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Medium-resolution remote-sensing images with tens of metre spatial resolutions have
spatial and spectral characteristics that are suited for mapping a range of structural and
compositional properties of vegetation. However, many factors, such as the long revisit
cycles and frequent cloud contamination, limit the availability of images for the
monitoring and time-series analysis of vegetation. Thus, there is a strong incentive
to combine data from more than one observation system in order to fill the gaps in
observation and enhance the capability of remote sensing to monitor dynamics. In this
paper, we introduce a framework for the normalization of the normalized difference
vegetation index (NDVI) from different sensor systems by the use of synchronous
coarse-resolution NDVI data. A new model called the Local Cluster-specific Linear
Model (LCLM) is proposed. This model is designed to build the specific relationships
for different clusters, block by block, considering the spatial heterogeneity of
the influencing factors. To improve the stability of the parameter estimation, an
M-estimation method is utilized to solve the coefficients. Based on an analysis of
the previous evaluation methods, new schemes are designed for evaluating the accu-
racy of the parameter normalization. Different assessment experiments were under-
taken with the new evaluation schemes, to validate the performance of the LCLM
method. The results indicate that the LCLM method performs better than the existing
methods. An application experiment was also undertaken, in which synchronous NDVI
from Landsat ETM+ and Terra ASTER sensors were normalized by the use of a
coarse-resolution MODIS product.

1. Introduction

The normalized difference vegetation index (NDVI) is calculated from the spectral
reflectance measured in the visible and infrared bands of a satellite sensor and provides
an indication of photosynthetically active vegetation (Tucker and Sellers 1986). Among
large numbers of remote-sensing products, coarse-resolution NDVI from sensors such as
the NOAA Advanced Very High Resolution Radiometer (AVHRR), Terra/Aqua Moderate
Resolution Imaging Spectroradiometer (MODIS) and SPOT VEGETATION usually has
the advantage of frequent observations, but lacks enough spatial resolution for a fine-scale
(the term scale in this paper refers to spatial resolution) regional study. In contrast,
medium-resolution remote-sensing images, with a spatial resolution from 10 m to
100 m, acquired from sensor systems such as the Landsat Thematic Mapper, and
Enhanced Thematic Mapper Plus (TM/ETM+), Terra Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER), China–Brazil Earth Resources Satellite
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(CBERS) CCD, and HJ-1A/1B CCD have spatial and spectral characteristics that are
suited for mapping a range of vegetation structural and compositional properties.
However, frequent cloud contamination, long revisit cycles of the medium-resolution
satellite observation systems, and a number of other factors sometimes make it difficult
to acquire remotely sensed data with a continuous spatial coverage. In addition, these
factors also limit the availability of images at intervals and durations that are suitable for
the time-series analysis of vegetation, especially for the period of active growth (Price
1994). Thus, there is a strong incentive to combine data from multiple observation
systems, to fill the gaps in the observation and enhance the monitoring of the land surface.

Integration of NDVI from different sensors is complicated as various factors are
known to affect the consistency and continuity of NDVI data sets (Gallo and
Eidenshink 1988; Guyot and Gu 1994; Holben 1986). It is known that the spectral
characteristics of surface vegetation and soil components, sensor-specific spectral band
characteristics, and atmospheric conditions can all result in inconsistencies in NDVI
between different sensors (Trishchenko, Cihlar, and Li 2002; Jonas and Menz 2004;
Steven et al. 2003; Miura, Huete, and Yoshioka 2006; Van Leeuwen et al. 2006;
Franke, Heinzel, and Menz 2006). And it was found in a previous study that the use of
equivalent surface reflectance data in computation of a vegetation index eliminates many
of the errors and provides a sound basis for the comparison of indices measured over time
(Guyot and Gu 1994). However, vegetation indices measured by different sensors may not
match, even with precise calibration and atmospheric correction. This is because the
sensor-specific bands (position and width) and spectral response functions may result in
differences in NDVI between different sensors because the bands receive slightly different
components of the reflectance spectra of vegetation and soil (Guyot and Gu 1994; Gallo
and Daughtry 1987). These inconsistencies can be problematic when different monitoring
systems are used in combination, or when one system takes over from another in a long
time series. Thus, direct comparison or synergistic use of NDVI from different sensor
systems is crucial. This all demonstrates the need to standardize/normalize the vegetation
indices from different sensor systems (Steven et al. 2003).

Several empirical methods have been proposed for reconciling NDVI data produced
from different sensors. One popular approach for normalization of NDVI from different
sensor systems, which has been the subject of many studies, is building inter-sensor
relationships by simulating the reflectance data of different sensors. Using this approach,
equations have been provided to convert the NDVI calculated by surface reflectance from
multiple sensors to MODIS NDVI (Steven et al. 2003; Van Leeuwen et al. 2006; Jiang
et al. 2006). Furthermore, a series of quadratic ‘spectral correction’ functions have been
developed to translate the NDVI of selected sensors to NOAA-9 AVHRR-equivalents
through hyperion-based simulation of different land-cover types (Yoshioka, Miura, and
Huete 2003). However, it should be noted that these methods build relationships by
simulated NDVI samples; that is, they are produced by simulating the responses of a
series of satellite instruments from the same data set of spectroradiometric measurements,
or hyper-spectral sensors over canopies, by convolving the spectral response functions.
This approach might, however, be inapplicable for data from other surface targets or data
acquired at other times, which could be influenced by much more varied conditions.
Moreover, the difficulty of atmospheric corrections means that it is not easy to obtain an
accurate surface reflectance. Therefore, it might be problematic when adopting these
specific relationships based on simulated NDVI data for cross-sensor NDVI
transformation.
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Another kind of approach is building an inter-sensor transformation equation based on
near-synchronous images, and then undertaking the normalization of the NDVI from the
different sensor systems. A relationship was built between the NDVIs from synchronous
ASTER and Landsat ETM+ images (Zhang 2011). A similar relationship was also built
between the IKONOS and ETM+ NDVIs by the use of approximately synchronous
images from the two sensors, with a highly significant R2 value of 0.67 or 0.68
(Thenkabail 2004). The inter-sensor relationships between the Landsat-7 ETM+ NDVI
and the NDVIs from Landsat-5 TM, QuickBird, LISS-III IRS 1C/D, and ASTER were
also built based on synchronous image pairs (Martínez-Beltrán et al. 2009). The equations
obtained in these studies, based on the synchronous imagery, correspond more with the
real situation; however, as the equations were built based on specific data, they are highly
efficient for the data used for the modelling, but they might not be appropriate for other
imagery with different air conditions, different solar illumination, different viewing
angles, and so on. It is therefore difficult to generate these inter-sensor relationships and
carry out inter-sensor transformations when there is a lack of synchronous data.

As opposed to a cross-sensor transformation equation built based on simulated
samples or synchronous imagery with a similar spatial resolution, normalization of the
data using synchronous coarse-resolution data as a reference is faithful in the real
situation, and is not limited by the acquisition of reference data. In contrast to the data
from medium-resolution sensors, data from coarse-resolution sensors with shorter revisit
times, and thus with a high temporal frequency, are more widely available. Adopting the
coarse-resolution data to be the reference could therefore avoid the problem of a shortage
of synchronous reference data. The normalization of medium-resolution data using coarse-
resolution data was earlier tested for the normalization of Landsat ETM+ reflectance data
with coarse-resolution 10-day composite SPOT VEGETATION (VGT) data as the refer-
ence (Olthof et al. 2005). This work was then expanded to combine medium-resolution
reflectance data from different sources, including Landsat TM/ETM+, AWiFS and
CEBRS, by using MODIS land products as reference (Gao et al. 2010). The normalization
results of these methods were shown to be consistent and comparable, both spatially and
temporally. This approach was also introduced and tested for the normalization of Landsat
ETM+ NDVI, with a MODIS product as a reference, by using a linear model built for
different clusters (Gan et al. 2013). This method considers the various inter-sensor
relationship differences between different clusters, but some important factors are not
taken into account. For example, the spatial heterogeneity of the atmospheric conditions
will influence the NDVIDN-NDVISR (NDVI calculated by the digital number (DN) and
surface reflectance) relationship, which is important for the normalization.

Meanwhile, there is also a requirement for an effective evaluation scheme for normal-
ization methods. In a previous study of the normalization of Landsat ETM+ reflectance
data using coarse-resolution data as reference, evaluation was implemented by applying
the normalization coefficients to a part of the resampled ETM+ data, and then comparing
the residual statistics with the reference (Olthof et al. 2005). Evaluation can also be
implemented by checking the difference between the reference MODIS surface reflec-
tance and upscaled normalized result (Gao et al. 2010). Evaluation has also been carried
out by comparing the normalized results of different sensors in the overlapping regions,
and by comparing the statistics generated from the overlapping regions (Gao et al. 2010;
Olthof et al. 2005). However, as NDVI is a scale-dependent parameter, and bias can be
brought about by the scaling of the NDVI (Huete, Kim, and Miura 2005), some of the
above methods are not appropriate for the evaluation of NDVI normalization.
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In this paper, we first introduce a framework for the normalization of medium-
resolution NDVI from different sensors by using coarse-resolution data as a reference.
In addition, a new model, the Local Cluster-specific Linear Model (LCLM), used under
the framework of a reference-based method, is proposed. Unlike the previous studies (Gan
et al. 2013; Gao et al. 2010), which used relationships built for different clusters based on
samples from the whole image, we separate the whole image into several blocks and build
models for the different clusters, block by block. This method can consider the spatial
characteristics of the factors that influence the inter-sensor relationships, such as aerosol
optical thickness, water vapour, solar viewing angles, and so on, which are known to be
spatially heterogeneous. In this way, we can improve the accuracy of the inter-sensor
NDVI transformation.

We summarize the existing evaluation methods and analyse their applicability for
NDVI normalization in Section 3. As the issue of evaluation needs to be further devel-
oped, several schemes are designed to evaluate the accuracy of the methods, according to
the principle that the normalized result should be consistent with the reference data, but
with its own original spatial resolution. Following the detailed description of the frame-
work of the reference-based method, the building of the model used under this framework
is introduced in Section 2. Section 3 reviews the previous evaluation schemes and
presents new evaluation schemes designed for the normalization of medium-resolution
data by using the coarse-resolution data as a reference. The evaluation experiments and
application experiment are then described in Section 4. In Section 5, the advantages and
limitations of the proposed approach are discussed, and our work is concluded.

2. Normalization method

2.1. Framework

The basic idea behind the normalization of medium-resolution data from different sensors
by using the coarse-resolution NDVI is to make use of the spatial and temporal consis-
tency and comparability of the reference (refer to Figure 1). We make use of the spatial

Medium-resolution NDVI data set
from sensor A, B, C, D, E...
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Figure 1. Schematic diagram of the framework for the normalization of the NDVI by the use of
coarse-resolution NDVI as the reference.
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consistency of the reference NDVI to quantify the effective spatial comparability of the
NDVIs from different sources, thus to make the difference among the NDVIs over
different areas relate only to the difference of the land surface and not to be disturbed
by the bias brought in during the observing process. Differences in the NDVIs among
different medium-resolution sensors (sensor A, B, C, …) are eliminated through normal-
ization by the use of the same coarse-resolution NDVI data as the reference. First, a model
is built at a coarse resolution at the same scale as the NDVI_R (the coarse-resolution
NDVI used as the reference) between the resampled NDVI_O (the original medium-
resolution NDVI needing normalization) and the corresponding NDVI_R by an area-
averaging aggregation method. The established model is then applied to the NDVI_O to
obtain the normalized result, the medium-resolution NDVI that is consistent with the
reference data, which is marked as NDVI_N (NDVI after normalization). This process can
also be expanded upon to achieve temporal normalization by taking advantage of the
temporal consistency of the reference data set to assure that the multi-temporal NDVI
from the different sources is consistent over time, and able to reflect the real temporal
change of the land surface without being disturbed by the bias caused by sensor differ-
ence, viewing angle, atmospheric condition and so on. It is indeed useful to be able to
increase the frequency of the medium-resolution NDVI record, for either local or regional
analysis.

However, as the coarser-resolution NDVI tends to contain bias caused by the scaling
effect (Yoshioka et al. 2008; Obata, Wada et al. 2012; Obata, Miura, and Yoshioka 2012;
Obata et al. 2013), this can lower the accuracy of the medium-resolution normalization
result, which is a notable problem when using coarse-resolution NDVI data to normalize
medium-resolution NDVI.

Meanwhile, there are no strict requirements for the source of the original NDVI. It is
possible to standardize the NDVIs from different medium-resolution sensors to one
standard data set directly, without any other process, no matter whether the NDVI is
calculated by DN, top of atmosphere (TOA) reflectance or other sources. However, the
requirements for the coarse-resolution NDVI used as a reference are strict. The data
should comply with the following principles: for spatial normalization, when undertaking
normalization of the NDVI cover for different regions which might be with different land
cover and different atmospheric conditions, the reference NDVI should have a coverage
that is wide enough to cover all the NDVIs that need normalization, and the NDVIs of the
different regions should be comparable. For temporal normalization, when undertaking
normalization of multi-temporal NDVIs from different sensor systems of a given region,
the reference NDVI data set needs to be supplied by a sensor with a short revisit time, so
as to provide a record that is frequent enough to cover each time interval. Furthermore,
similar equator crossing times help to ensure the temporal consistency and to reduce the
bias caused by different imaging times. Sensors with a wide coverage and short revisit
time, such as AVHRR, MODIS and SPOT VEGETATION, are all good sources for
reference data. Other data could also be chosen, as long as they can meet the requirements
for the reference data.

During the normalization, the model built at a coarse resolution is applied to the
medium-resolution NDVI_O. Since the NDVI is a scale-dependent parameter (Jiang et al.
2006), how to build a scale-invariant model is important for the normalization methods of
medium-resolution NDVI from different sensors. The strategy adopted here is to build a
model based on homogeneous coarse-resolution pixels to reduce the scale-induced bias. It
has been pointed out in previous studies that the difference between the two ways of
upscaling NDVI will become zero when one of the fractional amounts are close to zero

7404 W. Gan et al.
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(homogeneous case). The first one is computing NDVI from fine-resolution bands
and then aggregating the results to some coarser level, and the second one is aggregating
the bands and then computing the index (Jiang et al. 2006; Chen 1999; Huete, Kim,
and Miura 2005; Quattrochi and Goodchild 1997). These two ways for upscaling are
respectively marked as UP_N and UP_R in later sections. As a supplement, we analyse
the relationship between homogeneity and scale-induced deviation of the NDVI based on
real data. Scale-induced deviation of the NDVI (δNDVI ) is defined as (Wu, Tang, and Li
2013):

δNDVI ¼ NDVI0 � ρ0Nir � ρ0Red
ρ0Nir � ρ0Red

: (1)

NDVI0 represents the NDVI in a coarse resolution through the pixel aggregation of the
fine-resolution NDVI, and ρ0Nir and ρ0Red represent the upscaled near-infrared and red
reflectances. The homogeneity of each coarse pixel is measured by the percentage of
pixels belonging to the majority cluster within the extent of the current coarse pixel, based
on the classification map in the medium resolution. It is defined as:

r ¼ kc
m2

; (2)

where r represents the ratio of the majority cluster of the coarse-resolution pixels,
while kc represents the number of pixels belonging to cluster c , which is the major
cluster. m represents the scale ratio between the fine resolution and the coarse
resolution.

A Landsat ETM+ image is taken here as an example. Different types of land
covers are included in the image (Figure 2(a)), and its NDVI ranges from about −0.5
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Figure 2. (a) False-colour composite ETM+ image; (b) scatterplot of the NDVI calculated by
coarse-resolution surface reflectance and pixel-aggregated coarse-resolution NDVI (*10,000), taking
six clusters as example.
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to 0.9, providing a good representation of most of the conditions. Taking the coarse-
resolution pixels with 250 m resolution for example, every pixel is corresponding to
about 64 ETM+ pixels (30 m resolution). The theoretical minimum homogeneity of a
coarse-resolution pixel is shown in the Table 1. As shown in Figure 3, the average
scale-induced error decreases when the homogeneity increases. When the percentage
of the majority cluster reaches about 60%, the difference is stable and small. The same
conclusion can also be reached from the scatterplot (Figure 2(b)) between ‘NDVI
aggregation’ and ‘reflectance aggregation’. A warm colour in the scatterplot represents
pixels with a high homogeneity, while a cool colour represents pixels with a low
homogeneity. As the warm-coloured points with high homogeneity are tighter to the
1:1 line than the cool-coloured points, this means that the pixels with a high homo-
geneity have a lower scale-induced error. In summary, it is reasonable to conclude
that pixels with a high homogeneity are only slightly influenced by scale, and thus a
model built based on homogenous coarse-resolution pixels should be efficient for
the normalization of medium-resolution NDVI. In our work, the homogeneous sam-
ples selected for the modelling are determined by the predefined threshold of
homogeneity.

Table 1. The theoretical minimum homogeneity of a coarse resolution pixel with different numbers
of clusters.

Number of clusters 2 4 6 8 10 14

Minimum homogeneity (%) 50 25 16.67 12.5 10 7.143
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A
ve

ra
ge

 s
ca

le
-i

nd
uc

ed
 v

ar
ia

tio
n 

of
 N

D
V

I

0
–1500
–1000
–500

0
500

–600

–600

–600

–400

–400

–400

–200

–200

–200

200

200

200

–2000

–1000

10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

0

0

0

10 20 30 40 50 60 70 80 90 100

0

0

10 20 30 40 50 60 70 80 90 100

0

0

10 20 30 40 50 60 70 80 90 100

Figure 3. Plot of the average scale-induced error with different numbers of clusters (from the top to
bottom, the cluster numbers are, 14, 10, 8, 6, and 4).

7406 W. Gan et al.

D
ow

nl
oa

de
d 

by
 [

W
uh

an
 U

ni
ve

rs
ity

] 
at

 0
5:

59
 0

1 
N

ov
em

be
r 

20
15

 



2.2. The Global Linear Model

The linear model is the typical model which is most widely adopted for cross-sensor
NDVI transformation (Martínez-Beltrán et al. 2009; Thenkabail 2004), and it can also be
used for the normalization of the NDVI from different sensors by the use of coarser-
resolution NDVI as the reference. It is referred to as the Global Linear Model (GloLM) in
this paper. ‘Global’ means that the model is built based on samples from the whole image.
The main workflow of the GloLM is to first build a global linear model at a coarse
resolution, and then to apply this to the medium-resolution NDVI_O.

Although the linear model is the most widely used relationship, it may not hold for the
comprehensive inter-sensor relationships of the NDVI, especially for the NDVIs calcu-
lated by different parameters, such as DN, TOA reflectance, or surface reflectance.
Furthermore, the inter-sensor differences in the data show different patterns according
to the different land-cover types (Jiang et al. 2006), and they are influenced by many
different factors.

2.3. The Global Cluster-specific Linear Model (GCLM)

The GCLM is used to build different linear models for different clusters. The idea of the
GCLM has been used for the normalization of reflectance data, assuming that the inter-
sensor relationship can be described by a cluster-specific linear relationship (Gao et al.
2010). It has also been used for the normalization of the NDVI from different sensors, and
has obtained a good performance. It has been found that the non-linear relationship
between NDVIDN/NDVITOA (the NDVI calculated by the DN or TOA reflectance) and
the NDVISR can be handled well by the cluster-specific linear model (Gan et al. 2013).

The main workflow of the GCLM is to build different linear models for different
clusters, and to obtain the normalization coefficients at the same coarse resolution as the
reference data, based on the homogenous pixels from the NDVI_R and the resampled
NDVI_O. The coefficients are then applied to the NDVI_O data, according to their
classification map. The cluster type of each pixel is determined by the classification map.

2.4. The Local Cluster-specific Linear Model (LCLM)

Under the framework of normalization by the use of coarse-resolution data as the
reference, the factors that will influence the NDVIDN–NDVISR relationship and the
cross-sensor NDVISR–NDVISR relationship should all be taken into account.

Meanwhile, these factors, which include the air conditions, solar viewing angles,
topography, elevation, and so on (Martínez-Beltrán et al. 2009), are known to be spatially
heterogeneous. As we need to build the relationship between multi-sensor NDVIDN/
NDVITOA and the NDVISR, it is therefore important to consider the characteristics of
the factors which might affect this relationship. It has already been proved in related
research that it is important to consider the spatial heterogeneity of such factors (Obata
et al. 2013). With this in mind, we propose a method that introduces the idea of ‘local’ to
the GCLM, where the whole image is processed block by block. The main workflow is to
build a local linear model between the resampled NDVI_O and NDVI_R for each cluster
at the coarse resolution and then to apply them to the NDVI_O to obtain the normalized
result. Both of these steps are implemented block by block.

The workflow of the LCLM (Figure 4) can be described as follows. First of all is the
acquisition and pre-processing of the material, including the original NDVI_O, NDVI_R,
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and the medium-resolution classification map. Both the NDVI_O and the classification
map are registered and re-projected to be consistent with the NDVI_R. A cloud mask is
also applied to both the NDVI_O and NDVI_R. The remaining tasks can be separated into
the following steps.

Step 1. Based on the medium-resolution classification map, the majority spectral
cluster type of each coarse-resolution pixel of the NDVI_R is computed. The
classification map can be obtained from existing data or through the unsupervised
classification of the corresponding medium-resolution imagery. The homogeneous
pixels are used in the next step to build the inter-sensor NDVI transformation
model.

Step 2. For current block jtemp , the models are built based on the homogenous pixels
of each cluster belonging to an m� m (block size) block around the current block
centre. This can be expressed as:

yc;i ¼ ai; jtemp � xc;i þ bi; jtemp ; i ¼ 1; 2; 3; . . . ; nc: (3)

Here, xc;i and yc;i represent the resampled NDVI_O and NDVI_R at a coarse
resolution for cluster i in block jtemp . ai;jtemp and bi;jtemp represent the coefficients of
the linear model for cluster i: The lowest number of samples required for the
normalization is set in order to quantify the accuracy of the regressions.

Step 3. Apply the models to the original medium-resolution NDVI_O and produce an
output with a medium resolution with the transformation coefficients being chosen
according to their related clusters. For the small clusters that lack enough homo-
genous samples for model building, the GCLM built in the whole image is used
instead.

y0m ¼ ai; jtemp � xm þ bi; jtemp ; i ¼ 1; 2; 3; . . . ; nc: (4)

Classified map
(medium resolution)

Normalized result
(medium resolution)

whole image
been processed?

Local cluster-specific linear model

Class 3: y = a3x+b3

Class 2: y = a2x+b2

Class 1: y = a1x+b1

Block-by-block processing in coarse resolution

NO

YES

NDVI needing normalizaion
(medium resolution)

Homogeneity of each pixel
(coarse resolution)

Reference

Resampled NDVI_N
(coarse resolution)

                 NDVI
(coarse resolution)

NDVI before normalization
Classified map

Normalized result of
current block

(medium resolution)

Step 3

Step 1

Upscaling

Step 4

Step 2

Medium resolution

M-estimation

m × m block in coarse resolution

Figure 4. Flow diagram of the LCLM being used under the framework of normalization of
medium-resolution NDVI by the use of coarse-resolution NDVI as the reference.
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Here, xm represents a pixel of the medium-resolution NDVI_O, and it belongs to
cluster i in current block jtemp . y0m represents the output value for the pixel,
NDVI_N, with a medium resolution.

Step 4. Turn to the next block with a step of s after the processing of the current block.
The same processes of Steps 2 and 3 are carried out until the whole image is
processed. The whole image is processed block by block in raster-scan order, from
left to right and top to bottom. s can be set between 1 to m ; if it is set as 1, this
means that the block centre is moved pixel by pixel at the coarse resolution, while m
means that each coarse pixel belongs to only one block. As pixels might belong to
different blocks, the final normalization result is set as the average of all the
possible output values.

Totally, parameters needed during the normalization using LCLM include: (1) The
classification map, of which the essence is the number of clusters; (2) The threshold of
homogeneity for determination of the pure samples; (3) The minimum number of samples
required for the establishment of the linear models; (4) The size of the block; (5) Step of
the block. Among these, both the parameters (2) and (3) could be set respectively during
the global and the local process. We have found that a cluster number around 6–10 is
appropriate. The threshold of homogeneity is suggested to be greater than 50% to exclude
pixels with a large scale-induced error. Meanwhile, the block size is not very sensitive,
and a good result could be obtained with a block size ranging from 100 to 300. These two
parameters can be set a little smaller when the cluster number is increased. Lastly, the step
of block can be set small to avoid possible blockiness brought by the blockly process.

During the workflow, the linear regression coefficients for each cover type in Step 2
for each cluster can be solved by various optimization estimation methods. The most
widely used method is the least-squares estimator. However, the least-squares estimator is
sensitive to both the distribution assumption of the noise and the existence of outliers, and
can be easily affected by bad data. Thus, M-estimation is utilized here to solve the
coefficients. This estimator is able to identify and remove outliers, so as to weaken
their effect on the parameter estimation and improve the accuracy of the estimated
parameters (Zhang 1997; Jiang et al. 2006). In addition, the Huber cost function is chosen
to determine the associated weights for each point (Huber 1964).

During the solving of coefficients ai;jtemp and bi;jtemp for cluster i in block jtemp in
Equation (3), let euv be the residual of the uvth data point, which is one of the samples
used for the solution:

euv ¼ a� xuv þ b� yuv: (5)

The standard least-squares method attempts to minimize min
P

e2uv , but the M-estimator
tries to reduce the effect of outliers by replacing the squared residuals e2uv by another
function of the residuals (Obata et al. 2012):

min
X
uv

ρðeuvÞ; (6)

where ρð�Þ is a symmetric, positive-definite cost function with a unique minimum of zero.
There are many different kinds of cost function, but here we use the Huber cost function:
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ρðeuvÞ ¼ e2uv=2; euvj j � k
k euvj j � k2=2; euvj j > k

�
; (7)

where k is the Huber parameter. In order to facilitate the optimization process, the
minimization problem of Equation (8) can be equivalently converted into an iteratively
reweighted least-squares problem:

min
X

ðwðeuvÞeuvÞ2; (8)

where

wðeuvÞ ¼ ρ0ðeuvÞ
euv

(9)

represents the weight, and ρ0ðeuvÞ is the derivative of the Huber function ρðeuvÞ . By this
means, the coefficients can be solved by an iterative procedure (Fox and Weisberg 2010).

3. Evaluation methods

The reference-based method is designed to normalize the NDVI by making it consistent
with the reference, while keeping the original spatial resolution. Considering this goal,
the protocol of the evaluation could be described as: the normalized result of sensorA
(spatial resolution RAÞ by the use of coarse-resolution reference NDVI from sensorB
(spatial resolution RBÞshould be consistent with the reference but with the original spatial
resolution RA .

However, no real data with this feature exist, which makes it difficult to undertake an
evaluation. Previous studies have described various approaches for the evaluation of the
normalization of medium-resolution data by using the reference data (Olthof et al. 2005;
Gao et al. 2010; Gan et al. 2013). However, we believe that the problem of how to give a
quantitative accuracy assessment for a reference-based normalization method is a problem
that still needs further study.

In following section, we first summarize the existing evaluation methods, and we then
give an analysis of their applicability for NDVI normalization. Three new schemes
designed in accordance with the above principle are then described in detail. Finally, a
discussion about the given schemes, and advice for the choice of these methods is given.

3.1. Existing methods

3.1.1. Evaluation method based on the idea of cross-validation (emCV)

Evaluation has been undertaken by making use of the idea of cross-validation, which
removes part of the samples and predicts their value by the use of other samples. It is
implemented by applying the inter-sensor transformation coefficients to a reserved subset
of the upscaled data and checking their residual with the reference data. The coefficients
are obtained by using another part of the upscaled data. In the earlier case of normal-
ization of medium-resolution Landsat ETM+ data using the coarse-resolution data from
the SPOT VEGETATION (VGT) sensor as reference (Olthof et al. 2005), the workflow of
emCV is shown in Figure 5:
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What this method evaluates is the consistency between the normalized results of the
resampled data and reference data. It lacks direct evaluation of the medium-resolution
normalized result, but evaluates the effectiveness of the normalization coefficients by
applying them to upscaled data. For scale-dependent parameters such as NDVI, it is not
reasonable to apply the normalization coefficients to the heterogeneous resampled NDVI,
as it might induce bias, particularly for the heterogeneous pixels. Furthermore, we might
be confronted by a lack of samples when applying the coefficients to homogeneous
resampled NDVI, as most of the homogeneous samples will have already been used for
building the models, especially for LCLM which needs to build the local models.

3.1.2. Evaluation method based on a comparison with atmospherically corrected data
(emCAC)

The emCAC method is based on a comparison between the normalized result and data
acquired from a physical atmospheric correction (comparison I in Figure 6). However,
intrinsic differences exist between these two types of data, and thus the comparison is not
sufficient to evaluate the ability to achieve consistency between the normalized result and
the reference data. The evaluation method can, however, be improved with the assistance
of analysing the difference between the reference data and the data from the physical
method. This evaluation method was utilised by Gao et al. (2010) in a study of the
normalization of Landsat ETM+ medium-resolution reflectance data by taking a coarse-
resolution MODIS product as the reference. Gao et al. (2010) concluded that the differ-
ence between the normalized result and the data from the physical method was mainly due
to the difference between the reference data and the data from the physical method.

In summary, this method can give a general evaluation of the effectiveness of
eliminating the influence of the atmosphere. However, as a result of the intrinsic differ-
ences existing between the reference data and the data from the physical method, the
method is inevitably disturbed by the differences. Thus, this method should be used as a
supplement for other evaluation methods, instead of being utilized individually.

Normalized result
(medium resolution)

Normalized result
(coarse resolution)

Upscaling 97%

97%

3%

3%

Coarse resolution data
before normalization

Medium resolution
data

Coarse resolution Data

Normalization
coefficients

AssessmentReference:

Figure 5. Flowchart of emCV, which applies normalization coefficients to part of the resampled
data.
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3.1.3. Evaluation method based on a comparison between the upscaled normalized
result and the reference data (emCUS)

Evaluation can also be undertaken by a comparison between the resampled normalized
result and the reference data. The workflow of this approach is shown as comparison II in
Figure 6. The normalized result is upscaled to the same resolution as the reference. This
method was also utilized for the evaluation of the work introduced in Section 3.1.2 by
Gao et al. (2010).

This method can give an evaluation of the consistency between the normalized result
and the reference data. It can be used for real conditions, and does not require any
additional data. Such an idea is common for the validation of research when there is a
lack of ‘standard’ data, such as an image fusion method performed on real observed
images (Zhang et al. 2012; Fox and Weisberg 2010). However, it is not good practice to
utilize the resampled reflectance pixels in both the model establishment and the compar-
ison. And as the comparison is undertaken in the coarse-resolution through upscaling the
normalized result, scale-induced error will inevitably influence the evaluation accuracy
when applying this method to scale-dependent parameters.

3.1.4. Evaluation method based on a comparison of the normalized results of multiple
sensors (emCMS)

Another important evaluation scheme that has been widely used is to utilize the statistics
that are generated from overlapping regions of the normalized result from different sensor
systems, which are assumed to be the same after spatial normalization. Taking the
normalized data from two sensors as an example, the flowchart of emCMS is shown in
Figure 7.

The data from synchronous images of two sensors are first normalized respectively, by
using the same coarse-resolution reference data. The normalized results in the overlapping
region of the two images are then compared. The statistics are calculated on a pixel-by-

Coarse resolution

reflectance after

normalization

Physical

atmospheric

correction

Upscaling

Reflectance after

normalization

Medium resolution

data

Coarse resolution

surface relectance

Reference:

Reference-based

normalization

Medium resolution

surface reflectance

Comparison I Comparison II

Figure 6. Flowchart of emCAC and emCUS, which compare the reflectances from different
approaches.
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pixel basis, including the mean and standard deviation of the differences and absolute
differences.

This scheme can effectively evaluate the consistency between the normalized results
from different sensors, and is suitable for the evaluation of real spatial normalization
applications such as multi-sensor data mosaicking. It has therefore been a widely used
method in similar research (Gao et al. 2010; Obata, Miura, and Yoshioka 2012). It should,
however, be noted that this method is not able to confirm whether the normalized result is
consistent with the reference data. Thus, this method is best used by combining it with an
evaluation method which can remedy this defect, to allow a full evaluation of the
normalization method.

3.2. The proposed methods

3.2.1. Evaluation method based on the use of only one medium-resolution image
(emOMRI)

The emOMRI scheme introduced in this section is designed to evaluate the effectiveness
of the normalization in eliminating the influence of the atmosphere. It is implemented by
the use of the synthetic reference data produced through UP_R (refer to Section 2.1) using
medium-resolution reflectance data from the physical atmospheric correction. Instead of
upscaling by UP_N, upscaling by UP_R can avoid the scale-induced bias of the coarse-
resolution NDVI brought by the upscaling operation. A flowchart of the scheme is shown
in Figure 8. The workflow can be decomposed to the following steps.

● First, carry out atmospheric correction of the raw data using a physical atmospheric
correction model such as 6S (Vermote et al. 1997) or MORTRAN, and obtain the
surface reflectance data of different bands.

● Coarse-resolution NDVISR is obtained through UP_R based on the surface reflec-
tance data and then it was used as the reference.

Reference-based

normalization

Reference-based

normalization

Comparison

Medium-resolution 

data of sensor
B

Medium-resolution 

data of sensor
A

Data of  sensorA after
normalization

Data of  sensorB after
normalization

Coarse-resolution data
Reference :

Figure 7. Flowchart of emCMS, which evaluates the performance of normalized multi-sensor data.
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● Through the reference-based method, the raw medium-resolution NDVI_O is
normalized, and the NDVI_N is obtained.

● The medium-resolution NDVISR is calculated based on the surface reflectance and
used as the ‘standard’ data for the evaluation. The difference between the NDVI_N
and NDVISR is then checked to assess the accuracy of the method.

This scheme is able to assess the performance of an empirical model in eliminating
atmosphere-induced variance, avoiding being disturbed by the bias introduced by other
factors, such as spectral response function differences and geo-rectification residuals. In
addition, the method is easily implemented and only requires a small amount of data.
However, the method is not comprehensive enough to reflect the performance of a
normalization method when sensor characteristic differences exist between the reference
data and the data needing normalization, such as band position, bandwidth, and spectral
response function.

3.2.2. Evaluation method based on the use of synchronous medium-resolution images
(emSMRI)

The evaluation scheme proposed in this section is designed to evaluate the effectiveness of
the normalization when the sensors have different characteristics. This scheme is applied
based on a pair of synchronous images from sensors with a similar spatial resolution. The
coarse-resolution NDVISR is produced by UP_R using data from one of the two sensors,
and data from one of the two images is utilized to produce the coarse-resolution NDVISR
by UP_R, to provide a synthetic reference for the normalized NDVI from the other sensor.
The NDVISR calculated by its original medium-resolution surface reflectance is used as
the ‘standard’ for the evaluation. The difference between the normalized result and the
‘standard’ is evaluated to assess the accuracy of the method. A flowchart of the scheme is
shown in Figure 9.

Coarse resolution
surface reflectance

Medium resolution
imagery

Atmospheric
correction

Upscaling

Medium resolution
surface reflectance

Medium resolution NDVISR

Coarse resolution NDVISR

NDVI_N
(after normalization)

‘Standard’:

Reference :Reference-based
normalization

Assessment

Figure 8. Flowchart of the proposed emOMRI evaluation scheme to evaluate the effectiveness of
eliminating the influence of the atmosphere.
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Sensor characteristic differences exist between the sensors providing the NDVI_R and
NDVI_O in this evaluation method. Thus, this scheme is more efficient than the first
scheme, due to the additional consideration of the differences in the sensor characteristics,
and it could be used as a supplement to emOMRI, as introduced in Section 3.2.1.
However, this scheme is strict in its data requirements, and synchronous medium-resolu-
tion data from another sensor are essential, which can sometimes be difficult to obtain.

3.2.3. Evaluation method based on the use of synchronous coarse-resolution reference
data through upscaling (emSCU)

The emSCU scheme introduced in this section also considers the differences in sensor
characteristics. In brief, the scheme is applied with the assistance of an ‘upscale’ process
and those easily available synchronous coarse-resolution data, such as MODIS or
AVHRR. Thus it can avoid the shortcoming of the data requirement for the method in
Section 3.2.2. A flowchart of the scheme is shown in Figure 10. The scheme can be
separated into the following steps.

● Upscale the original medium-resolution NDVI_O from RM (the original resolution
of NDVI_O) to RC (the resolution of the synchronous coarse-resolution data).
Meanwhile, the synchronous coarse-resolution reflectance data is upscaled from RC

to RC � rr , where rr ¼ RC=RM .
● Calculate NDVI based on the upscaled synchronous reflectance data with resolu-

tion RC � rr, and the NDVI then serves as NDVI_R, the reference data for
following normalization process.

● Normalize the upscaled NDVI_O and obtain the NDVI_N, of which the resolution
is RC .

Medium resolution surface

reflectance of sensor
B

Coarse resolution

surface reflectance

Coarse resolution NDVI
SR

Upscaling

Medium resolution NDVISR

Medium resolution 

NDVI_O from sensor
A

(before normalization)

NDVI_N
(after normalization)

‘Standard’ :

Reference :Reference-based
normalization

Assessment

Figure 9. Flowchart of the proposed emSMRI evaluation scheme using synthetic reference data
produced by synchronous medium-resolution images from sensors with different characteristics.
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● Calculate the NDVISR by the previous synchronous reference surface reflectance
data. It is then used as the ‘standard’ data for evaluation.

This method is able to evaluate the performance of normalization method when
sensor-characteristic differences exist between the NDVI_R and NDVI_O. It is imple-
mented with the assistance of the upscaling with the assumption that the normalization
method will be effective at a coarse resolution if it performs well at the higher resolution.
It should be noted that the image after upscaling should be wide enough to provide
enough points to obtain robust normalization coefficients. Furthermore, the upscaling may
introduce errors as a result of the pixel mixture, which can affect the accuracy of the
evaluation.

3.3. Choice of evaluation method

Table 2 gives the summarization of all of the above evaluation method. Of these evalua-
tion methods, emCV, emCAC, emCUS, emOMRI, emSMRI, and emSCU are useful for
evaluating the accuracy of the normalization by checking whether the difference between
the data needing normalization and the data used as the reference is eliminated. Differing
from these six methods, emCMS is able to measure the consistency of multiple data after
spatial normalization and therefore is an indispensable evaluation method.

These schemes can be utilized individually or together, according to the specific
conditions in practice, to give an overall evaluation of the normalization method. The
methods proposed in this paper are suitable for the NDVI and can provide accurate
quantitative evaluations for reference-based normalization methods. Meanwhile, they
can also provide a reference for the evaluation of this kind of reference-based normal-
ization method, for the NDVI or other parameters.

It should be pointed out that although we have tried to eliminate the scale effect in our
normalization method, based on utilizing pixels with a high homogeneity, the inclusion of
samples with a small scale-induced error in the regression means that the normalized

NDVI_N (R
C
 metre)

(after normalization)
Assessment

Reference-based

normalization
Upscaled NDVISR

R
C
*R

C
/R

M
 metre

Surface reflectance of
reference sensor

(R
C
 metre)

Upscaling
Upscaling

Upscaled NDVI_O
(Rc metre)

Medium resolution
NDVI_O (R

M
 metre)

(before normalization)

Reference:

‘Standard’:

Figure 10. Flowchart of the proposed emSCU evaluation scheme using synchronous coarse-
resolution reference data through upscaling.
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result is still influenced by the scaling effect. Therefore, in practical applications, it is
difficult to obtain a normalized result that is exactly the same as the ‘standard’ data.

In the following section, emOMRI, emSCU, emSMRI, and emCMS are chosen. The
first three methods focus on an accuracy evaluation of the normalized result to measure
the effectiveness of the normalization in eliminating the effects of the atmosphere, sensor
characteristic differences, solar and viewing angle differences, and so on. Finally, emCMS
is based on evaluating the effect of the real normalization application of the NDVI from
different sensors.

4. Experiments and analysis

A number of experiments were undertaken to evaluate the accuracy of the LCLM and to
evaluate its performance in the normalization of the NDVI from different sensors. The
GloLM and the GCLM were also tested, to examine whether the LCLM is superior for the
normalization of medium-resolution NDVI by the use of coarse-resolution NDVI products
as the reference. In addition, an evaluation experiment for a real application, combining
the NDVI from Terra ASTER and Landsat ETM+ sensors, was also undertaken to check
the effectiveness of the normalization of the NDVI from different sensor systems. During
these experiments, the statistical values of the differences were calculated, including R2

(coefficient of determination), MAD (mean absolute difference), and MRD (mean relative
difference), to evaluate the accuracy of the normalization method and to check the
consistency between the normalized result and the reference data. The information of
the following experiments is stated in Table 3, including the parameters setting and the
percentage of homogeneous pixel.

4.1. Evaluation experiment using emOMRI

A scene of Landsat-7 ETM+ data from around Khanka Lake was chosen for this
experiment (Figure 11(a)). Khanka Lake is located on the border between Primorsky
Krai, Russia and Heilongjiang province, Northeast China (WRS-2 path 114 and row 29),
and the imagery was acquired on 25 September 2001.

First, the imagery was atmospherically corrected to acquire the band surface reflec-
tance. It was then aggregated to a coarse resolution, based on which the NDVI was
calculated to provide the synthetic reference. At the same time, the NDVI in the original
resolution was calculated by surface reflectance to provide the ‘standard’ for the evalua-
tion (Figure 11(c)). Finally, the difference between the NDVI_N and NDVISR at the

Table 3. Setting of the parameters for the experiments in Section 4.

P. 1* P. 2 P. 3 P. 4 P. 5 Percentage**

4.1 (250 m) 6 0.95 40 100 50 0.3972
4.1 (1000 m) 6 0.90 40 100 50 0.1933
4.2 6 0.95 40 200 100 0.1918
4.3 8 0.94 20 60 30 0.2097
4.4 (ASTER) 6 0.60 20 60 30 0.5373
4.4 (ETM+) 6 0.60 20 60 30 0.7371

* The number of parameter (refer to Section 2.4).
** The percentage of homogeneous pixels (pixels with homogeneity larger than the given threshold).
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original resolution was examined. In order to assess the performance at different scales,
the synthetic reference NDVI was obtained at two scales: 250 and 1000 m.

The LEDAPS (Landsat Ecosystem Disturbance Adaptive Processing System) project
was developed to create a Landsat-based surface reflectance product using the MODIS 6S
approach for the atmospheric correction of Landsat TM and ETM+ data. With the aerosol
thickness derived from the imagery itself, LEDAPS has been successfully used for
atmospheric correction (Masek et al. 2006; Vermote, El Saleous, and Justice 2002), and
the accuracy of the LEDAPS approach has been found to be only slightly worse than the
MODIS-based atmospheric correction method (Ju et al. 2012).

The normalized result (Figure 11(b)) shows a similar spatial pattern and distribution to
the ‘standard’, the ETM+ NDVISR (Figure 11(c)), but changes greatly when compared to
its own NDVIDN. As shown in Figure 12(b), a strong linear relationship between the
NDVI_N by LCLM (by the use of 250-m synthetic NDVI as the reference) and the

(a) (b)
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Figure 12. (a) Scatterplot of the NDVI before normalization and the ‘standard’ NDVI calculated
by surface reflectance (*10,000); (b) scatterplot of the NDVI after normalization and the ‘standard’
NDVI calculated by surface reflectance (*10,000).

(a) (b) (c)
–10,000

0

10,000

Figure 11. (a) The NDVI calculated by DN before normalization; (b) normalized result of the
NDVI by the use of the LCLM; (c) the NDVISR used as the ‘standard’ for evaluation, for the
Khanka Lake area (Landsat WRS-2 path 114 and row 29).
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‘standard’ NDVI can be observed from the scatterplots which are tight to the 1:1 line. The
difference between the data needing normalization and the reference is almost eliminated
through the normalization, no matter which method is used, and the results are consistent
with those of the physical atmospheric correction method. The R2 value is as high as
0.9968 (Table 4), while the MRD is less than 0.06, compared to more than 0.5 before
normalization. This illustrates that the normalization method using coarse-resolution
reference data can effectively eliminate the influence of the atmosphere. For the 1000 m
resolution, the normalization also works well, but the results are slightly poorer than for
the 250 m resolution, which may be due to the mixture induced by upscaling.

Moreover, from Table 4 it is clear that of the three methods, the GCLM and LCLM
can get a better result than the GloLM, which indicates that the ‘cluster-specific’ strategy
can indeed bring about an improvement. The LCLM shows a slight improvement when
compared to the GCLM (MRD: 0.0270 vs. 0.0281 at the 250 m resolution; 0.0322 vs.
0.0341 at the 1000 m resolution). In addition, the normalized error of the LCLM
(MAD = 0.0126) is less than that of the GCLM (MAD = 0.0141) and GloLM
(MAD = 0.0322), which illustrates the superiority of the ‘block-by-block’ process adopted
by the LCLM.

However, as Figure 12(b) shows, the relationship deviates from the exact 1:1 line.
This implies that the NDVI_N from the empirical approach may not precisely duplicate
the standard NDVISR. This might be due to the difference caused by the mixture of
different scales between the original NDVISR at a 30 m� 30 m resolution and the
NDVISR at a 250 m� 250 m resolution. Alternatively, it may be because the cluster-
specific linear models only approximately represent the non-linear relationship between
the NDVIDN and NDVISR.

4.2. Evaluation experiment using emSMRI

Synchronous images from Landsat ETM+ and Terra ASTER sensors were used for the
evaluation experiment using emSMRI. These scenes were acquired on 16 August 2000,
around Hopkinsville in Kentucky, USA. The coverage of the two images is shown in
Figures 13(a) and (b). Since this pair of images observe the same land surface at the same
time, their NDVIs are theoretically required to be the same for accurate earth science
community downstream research. However, because of the difference in the sensor
characteristics, and some other factors, they are not equivalent. The normalization method
proposed in this paper should, however, be able to eliminate the difference between them.

First of all, the ASTER image was resampled to 30 m, the same scale as the ETM+
image, and it was then registered to the ETM+. The ETM+ data were then atmospherically

Table 4. R2, MAD and MRD between the ‘standard’ NDVI calculated by surface reflectance and
the NDVI after normalization, at 1000 and 250 m resolutions, respectively.

1000 m 250 m

R2 MAD MRD R2 MAD MRD

Before normalization 0.9850 0.2635 0.5153 0.9850 0.2635 0.5153
After normalization GloLM 0.9852 0.0319 0.0647 0.9852 0.0322 0.0665

GCLM 0.9930 0.0161 0.0341 0.9963 0.0141 0.0281
LCLM 0.9943 0.0150 0.0322 0.9968 0.0126 0.0270
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corrected by the use of LEDAPS (refer to Section 4.1.1), and the surface reflectance was
upscaled to a 250 m resolution by pixel aggregation. This was then used to calculate the
NDVI, which was used as the reference. The NDVI calculated by DN value from the
ASTER data was normalized to obtain the NDVI_N using the synthetic reference. Finally,
the NDVI_N of the ASTER scene was compared with the ETM+ NDVI calculated by
surface reflectance.

The NDVI_N (Figure 13(e)) shows a similar spatial pattern and distribution to the
ETM+ NDVISR (Figure 13(d)), but changes greatly when compared to its own NDVIDN
before normalization (Figure 13(c)). The difference between the data needing normal-
ization and the reference was almost eliminated through the normalization. As shown in
Figure 14(b), there is a strong linear relationship between the NDVI_N of the ASTER
imagery using the LCLM and the ‘standard’, the NDVISR of the ETM+ imagery, with the
points being tight around the 1:1 line, which is in contrast with the points distributed away
from the 1:1 line before normalization (Figure 14(b)). In addition, the R2 increased to
0.8351 (Table 5), while the MRD was reduced to 0.0591 and the MAD to 0.0350, which
is in great contrast with the values before normalization.

(a) (b)

(c)         (d)          (e)  

10,000

–10,000

0

Figure 13. (a) False-colour composite ETM+ image; (b) false-colour composite of the synchro-
nous ASTER image; (c) the NDVI calculated by DN, which needed normalization; (d) normalized
result of the ASTER NDVI produced by the use of the LCLM; (e) the NDVISR of ETM+, used as
the ‘standard’ for the Hopkinsville area (Landsat WRS-2 path 22 and row 34).
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Furthermore, a more consistent result was obtained through the LCLM (R2: 0.8351)
than the GCLM (0.8314) and GloLM (0.8126). The normalized error of the LCLM
(MAD = 0.0350) was less than those of the GCLM (MAD = 0.0362) and GloLM
(MAD = 0.0405), and the relative normalized error of the LCLM was also less than
those of the GCLM and GloLM (MRD = 0.0591 vs. 0.0606 vs. 0.0762). This implies that
the LCLM performed better than the other two models.

4.3. Evaluation experiment using emSCU

An evaluation experiment using emSCU was undertaken to evaluate the effectiveness of
the normalization methods in eliminating the variance between the data needing normal-
ization and the data used as the reference. The ETM+ imagery used in Section 4.1 was
again utilized. A MODIS daily surface reflectance product (MOD09) acquired on the
same day was used to provide the reference data (Figure 15(a)).

The ETM+ image and the MODIS surface reflectance product were both first upscaled
by a scale factor of about 1/8. The ETM+ image was upscaled to the same resolution
as the original MOD09 product. The NDVI calculated by the upscaled ETM+ DN (Figure
15(b)) was then normalized by the use of the NDVI calculated by the upscaled MODIS
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Figure 14. (a) Scatterplot of the ASTER NDVI before normalization and the ETM+ NDVI
calculated by surface reflectance, used as the ‘standard’ for evaluation (*10,000); (b) scatterplot
of the normalized result of the ASTER NDVI produced by the use of the LCLM and ETM+ NDVI
calculated by surface reflectance, used as the ‘standard’ for evaluation (*10,000).

Table 5. R2, MAD and MRD between the NDVISR of ETM+ used as the ‘standard’ and the
normalized result of the ASTER NDVI produced using the LCLM.

R2 MAD MRD

Before normalization 0.8126 0.2932 0.4021
After normalization GloLM 0.8126 0.0405 0.0762

GCLM 0.8314 0.0362 0.0606
LCLM 0.8351 0.0350 0.0591
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surface reflectance product as the reference (Figure 15(a)). Finally, the normalized result
(Figure 15(c)) of the upscaled ETM+ NDVIDN was evaluated by the use of the ‘standard’
NDVI calculated by the original MOD09 product (Figure 15(d)).

The normalized result (Figure 15(c)) changed greatly when compared to its original
NDVIDN before normalization, with a similar spatial pattern and distribution to the
‘standard’ (Figure 15(d)). The difference between the data needing normalization and
the reference was eliminated by the normalization. The scatterplot in Figure 16 illustrates
that there is strong linear correlation between the NDVI_N and the ‘standard’, with the
points being tight around the 1:1 line. In addition, the R2 is high at 0.9508 (Table 6),
which means that there is great consistency between the NDVI after normalization.

As shown in Table 6, it is clear that the performance of the LCLM was better than the
GCLM and GloLM. R2 increased from 0.9489 (GCLM) to 0.9508 (LCLM). In addition,
MAD decreased to 0.0508 (LCLM), compared to 0.0522 (GCLM) and 0.0838 (GloLM),
while MRD decreased to 0.1237, compared to 0.1257 (GCLM) and 0.1795 (GloLM).
These figures indicate that the LCLM performed better than the other two methods. The
LCLM is able to capture the difference between ETM+ and MODIS well, and thus can
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Figure 16. (a) Scatterplot of the ETM+ NDVI before normalization and the MODIS NDVI
calculated by surface reflectance, used as the ‘standard’ for evaluation (*10,000); (b) scatterplot
of the ETM+ NDVI normalized result produced by the use of the LCLM and MODIS NDVI
calculated by surface reflectance, used as the ‘standard’ for the evaluation (*10,000).

(a) (b) (c) (d)
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Figure 15. (a) The upscaled MODIS NDVISR used as the reference for the normalization; (b) the
upscaled NDVIDN before normalization; (c) normalized result of the upscaled NDVIDN produced by
the use of the LCLM; (d) the MODIS NDVISR at the original spatial resolution, used as the
‘standard’ for evaluation for the Khanka Lake area (Landsat WRS-2 path 114 and row 29).
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successfully produce an NDVI that is much more consistent with the reference, while
keeping the original high resolution.

4.4. Evaluation experiment using emCMS for a real application

An application experiment involving the normalization of the NDVI from different
sensors was also undertaken. Synchronous Landsat ETM+ and ASTER images were
chosen for the experiment. A scene of Landsat-7 ETM+ data (WRS-2 path 19 and row
33) acquired on 21 May 2005 and three scenes of ASTER data acquired on the same day
were used (Figure 17(a)). Their overlapping region was around Portsmouth, located on
the border between Kentucky, Ohio and West Virginia, USA. A MODIS daily surface
reflectance product (MOD09) acquired on the same day was chosen to produce the
reference NDVI data.

The MODIS product was first re-projected and resampled to the same projection as the
ETM+ scene. A pixel-based quality file was then used to filter out clouds and cloud
shadows. Only high-quality and clear pixels were used for establishing the linear model.
The ASTER scenes were mosaicked and geo-rectified to the ETM+ image. Both the ASTER
and ETM+ data were also resampled to 30 m × 30 m for consistency. The NDVIDN from the
ETM+ (Figure 17(c)) and ASTER (Figure 17(d)) images were then normalized, respectively
using the LCLM with the same MODIS NDVI data as the reference.

The two normalized results were compared to assess the effectiveness of the normal-
ization by emCMS, as introduced in Section 3.2.3. After the normalization, the difference
between the NDVI from the two images was slight. The density scatterplot (Figure 18)
between the two sets of NDVI_N shows that they agree closely, and the difference
between the two sets of NDVI_N is very small. In addition, the bright colour, which
means a high density, is tight to the 1:1 line, illustrating that the difference between most
of the pixels is very low. We also note that pixels with a higher bias are mainly distributed
in the edge of the features of the image, which suggests that the differences might be
mainly due to the mismatch in the pixels’ footprint between the two sensors. As Table 7
shows, the R2 of the two sets of NDVI is high at 0.8754. The difference between the
NDVI_NASTER and NDVI_NETM+ is 0.0235, and the MRD decreased from 0.6294 before
normalization to about 0.0375 after normalization, which means that the relative differ-
ence between the two is only 3.7% after normalization.

Furthermore, in order to allow us to closely examine the normalization effect, we
mosaicked the normalized results, to fill the stripes of NDVI_NETM+ with NDVI_NASTER.
In addition, the NDVIDN before normalization was also mosaicked with the same process
for contrast. In order to closely examine the differences, a subarea of the mosaicked result
is extracted and displayed. Figure 17(e) shows the NDVIDN of ETM+ before normal-
ization, with its striped area set as the fill value. Figure 17(f) shows a subarea of the
mosaicked result of the NDVI_N. Although some differences exist, the pattern of the

Table 6. R2, MAD and MRD between the MODIS NDVISR and the NDVI_N from the LCLM.

R2 MAD MRD

Before normalization 0.9090 0.2745 0.5067
After normalization GloLM 0.9092 0.0838 0.1795

GCLM 0.9489 0.0522 0.1257
LCLM 0.9508 0.0508 0.1237
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mosaicked NDVI_N is spatially seamless and continuous. In contrast, the mosaicked
result before normalization is shown to be spatially discontinuous (Figure 17(e)). In
addition, no stripes can be found on the mosaicked result, compared with the obvious
difference in the mosaicked NDVI before normalization. This illustrates that the NDVI_N
of ETM+ is almost the same as the NDVI_N of ASTER after normalization. This
experiment can be considered as a successful example of the integration of multi-sensor
NDVIs.

5. Conclusion

Medium-resolution NDVI has been widely used in both regional and local studies.
However, being affected by many different factors, it is necessary to integrate data from
different sensors to form a spatially seamless NDVI product and a consistent and
continuous NDVI data set for the downstream analysis and application. However, the

(c)

(a) (d)

(e) –10,000

10,000

0

(b) (f)

Figure 17. (a) The NDVIDN of ETM+ before normalization, in which red illustrates the extent of
the ASTER NDVI, and the green box represents the subarea displayed in (c)–(f). (b) The
normalized result of the ETM+ NDVI. (c) The subarea of the ETM+ NDVIDN before normal-
ization. (d) The subarea of the ASTER NDVIDN before normalization. (e) The mosaicking result
filling the gaps of the ETM+ NDVIDN with ASTER NDVIDN. (f) The mosaicking result filling the
gaps of the ETM+ NDVI after normalization by the use of the ASTER NDVI, in the area of
Portsmouth, located on the border between Kentucky, Ohio and West Virginia, USA.
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NDVIs from different sensor systems vary and thus are difficult to integrate. It is therefore
important to normalize the NDVIs from different sensors. In this paper, a reference-based
method is chosen for this aim, which normalizes the medium-resolution NDVI from
different sensors by the use of stable coarse-resolution data as the reference. The frame-
work for NDVI normalization is described in this paper, and under this framework with
consideration of the spatial heterogeneity of the influencing factors, a novel, local cluster-
specific linear model, namely LCLM, is developed. This approach can normalize the
NDVI from different sources and can produce an NDVI that is more consistent with the
reference NDVI, but in its original resolution.

Differing from the previous studies (Jiang et al. 2006; Martínez-Beltrán et al. 2009;
Steven et al. 2003; Thenkabail 2004; Van Leeuwen et al. 2006), the proposed method is
more efficient for real applications. The method uses the relationship differences from
image to image, instead of a sensor-identical cross-sensor transformation equation devel-
oped based on simulated data. By making use of the high-frequency, coarse-resolution
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Figure 18. Density scatterplot of the normalized result of the ETM+ NDVI and that of ASTER,
both produced by the use of the LCLM (*10,000).

Table 7. Statistics between the ASTER NDVI and the ETM+ NDVI, before and after
normalization.

R2 MSE MAD MRD

Before normalization 0.8982 0.0385 0.1875 0.6294
After normalization GloLM 0.8982 0.0020 0.0280 0.0412

GCLM 0.8706 0.0020 0.0284 0.0396
LCLM 0.8754 0.0016 0.0235 0.0375
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image to provide the synchronous reference data, it can build a relationship that is closer
to the actual situation of the data.

Moreover, in this work, evaluation schemes appropriate for NDVI normalization by
using reference data are presented, with a review of the existing methods. Three new
schemes are designed, namely emOMRI, emSMRI and emSCU. These proposed schemes
can measure the consistency between the normalized result and the reference data, and
thus give an evaluation of the normalization method. emOMRI is a powerful tool for
evaluating the effectiveness of normalization in eliminating the difference caused by the
atmosphere. emSMRI and emSCU have the potential to evaluate the effectiveness
of eliminating NDVI differences when the sensor characteristics differ. In addition, the
emCMS method is confirmed to be efficient for assessing the consistency between the
NDVI normalization results from different sensors. Multiples or all of these methods
could be used together to give an exhaustive evaluation of a normalization method. The
evaluation schemes systematically introduced in the paper could help to improve and
perfect the framework of NDVI normalization methods, and will be valuable for related
research.

The evaluation experiments following these proposed schemes indicate that the
LCLM can produce more accurate results than the other two models, namely the
GCLM and GloLM. The implementation experiment results for the normalized NDVI
from Landsat ETM+ and Terra ASTER sensors are highly consistent with each other,
illustrating that this reference-based method has good potential, and thus will be useful for
the integration of medium-resolution NDVI from different sensors.

However, when applying the reference-based method with the LCLM to normalize the
NDVI from different sources, several factors need to be considered. Firstly, this method is
highly dependent on the consistency of the reference NDVI data set. The reference data
need to be comparable, spatially or even temporally. In our study, MODIS products were
chosen as the reference. If another data set is utilized to provide the reference data, its
consistency should be first checked. Secondly, as the method using the LCLM is built by
the use of local pixels, parameters such as the block size and threshold for homogeneous
pixels should be set carefully to ensure that there are enough samples for the local model
building. Thirdly, efficient pre-processing, including cloud masking and geo-rectification,
is also important to guarantee the accuracy and to avoid any possible errors.
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