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Abstract

Super-resolution (SR) technique reconstructs a higher-resolution image or sequence
from the observed LR images. As SR has been developed for more than three decades,
both multi-frame and single-frame SR have significant applications in our daily life.
This paper aims to provide a review of SR from the perspective of techniques and
applications, and especially the main contributions in recent years. Regularized SR
methods are most commonly employed in the last decade. Technical details are
discussed in this article, including reconstruction models, parameter selection
methods, optimization algorithms and acceleration strategies. Moreover, an
exhaustive summary of the current applications using SR techniques has been
presented. Lastly, the article discusses the current obstacles for future research.
Keywords: Super resolution; resolution enhancement; regularized framework;

applications.



1. Introduction

Image spatial resolution refers to the capability of the sensor to observe or measure
the smallest object, which depends upon the pixel size. As two-dimensional signal
records, digital images with a higher resolution are always desirable in most
applications. Imaging techniques have been rapidly developed in the last decades, and
the resolution has reached a new level. The question is therefore: are image resolution
enhancement techniques still required?

The fact is, although the high-definition displays in recent years have reached a new
level (e.g., 1080*1920 for HDTV, 3840*2160 for some ultra HDTV, and 2048*1536
for some mobile devices), the need for resolution enhancement cannot be ignored in
many applications [1]. For instance, to guarantee the long-term stable operation of the
recording devices, as well as the appropriate frame rate for dynamic scenes, digital
surveillance products tend to sacrifice resolution to some degree. A similar situation
exists in the remote sensing field: there is always a tradeoff between the spatial,
spectral, and temporal resolutions. As for medical imaging, within each imaging
modality, specific physical laws are in control, defining the meaning of noise and the
sensitivity of the imaging process. How to extract 3D models of the human structure
with high-resolution images while reducing the level of radiation still remains a
challenge [2, 3].

Based on these facts, the current techniques cannot yet satisfy the demands.

Resolution enhancement is therefore still necessary, especially in fields such as video



surveillance, medical diagnosis, and remote sensing applications. Considering the
high cost and the limitations of resolution enhancement through “hardware”
techniques, especially for large-scale imaging devices, signal processing methods,
which are known as super-resolution (SR), have become a potential way to obtain
high-resolution (HR) images. With SR methods, we can go beyond the limit of the
low-resolution (LR) observations, rather than improving the hardware devices.

SR is a technique which reconstructs a higher-resolution image or sequence from
the observed LR images. Technically, SR can be categorized as multi-frame or
single-frame based on the input LR information [4-8]. If multiple images of the same
scene with sub-pixel misalignment can be acquired, the complementary information
between them can be utilized to reconstruct a higher-resolution image or image
sequence, as Fig. 1 shows. However, multiple LR images may sometimes not be
available for the reconstruction, and thus we need to recover the HR image using the

limited LR information, which is defined as single-frame SR [9-12].
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Fig. 1. The concept of multi-frame super-resolution. The grids on the left side represent the
LR images of the same scene with sub-pixel alignment, thus the HR image (the grid on the

right side) can be acquired by fusing the complementary information with SR methods.



Although SR techniques have been comprehensively summarized in several studies
[4, 6, 8, 13-15], this paper aims to provide a review from the perspective of
techniques and applications, and especially the main contributions in recent decades.
This paper provides a more detailed description of the most commonly employed
regularized SR methods, including fidelity models, regularization models, parameter
estimation methods, optimization algorithms, acceleration strategies, etc. Moreover,
we present an exhaustive summary of the current applications using SR techniques,
such as the recent Google Skybox satellite application [16] and unmanned aerial
vehicle (UAV) surveillance sequences [17]. The current obstacles for the future

research are also discussed.

2. Technical background

Nowadays, charge-coupled devices (CCDs) and complementary metal oxide
semiconductors (CMOSs) are the most widely used image sensors [4, 18]. To obtain
an HR image, one of the solutions is to develop more advanced optical devices. As the
spatial resolution is governed by the CCD array and optical lens, reducing the pixel
size is one of the most direct approaches to increase the spatial resolution. However,
as the pixel size decreases, the amount of available light also decreases, and the image
quality becomes severely degraded by shot noise. Furthermore, nonrectangular pixel
layouts, as in the hexagonal Fujifilm super CCD and the orthogonal-transfer CCD [18,
19], have been used to increase the spatial sampling rate, as shown in Fig. 2. Other
approaches include increasing the focal length or the chip size. However, a longer

focal length will lead to an increase in the size and weight of cameras, while a larger
4



chip size will result in an increase in capacitance. Therefore, both of these approaches
are not considered to be effective due to the limitations of the sensors and the optics
manufacturing technology [4]. Compared with CMOSs, CCDs have advantages in
sensor sensitivity, imaging resolution, noise suppression and technology maturity [20].
However, considering the high cost of current CCD-based cameras, CMOS-based
technologies have recently been investigated. For example, Scientific CMOS
(SCMOS) sensors feature a higher resolution and high signal-to-noise ratio (SNR);
however, the practical use of this technology remains a problem [21]. Overall, due to
the limitations of hardware technology, it is still necessary to study SR algorithms to

achieve the goal of resolution enhancement.
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Fig. 2. The basic CCD types [18]: (a) conventional CCD, (b) super CCD with a
nonrectangular pixel layout, and (c) orthogonal-transfer CCD.

Based on the concept of SR, the first problem we need to discuss is the conditions to
obtain an HR image from multiple LR observed images. In general, if there is
supplementary information among the images, SR is feasible [22]. That is to say, the
LR observations cannot be obtained from each other by a transformation or
resampling process, thus they contain different information which can be used for SR.

If the relative shifts between the LR images are integral, the images after motion



registration will contain almost the same information. As a result, SR cannot obtain
effective results.

To implement SR in a real application, researchers have attempted to acquire the
images for SR through hardware control. By means of designing the imaging
mechanism by hardware techniques, the sensors can acquire observations with known
sub-pixel displacements, or multiple “looks” for the same scene. SR is therefore
possible. Successful examples can be found in various fields [2, 23-26]. One of the
most famous successful cases is in the field of remote sensing. In the French space
agency’s SPOT-5 satellite system, a specially developed CCD detector was used
which packages two 12000-pixel CCDs in one structure. Two line-array CCDs are
shifted with each other by half a pixel width in the line-array direction, as shown in
Fig. 3 [23]. Since the two CCD detectors can capture images at the same time, a set of
data can therefore be acquired at a half-pixel shift in the imaging position. Using this
device and SR techniques, we can obtain a HR image from the two sub-pixel shifted
images. Leica ADS40 aerial cameras have adopted a similar imaging mechanism to
SPOT-5 [27, 28]. Moreover, some CCD pixels comprise sub-pixels with different
shapes and spatial locations [29]. By combining multiple images recorded with

different sub-pixel components, we can obtain a higher-resolution image via SR.
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Fig. 3. Sub-pixel imaging for SPOT-5 [23]. A double CCD linear array in (a) generates two
classical square sampling grids in (b), shifted by half a sampling interval in both row and
column directions.

3. Super-resolution technologies and methods

In this part, we discuss the methods and current problems for SR with multiple
observations. The key problem is how to use the supplementary information among
the acquired repeat-pass images. In 1964, Harris [30] established the theoretical
foundation for the SR problem by introducing the theorems of how to solve the
diffraction problem in an optical system. Two decades later, Tsai and Huang [31] first
addressed the idea of SR to improve the spatial resolution of Landsat TM images.
Since then, many researchers have begun to focus on SR, either in theoretical research
or practical applications [1, 2, 22, 24-26, 28, 32-70]. SR has now been developed for
more than three decades, and the progress of SR can be roughly summarized as
follows.

At the very start, most of the methods concentrated on the frequency domain [31, 33,
59-61]. Frequency domain algorithms can make use of the relationship between the

HR image and the LR observations based on a simple theoretical basis, and have high
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computational efficiency. However, the methods have apparent limitations, such as
sensitivity to model errors and difficulty in handling more complicated motion models,
which have prevented them from further development.

Due to the drawbacks of the frequency domain algorithms, spatial domain methods
then became the main trend [4]. The popular spatial domain methods include
non-uniform interpolation [35], iterative back-projection (IBP) [56], projection onto
convex sets (POCS) [57, 63, 70], the regularized methods [34, 40, 43, 47, 53, 54, 58,
62], and a number of hybrid algorithms [71]. Early review papers have provided
specific descriptions and explanations of those methods [4, 8, 14]. Among them, the
regularized methods are the most popular due to their effectiveness and flexibility.
Therefore, most of the recent representative articles about SR have focused on
regularized frameworks [1, 47, 49, 53, 54, 68, 72, 73]. In this part, our emphasis is to
review the development of the regularized methods, especially over the last decade.
Furthermore, the related research progress into parameter setup and optimization
algorithms is also summarized. The remainder of this part is structured as follows.
Firstly, we talk about the imaging models. The related models are then described,
including the data fidelity and regularization terms. Some advanced techniques and
challenges are then discussed, including adaptive parameter setup, blind

reconstruction, and optimization strategies.

3.1 The observation model

The imaging model, which refers to the observation model, is essential to SR when



using a regularized framework. Before reconstruction, we need to clarify the process
by which the observed images have been obtained. The image acquisition process is
inevitably confronted with a set of degrading factors, such as optical diffraction,
under-sampling, relative motion, and system noise. In general, we usually suppose
that the degradation procedure during image acquisition involves warping, blurring,
down-sampling, and noise (Fig. 4), and the observation model is simulated as follows:
Y =0 DBM,z+n, ()

where there are K LR images participating in the reconstruction. As N, xN,, is
defined as the size of the kth input LR image, L, N, xL,N,, is setas the size of
the reconstructed HR data, which is determined by the horizontal and vertical
magnification factors L, and L, .In (1), z is the vector form of the reconstructed
image with a size of L, N, L, N, x1, which is given as z=[z,z,,---.2, ... | -
and Y =[ Vs Yior s Yiowun,, ]T is the vector form of the kth input dataset. D,
is the down-sampling matrix of size N,N,, xL,N,L,N, , B, represents the
blurring operator with size of L,N,L, N, xL,N,L,N, , and M, is the warp

matrix describing the motion information (e.g. translation, rotation, etc.). n,
( NN, x1) indicates the additive noise. O, is the operator excluding the
unobservable pixels from the kth image [47, 74, 75]. In this way, we can deal with
the inpainting and SR problem simultaneously if there are invalid pixels and/or
motion outliers in the LR images (Fig. 4).

We can obtain the observation model for single-frame SR when K =1 in (1). If

D, and M, are excluded, it is a model for image restoration, only dealing with the



problems of noise, blurring, or missing information. For convenience of expression,

we rewrite model (1) by substituting the product of O,, D, B,,and M, by H,,
which is as follows:
Y, =H,.z+n, )
The model in (1) is still insufficient for expressing all possible situations. As a result,
other models take more complicated factors into consideration to better describe real
cases, including different kinds of noise [52, 76], dimensional complexity [51],
domain transformation for the particular images [77], etc. These models are not

discussed in detail in this paper.

11l-posed inverse problem

Fig. 4. The super-resolution imaging model. B,, M, and D, indicate the blur matrix,
warp matrix and down-sampling matrix, respectively. n, represents the additive noise,

while O, is the operator cropping the observable pixels from vy, .

3.2 Regularized reconstruction methods

3.2.1. The regularized framework

Based on the observation model described above, the target is to reconstruct the HR
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image from a set of warped, blurred, noisy, and under-sampled measured images. As
the model in (2) is ill-conditioned, SR turns out to be an ill-posed inverse problem.
Based on maximum a posteriori (MAP) theory, the problem we need to solve can be

transformed to the minimization problem as [62, 78]:

E(z):argminZK:p(yk—sz)+/1U(z) (3)

z K=

where p(-) and U(-) indicate the corresponding constraint functions. In (3), the
first term is the data fidelity term, and the second term is the regularization term, with
U(z) being the energy function. 1 is the regularization parameter balancing these
two terms. This is the general variational regularized SR framework. Without the
regularization term, this is equal to maximum likelihood (ML) estimation. The MAP
methods incorporate the prior constraints of the image, and obtained the results by
maximizing the cost function of the posterior probability. They are popular for their
flexibility with edge-preserving priors and joint parameter estimation. Comparatively,
Bayesian estimation are used when the posteriori probability distribution of the

unknown parameters, instead of the specific parameters, is estimated.
3.2.2. The data fidelity term

The data fidelity term is used to constrain the residuals between the real LR images

and the simulated ones obtained, and it is usually associated with the noise model. For

instance, the 1, norm based linear least-squares term is widely used [41, 49, 62, 79,
80],as p=2 in (4). The main advantage of the I, norm problem is that it is easy to

solve, and many efficient algorithms exist [43, 81]. However, the result solved by the
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I, model is only optimal when the model error is white-Gaussian distributed [82].

F@=3 Iy -Hl! @

As a result, there has been a growing interest in choosing the I, norm as the
function p() in (4) for image SR and restoration, where p=1 in (4). As the |,
norm corresponds to Gaussian distributed errors, the I, norm mainly corresponds to
the Laplacian error model, as shown in Fig. 5. According to Farsiu et al. [43], p=1
results in a pixel-wise median and p=2 leads to a pixel-wise mean of all the
measurements after motion compensation in the SR model. It has been proven that the
I, —norm fidelity is more effective than the I, —norm fidelity when the images
contain non-Gaussian errors [43, 83].

b re-mr 4 ry

I,

> 0 T x 0 X

(@) (b) (©

Fig. 5. The properties of different norm functions and the error distribution, where (b) and (c)

indicate the distribution for Gaussian and Laplacian errors, respectively. The I, norm

corresponds the quadratic curve in (a), which is consistent with the Gaussian distribution in

(b). In contrast, the plot of |, norm is more consistent to the Laplacian distribution.

For complicated types of noise and/or model error, however, both the I, norm and
the 1, norm have their advantages and disadvantages. Some researchers have

therefore employed improved techniques for the data fidelity term [52, 81, 84-87]. In

cases with mixed error modes, the | norm function (1<p<2) is sometimes
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employed as the constraint function because of its convex property and its pertinence
for the imaging model errors [81]. When 1< p<2, it results in a weighted mean of
measurements. If the value of p is close to one, then the solution is calculated with
a larger weight around the measurements near the median value. When the value of
p is near to two, the solution is approximated to the average value [43]. In some

cases, images are contaminated by both Gaussian and non-Gaussian errors, and the

|, norm function is considered to be an effective solution [81, 82]. According to the

O

imaging model, detecting the outliers and restoring them in matrix as

unobservable pixels is also an effective way to exclude the impulse noisy pixels and
the motion outliers belonging to non-Gaussian errors [47].

The comparative reconstruction results for the different fidelity norms are given in
Figs. 6-7. In the first case, the synthetic test was conducted with the Lena test image,
in which the original image was first down-sampled by a factor of two in both the
horizontal and vertical directions. Thus, four LR images were obtained, with the
translational shifts being (0, 0), (0, 0.5), (0.5, 0), and (0.5, 0.5). A mixed mode of
Gaussian (normalized variance 0.003) and impulse noise (density 0.03) was then
added in the LR images. In the Foreman experiment, five degraded images with
moving objects were included in the reconstruction, and the 24™ frame of the video
sequence was set as the reference frame. The LR images were obtained using the
corresponding HR frames in the video, with a down-sampling factor of two. We
evaluate the results of the synthetic experiments using the peak signal-to-noise ratio
(PSNR) and the structural similarity (SSIM) index [88]. The PSNR is used to evaluate

13



the gray value similarity, while the SSIM is mainly employed to reflect the structural

similarity [89].When images are contaminated with mixed noise (Fig. 6), the 1, norm
cannot completely remove the speckles while preserving the texture. In contrast, the
l, norm has some problems in dealing with Gaussian-distributed noise, and the |
norm can obtain better results, in terms of both the visual effect and quantitative
indexes. In the second test, it can be clearly seen that I, and |, are more robust than
I, when dealing with motion outliers in the LR observations. With the ability to deal
with motion outliers, both 1, and |, can prevent the reconstructed details from

being oversmooth. Furthermore, the I —norm fidelity can achieve a balance

between removing noise and suppressing motion artifacts in the noisy cases [52].

PSNR: 22.026 PSNR: 26.108 PSNR: 28.040 PSNR: 28.311

SSIM: 0.530 SSIM: 0.730 SSIM: 0.787 SSIM: 0.801
(@) (b) © ©

Fig. 6. The SR reconstruction results of the Lena image by (a) bilinear interpolation, and (b)
MAP with I,-norm fidelity, (c) l,-norm fidelity, and (e) l,-norm fidelity, with p=1.3.

N ZoNZNZN

'/

)

PSNR: 32.671 PSNR: 35.683 PSNR: 36.542 PSNR: 36.675
SSIM: 0.921 SSIM: 0.942 SSIM: 0.960 SSIM: 0.959

Fig. 7. The SR reconstruction results of the noiseless Foreman image by (a) bilinear
interpolation, and (b) MAP with I,-norm fidelity, (c) I;-norm fidelity, and (e) I,-norm fidelity,
with p=L1.5.



A weighted data fidelity term is also suitable for some cases in which the LR images
make different contributions to the reconstructed image [25, 79, 90]. In some practical
cases, the amount of available information contained in each LR image might differ
according to the image quality (e.g., noise level, spatial resolution, angle, etc.). Thus,
different weights should be considered in such cases, as in (5). A weighted data
fidelity term has been widely used in the related works, and different methods were

presented to determine w, [25, 79, 90]. The core idea is to discriminate between the

different contributions of the LR images involved in SR.

K
F(Z):Zwk'”yk_szng )
k=1

3.2.3. The regularization term

The regularization plays a significant role in the regularized variational framework.
As SR is a classical ill-posed inverse problem, regularization is therefore adopted to
stabilize the inversion process [4, 47, 91]. According to the Bayesian theorem, the
regularization term represents the image prior modeling, providing the prior
knowledge about the desired image [4, 72, 92]. Over the past 10 years of vigorous
development, there have been a large amount of studies of regularization for image
restoration and SR [81, 89, 93-98].
€ Smoothness prior models

In the early years, the smoothness of natural images was mainly considered, which
leads to the quadratic property of the regularizations [99, 100]. Tikhonov-based

regularization is the representative smoothing constraint, whose energy function is
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usually defined as:
U(2)=|ref; ©)
where I' is usually chosen as an identity matrix or high-pass operator (e.g., a
difference operator or a weighted Fourier operator). Laplacian regularization is one of
the most common regularizations used in SR, and was developed from Tikhonov
regularization by choosing the smoothing operator as the discrete 2-D operator [100].
Another category of regularization is based on Markov theory. A Markov random
field (MRF) assumes that the value of a pixel is only related to the adjacent pixels,
which satisfy a Gibbs density function [50]. In this way, MRF can efficiently describe

the local statistical characteristics of images. The energy function can be given as:

U(z):ZVC(z):ZT_:¢(d§z) (7)

ceC

where d! is a coefficient vector for clique ¢, which is usually defined as the
finite-difference approximations to second-order derivatives in the four directions.
(,/5() is the constraint function. The regularization function is usually divided into two
categories, Gaussian MRF (GMRF) [78] or Huber MRF (HMRF) [101], in
accordance with the choice of ¢(-). For GMRF regularization, the quadratic |,
norm is employed for ¢(-).

These regularized methods smooth the restored image by penalizing the
high-frequency component, and thus perform well in suppressing noise. However,
they inevitably oversmooth the sharp edges and detailed information.
€ Edge-preserving prior models

The smoothing prior models are somewhat against the nature of images, in that
16



sharp details in images are always desirable for human beings in many applications,
including remote sensing imaging, medical diagnosis and object recognition [2, 28,
69]. Thus, I, —norm based regularizations are often preferred for their
edge-preserving properties [93, 101, 102]. The representative total variation (TV)
regularization was first proposed by Osher et al. [93, 103], based on the fact that an

image is naturally “blocky” and discontinuous. The standard TV norm is given as:

U(2)={(V'2)* +(V'2)* + 8 (8)
where V*z and V’z are the first-order image gradients in the horizontal and
vertical directions, respectively. Here, A isa small scalar to ensure differentiability.

Unlike the quadratic regularizations, edge information can be better preserved
using TV regularization, with the I, norm to deal with the image information rather
than the I, norm [47, 104, 105]. Therefore, the TV prior model has been the most
popular model for image processing in the last two decades, and has been applied in
fields such as image denoising, deblurring, segmentation, and SR [47, 76, 104, 106].
However, the results of the TV prior model will often result in a “staircase” effect
with strong noises, especially in flat regions [89].

To overcome the shortcomings of the TV prior model, some researchers have
proposed spatially adaptive strategies. A number of methods use spatially adaptive
regularization parameters to eliminate the staircase effects [94, 107-109]. Some of
them classified the image into detailed and flat regions using the spatial information,
and used a larger penalty parameter for the flat regions and a smaller one for the edges
[94, 107]. However, the spatially adaptive indicators such as gradients, the difference

17



curvature, and structure tensor are usually sensitive to noise.

Moreover, different norm constraints can also be employed for the prior modeling
in a spatially adaptive way [96, 108]. The | norm, rather than the I, norm, can be
used as the constraint function for Vz in the TV term. As the I, norm represents a
smoothing prior and the I, norm tends to preserve the edges, the || (1<p<2)
norm achieves a balance between them, thereby avoiding the staircase effect [110].
Other improvements include higher-order TV (HDTV) [111], bilateral TV (BTV) [43],
locally adaptive BTV (LABTV) [96], etc.

HMREF is also a representative edge-preserving prior model [101, 112]. A hybrid
norm can theoretically achieve a balance between preserving edges and suppressing
noise, to some degree. For the HMRF term, (,/5() in (7) is chosen as the Huber

function, which is piecewise as:

x? X<T
¢(X):{ZT|X|—T2 x>T ©

where T is the threshold. The Huber function satisfies the properties of convexity,
symmetry, and discontinuity. The HMRF model is effective when dealing with images
with clear texture. However, only the neighborhood information is considered, which
limited its performance [113].

€ Nonlocal-based priors

The local derivatives are somewhat sensitive to noise in the images’ homogenous
regions, which negatively affects the reconstruction effect in noisy cases. Recently,
the concept of nonlocal-based priors has been proposed and has developed rapidly in

image processing [97, 114-116]. Rather than defining the neighborhood of a pixel
18



locally, nonlocal-based priors consider pixels in a large search area and weight them
according to the similarity between rectangular patches. This is based on the
assumption that every feature in a natural image can be found many times in the same
scene [114]. The nonlocal models have become popular in the regularized framework,

given the nonlocal TV regularization as:

Uy (2)= 3 S w(xy)e(0-2(y)]  (10)

xe® yell,

where X indicates one of the pixels in the image z:Q — R, and the search window

is usually restricted to the square neighborhood of X, denoted as IT,. The weight

function w(x,y) can then be defined as:

[P(2)-P, (2],

(o}

w(x,y)=exp| - (11)

Here, B,(z) and P,(z) represent the (2n+1)x(2n+1) patch of z, centered at
the pixel x (or y) with aradius of n. The similarity can be calculated with various
distance formulas (e.g., by choosing different values of p). o is the filtering
parameter. Compared with the TV model, the nonlocal-based model can make use of
more information, and can thus prevent the staircase effect in flat regions, and can
help restore the details [97, 113].

The comparative results of the typical regularizations are displayed in Fig. 8. The
down-sampling process was set the same as for the Lena image in Section 3.2.2. The
generated LR images were then blurred by a 3*3 filter with a variance of 1, and

contaminated by Gaussian noise with a standard variance of 10. From the results, it
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can be seen that all the edge-preserving regularizations perform well in removing
noise and preserving the details. Nevertheless, the results of the HMRF and nonlocal

TV models better conform to human visual perception.

PSNR: 27.462 PSNR: 28.252

The LR image SSIM: 0.770 SSIM: 0.822

PSNR: 28.472 PSNR: 28.561

SSIM: 0.816 SSIM: 0.818
Fig. 8. The SR reconstruction results using different regularizations. Top row: bilinear
interpolation, Laplacian regularization, and HMRF regularization [100]. Bottom row: TV
regularization [47], NLTV regularization [114], and the original HR image.

The original image

In addition to the above regularizations, there have been many other studies of prior
models, such as regularization based on sparsity [117], along with morphological
theory [98]. The common goal of all these methods is that they want to reconstruct a
noiseless HR image with natural texture and clear, detailed information. There have
also been studies of spectral images (e.g., digital color images or hyperspectral
images), where the emphasis has been on the preservation of spectral information,
while enhancing the spatial resolution [118, 119].
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3.2.4. Adaptive regularization parameter selection

Parameter selection is always a headache when dealing with ill-posed inverse
problems. The regularization parameter, in particular, plays a significant role in image
SR. In this part, we present the main approaches to adaptive strategies for determining
the regularization parameter A in (6).

In many cases, the regularization parameter is selected manually. The common
approach is to test a sequence of regularization parameters and select the optimal
parameter corresponding to the best results evaluated by quantitative indexes or visual
inspection. This is, however, a time-consuming and subjective process. Therefore,
adaptive strategies are necessary in the SR process. A number of strategies have been
specially designed to adaptively estimate the  regularization parameter. These
strategies have mainly been inspired by developments in the inverse problem field,
such as denoising and deblurring [120-123]. The popular methods include the L-curve
method [124], generalized cross-validation (GCV) [35], and the U-curve method [49].

It has been noted in the earlier studies that the GCV method tends to give
unsatisfactory results if the model errors are highly correlated [121]. The L-curve
method has some advantages over GCV, including well-defined numerical properties
and robustness in dealing with highly correlated errors. Both of the L-curve and
U-curve methods are based on the parametric plots generated by varying the
regularization parameter A . The target is to find the optimal A that achieves a

good balance between minimizing the data fidelity and regularization. As the

I, —norm based model is chosen, the energy function can be given as:
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K
E(z) =arg min Z”yk —sz||2 +ﬂb||[2||2 (12)
z k=1

where I' indicates the two-dimensional Laplacian operator. After using the singular

value decomposition (SVD) least-squares method for H, , we define:

2

P(1)-]

ﬁl

R(*)Zillyk -H,zZ, (13)

The L-curve method searches for the distinct L-shaped corner using the relationship

between R(A) and P(A), while the U-curve method selects the maximum

curvature point close to the left vertical part of the U-curve (U (1)=

as the optimal parameter. It has been proved that the U-curve method can obtain more
accurate solutions in quadratic cases for SR. Further details can be found in the
related works [49, 124]. These methods can obtain rel