulation and assimilation which present the station-average
value in the corresponding grid. DA enhanced the features capture with the dashed black line and
maintained good agreement with the upscaled measurements. The MBE and RMSE for soil moisture at
the medium grid descended to −0.007 and 0.025 (DA) from −0.109 and 0.113 (OL). Unlike the inferior
results compared with the small and medium grids when took the arithmetic-average ground station
measurements as truth hereinbefore, the improvement of soil moisture estimation in the large grid
based on the upscaled measurements were remarkable, with the MBE dropping from −0.089 to −0.015
and the RMSE dropping from 0.092 to 0.027. Such results confirmed the inference mentioned above
and the representativeness issue (from point to area) must be properly resolved, especially in the area
with disperse in situ measurements (such as the large grid in this study). The correlation coefficients
for the two grids were promoted to 0.94 and 0.95 by an increment amount of 0.05 from OL.



Remote Sens. 2017, 9, 273 17 of 23
Remote Sens. 2017, 9, 273  17 of 23 

 

 

Figure 6. Evaluation of the soil moisture at four layers derived from simulation and assimilation with 
the measurements in the: small grid (a–d), medium grid (e–h), and large grid (i–l). 

Figure 6. Evaluation of the soil moisture at four layers derived from simulation and assimilation with
the measurements in the: small grid (a–d), medium grid (e–h), and large grid (i–l).



Remote Sens. 2017, 9, 273 18 of 23Remote Sens. 2017, 9, 273  18 of 23 

 

 

Figure 7. Evaluation of the daily soil moisture at surface derived from simulation and assimilation with 
the average measurements and upscaled measurements in the: medium grid (a) and large grid (b). 

Figure 8 shows the scatter plots for soil temperature at 5 cm, 10 cm, 20 cm and 40 cm from the 
three grids which are present with spatially-averaged and hourly values. The layout of Figure 8 is 
same as that of Figure 6. OL and DA are the daily soil moisture from the model simulation and 
assimilation. The MBE and RMSE from OL and DA are distinguished by the same color as the dots 
and marked within the corresponding plot. Soil temperature from OL indicated good agreement 
between the simulations and the measurements, with the MBE for the small and medium grid 
reaching approximate 2 K (extremely small for the large grid) and the RMSE slightly larger than the 
MBE. The overestimated soil temperature expressed by the discrete dots from OL was evidently 
modified after assimilation and the soil temperature from DA concentrated along 1:1 line. The MBE 
declined by more than 1 K in the small and medium grid which suggested the evident correction of 
the bias. The RMSEs was reduced by 20% to 50% with the increase of the soil depth. However, less 
improvement was observed in the large grid because space for the advancement of soil temperature 
estimation was limited. Since the RMSE for OL was similar to the predetermined standard deviation 
error of observations, MODIS LST has almost no effect on the assimilation. Thus, the equivalent 
improvement of the soil temperature at the deeper layers is predominantly ascribed to the increase 
of soil moisture which in turn decreases the soil temperature because of the high heat capacity of 
water. Overall, the updated soil temperature from DA appeared to be underestimated as the LST 
observations acquired by satellite were generally lower than the in situ observations due to the field 
of view, atmospheric attenuation and imperfect inversion algorithm. 

Figure 7. Evaluation of the daily soil moisture at surface derived from simulation and assimilation
with the average measurements and upscaled measurements in the: medium grid (a) and large grid (b).

Figure 8 shows the scatter plots for soil temperature at 5 cm, 10 cm, 20 cm and 40 cm from the
three grids which are present with spatially-averaged and hourly values. The layout of Figure 8 is same
as that of Figure 6. OL and DA are the daily soil moisture from the model simulation and assimilation.
The MBE and RMSE from OL and DA are distinguished by the same color as the dots and marked
within the corresponding plot. Soil temperature from OL indicated good agreement between the
simulations and the measurements, with the MBE for the small and medium grid reaching approximate
2 K (extremely small for the large grid) and the RMSE slightly larger than the MBE. The overestimated
soil temperature expressed by the discrete dots from OL was evidently modified after assimilation and
the soil temperature from DA concentrated along 1:1 line. The MBE declined by more than 1 K in the
small and medium grid which suggested the evident correction of the bias. The RMSEs was reduced
by 20% to 50% with the increase of the soil depth. However, less improvement was observed in the
large grid because space for the advancement of soil temperature estimation was limited. Since the
RMSE for OL was similar to the predetermined standard deviation error of observations, MODIS LST
has almost no effect on the assimilation. Thus, the equivalent improvement of the soil temperature at
the deeper layers is predominantly ascribed to the increase of soil moisture which in turn decreases
the soil temperature because of the high heat capacity of water. Overall, the updated soil temperature
from DA appeared to be underestimated as the LST observations acquired by satellite were generally
lower than the in situ observations due to the field of view, atmospheric attenuation and imperfect
inversion algorithm.
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5. Conclusions

Microwave observations have significant advantage in the acquisition of soil moisture information
at land surface, especially in terms of the low frequency. Considering that the coarser spatial resolution
of AMSR-E observations/products cannot fulfill the needs of applications in most cases, this study
investigates the possibility to downscale the soil moisture by simultaneously assimilating AMSR-E
brightness temperatures and MODIS LST product. Here, MODIS LST product is employed to
provide the information of surface temperature at the fine spatial scale of CoLM. Thus, the combined
assimilation experiment can retrieve soil moisture at a high resolution despite the coarse-scale TB
observations and resulting in a better accuracy than modeling. Moreover, dealing with the spatial
scale issue during the data assimilation process in this study avoids a number of problems arising
in the downscaling algorithms in which the coarse observations are usually disaggregated before
assimilation [68]. The assimilation experiment produced quite encouraging improvement in the
estimation of soil moisture at the surface as well as soil temperature profile, but the estimation of soil
moisture at deeper layers deteriorated. A superior model parameterization scheme to achieve the
effective delivery of the surface information to the deeper layers is expected in further studies.

To consider the uncertainty in parameters, five parameters were chosen to be calibrated using
Ensemble Kalman Smoother. The soil moisture simulation with updated parameters reduced the
original bias to the measurements and performed better than the results with default soil parameter
values. The estimated parameter values were potentially different from the measured values due
to discrepancy between the parameterizations of CoLM and natural processes. Finally, parameters
estimated by assimilation were also likely to compensate for other uncertainties implied in initial
conditions, forcing data etc.

An upscaling method was implemented to obtain the footprint-averaged soil moisture as the
ground truth to resolve the representative problem brought about from point to area. Compared to the
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ATI-based upscaled soil moisture, the improvement of soil moisture at surface become more significant
which further proved the positive performance of TB assimilation in soil moisture estimation and the
necessity of correctly handling the representative problem.

In summary, this study demonstrates the feasibility of downscaling the soil moisture through
assimilating coarse-scale microwave TB observations and fine-scale LST observations and describes the
potential to calibrate parameters and optimize state together in the same framework. The combination
assimilation of multi-scale observations produces effective information and positively affects the states
estimation in fine scale. Complicated mechanism in such data assimilation can be expected in the
further work. In addition, it is worthy to take account of multiple sources of uncertainties such as
parameters in state assimilation.
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