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This article proposes two novel feature selection methods for dimension reduction
according to max–min-associated indices derived from Cramer’s V -test coefficient.
The proposed methods incrementally select features simultaneously satisfying the
criteria of a statistically maximal association (A) between target labels and fea-
tures and a minimal association (R) among selected features with respect to
Cramer’s V -test value. Two indices are developed by different combinations of the
A and R conditions. One index is to maximize A/R and the other is to maximize
A–λR, which are referred to as the MMAIQ and MMAIS methods, respectively.
Since the proposed feature selection algorithms are feature filter methods, how
to determine the best number of features is another important issue. This arti-
cle adopts an information lost criterion by measuring the variation between χ2

and β statistics to optimize the number of features selected associated with the
Gaussian maximal likelihood classifier (GMLC). To validate the proposed meth-
ods, experiments are conducted with both a hyperspectral image data set and a
high spatial resolution image data set. The results demonstrate that the proposed
methods can provide an effective tool for feature selection and improve classifica-
tion accuracy significantly. Furthermore, the proposed methods with well-known
feature selection methods, i.e. mutual information-based max-dependency cri-
terion (mRMR) and sequential forward selection (SFS), are evaluated and
compared. The experiments demonstrate that the proposed methods can offer
better results in terms of kappa coefficient and overall classification accuracy
measurements.

1. Introduction

Remote-sensing research focusing on feature extraction and selection has long
attracted the attention of the remote-sensing community because feature extraction
and selection are prerequisites for successful image processing and various applica-
tions. Tremendous efforts have been dedicated to developing various feature extraction
and selection methods to improve image-processing effectiveness and classification
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Feature selection 5493

accuracy in recent years (Foody 1996, Stuckens et al. 2000, Segl et al. 2003, Zhang
et al. 2008). Previous research generally suggests that effective extraction and use of
potential multiple features of remotely sensed data, such as spectral signatures, various
induced indices, and textural or contextual information, can significantly improve clas-
sification accuracy (Melgani and Sebastiano 2003, Platt and Goetz 2004, Xu 2006, Lu
and Weng 2007). However, not all extracted features are equivalent in their contribu-
tion to classification tasks; some of them are perhaps superfluous and useless because
they have high correlations or are trivial. Accordingly, the use of all possible features
in a classification procedure may add unnecessary information redundancy and sig-
nificantly decrease image classification accuracy (Hughes 1968, Price et al. 2002). As a
consequence, employing feature selection techniques to obtain the most useful subset
from candidate features is critical to a successful classification of remotely sensed data
into a thematic map (Lu and Weng 2007).

Given input data with N samples (total samples) and m features (number of fea-
tures) X = {x1, . . ., xm}, and the target classification variable c, the feature selection
problem is to find a subset S of n features from m (n ≤ m) features that optimally char-
acterizes c. Conceptually, feature selection in general requires a search strategy and
criterion functions (Webb 2002, Tan et al. 2006). The search algorithm generates and
compares possible feature selection solutions by calculating their criterion function
values as a measure of the effectiveness of each considered feature subset. One classic
feature selection method is a sequential search technique, where the best feature subset
with the prefixed number of features is achieved by adding to or removing from the
current feature subset one feature at a time, such as sequential forward selection (SFS)
and sequential backward selection (SBS) (Aha and Bankert 1996, Jain and Zongker
1997). Recently, stochastic search algorithms, such as simulated annealing (Siedlecki
and Sklansky 1988), genetic algorithms (Raymer et al. 2000) and clonal selection
algorithms (Zhang et al. 2007), have also been used for feature selection. Besides the
search strategies, an optimal subset is always relative to a certain evaluation function.
Various optimal criteria, such as distance-based (Jensen 1996), entropy-based (Peng
et al. 2005) and dependence-based (Liu and Setiono 1997) measures, etc., have been
fully investigated.

In this article, we focus on dependence-based techniques. These techniques have
the advantages that they can easily scale to very high dimensional data sets, they
are computationally simple and fast, and they are independent of the classifi-
cation algorithm. However, it has been recognized that a direct combination of
individually good features in terms of certain criteria do not necessarily lead to
the best integrated performance. As an alternative, some researchers have studied
indirect or direct means to reduce redundancy among features, and select features
with minimal redundancy (Yu and Liu 2004). For instance, Pudil et al. (1994)
presented a method to maximize the joint dependency of features on the target
class with a sequential forward floating search such that redundant features can be
removed. Peng et al. (2005) proposed a heuristic mutual information-based max-
dependency criterion (mRMR) method to minimize redundancy, which uses a series
of intuitive measures of relevance to select promising features. The mRMR method
was validated as an effective technique for feature selection in a remote-sensing
image (Wu et al. 2009). In this article, we propose two feature selection indices
based on maximal association and minimal redundancy derived from Cramer’s
V -test.

D
ow

nl
oa

de
d 

by
 [

W
uh

an
 U

ni
ve

rs
ity

] 
at

 2
0:

39
 0

8 
A

pr
il 

20
13

 



5494 B. Wu et al.

2. Max–min-associated indices for feature selection

2.1 Cramer’s V-test

The χ2 test is one of the most widely used measures to define the dependence of vari-
ables (Weiss 1995) and has been demonstrated to be effective in feature selection (Liu
and Setiono 1997). However, it is known that the χ2 test of dependence is very sensi-
tive to sample size (Agresti and Finlay 1997). Cramer’s V is the most popular nominal
association used to measure the strength of the relationship between variables regard-
less of table size (Reynolds 1984). It has the advantage of not being affected by sample
size and is therefore very useful in situations where one suspects that a statistically
significant χ2 was the result of a large sample size rather than any substantive relation-
ship between the variables (Reynolds 1984). Therefore, Cramer’s V -test is employed
to measure the association between target and variables. Given an r-row by s-column
cross-tabulation, Cramer’s V can be directly derived from the χ2 statistic:

V =
√

χ2

N min {(r − 1), (s − 1)} (1)

The value of Cramer’s V varies between 0 and 1. If its value is large, it means that
there is a tendency for particular categories of the first variable to be associated with
particular categories of the second variable. It has been suggested in practice that
a Cramer’s V of 0.1 provides a good minimum threshold for suggesting there is a
substantive relationship between two variables (Martínez-Casasnovas et al. 2008).

2.2 Max–min-associated indices

Our study explored the possibility that a combination of Cramer’s V coefficients
can be further exploited for optimal feature selection. In this article, two max–min-
associated indices derived from the Cramer’s V -test coefficient were developed.

Intuitively, selected features must have maximal target class-associated ability.
Therefore, a max-associated criterion is used to search for features satisfying (2) with
Cramer’s V -test measurement between individual features xi and class c (A condition),

max

⎡
⎣A(S, c) = 1

|S|
∑
xi∈S

V (xi, c)

⎤
⎦ , (2)

where xi is the ith feature, S the selected subset and |S| the number of elements of
subset S. It is likely that features selected according to the max-associated condi-
tion (2) will result in rich redundancy, that is the dependency among these features
could be larger. When two features depend highly on each other, the respective class-
discriminated power would not change much if one of them was removed. Therefore,
the following minimal-associated condition (R condition) among selected features
could be added to select mutually exclusive features:

min

⎡
⎣R(S) R = 1

|S|2
∑

xi ,xj∈S

V (xi, xj)

⎤
⎦ , (3)
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Feature selection 5495

where V
(
xi, xj

)
is the Cramer’s V -test between xi and xj. The max–min-associated

indices for feature selection are derived directly from the above two criteria. Two com-
bined methods, referred to as Max–Min-Associated Indices Quotient (MMAIQ) and
Substraction (MMAIS) respectively, are designed. These combinations are expressed
in equations (4) and (5).

max [φ(A, R) = A/R] , (4)

max [φ(A, R) = A − λR] . (5)

It is apparent that both (4) and (5) simultaneously satisfy the constraints on A
and R. That is, a good feature should be one with maximal target class-associated
ability, and at the same time with minimal association among the selected features.
In equation (5), there is a regularization parameter λ, whose function is to balance the
functions of the two constraints in (2) and (3).

2.3 Feature selection algorithm

To select the candidate feature set, an incremental method is used to find the subopti-
mal features defined by equations (4) and (5). Although this search strategy does not
allow the features to be reselected once they have been selected, it can usually ensure
that the selected features with relevance and redundancy constraints are the most
prominent features not to be removed (Yu and Liu 2004). In addition, the incremental
search method is rather fast. Suppose we already have Sp–1, the set with p–1 features,
the task is to select the pth feature from set {X–Sp–1}, where X is the feature set, such
that the feature maximizes equations (4) and (5). The incremental algorithm optimizes
the following conditions:

max
xj∈X−Sp−1

[
V
(
xj, c

)− λ
p−1

∑
xi ,xj∈S

V
(
xj, xi

)]
, (6)

max
xj∈X−Sp−1

[
V
(
xj, c

)
/

(
1

p−1

∑
xi ,xj∈S

V
(
xj, xi

))]
, (7)

where V
(
xj, c

)
is the Cramer’s V -test between xj and target c. These optimizations

can be computed efficiently in O (|S|· m) complexity. As a result, we can obtain the
ranked features rapidly even if the dimension of features is possibly very high.

3. Implementation

Two important issues must be solved before the classification process. One is how to
obtain cross-tabulation, such that Cramer’s V can be calculated if the concerned fea-
tures contain continuous variables. In this case, a preprocessing step of discretization
is required to obtain cross-tabulation. Discretization can transform a continuous fea-
ture variable into a finite number of intervals, where each interval is associated with a
numerical discrete value. The simplest discretization technique with equal-frequency
was considered in this study, such that continuous ranges were divided into sub-ranges
by a pre-specified frequency.
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5496 B. Wu et al.

Another critical problem is how to optimize the best number of feature subsets.
The best number of features is usually estimated by the K folds cross-validation of the
correct classification rate (CCR). Let CCRK,cross be K cross-validation repetitions. The
CCRK,cross is given by

CCRK,cross = 1
K

K∑
k=1

CCRk = 1
K

1
NK

K∑
k=1

NK∑
i=1

L
(
ci, ĉi

)
, (8)

where NK is the sample number of the kth cross-validation, L(ci, ĉi) denotes the
0–1 loss function of the ith sample between the ground truth label ci and the predicted
label ĉi, and NK = (K–1) × N/K is the number of test sets during the kth iteration. It is
apparent that CCRK,cross is actually the average over KCCRs of cross-validation repe-
titions. Because the CCR is not an accurate indicator with limited samples (Ververidis
and Kotropoulos 2009), the lower CCR limit index CCRLower

K,cross with compensatory
information is thereby adopted to improve the CCR. The CCRLower

K,cross criterion mea-
sures the variation between χ2 and β to optimize the number of selected features
associated with the Gaussian maximal likelihood classifier (GMLC) (Ververidis and
Kotropoulos 2009):

CCRLower
K,cross = CCRK,cross − Lcross (NK , m) × [

CCRK,cross − 1
/

C
]

, (9)

where C is the number of classes and CCRLower
K,cross the lower CCR limit index with K

cross-validation, and the loss information is given by

Lcross (NK , m) = Fχ2(m)(t1) − I 1

1+ N2
K −1

NK ∗t1

(
m
2

,
NK − m

2

)
, (10)

where m denotes the number of features and t1 is defined as

t1 = −NK W−1

⎛
⎝−

[
�(NK/2)

�
(NK −m

2

)
] 2

N 2
m

NK × N
m

NK
−2

K

(N2
K − 1)

m
NK

−1
× exp

(
1 − N2

K

N2
K

)⎞⎠− NK + 1

N2
K

,

(11)

where �(·) denotes γ function with respective parameter, Fx2(m)(x) is the continuous
density function (cdf) of χ2(m), Ix(a, b) is the incomplete β function with parameters
a and b, and Wj (x) is the jth branch of Lambert’s W function (Corless et al. 1996).

4. Experimental studies

Experiments have been conducted to test the performance of the proposed MMAIQ
and MMAIS algorithms using a hyperspectral remote-sensing image (PHI) and a high
spatial resolution image (QuickBird). The main concerns of selecting the two exper-
imental data sets are: (1) there are adequate field-investigated samples to be used;
(2) the two images collected by different sensors involve different data characteristics.
Consistent comparisons between MMAIQ, MMAIS, SFS and mRMR algorithms
were performed. One main reason for choosing the SFS and mRMR methods is that
both are representative feature ranking techniques. The estimation of feature selection
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Feature selection 5497

quality for these algorithms was performed by means of the classification accuracy
of the classified imagery acquired from pushbroom hyperspectral imagery (PHI) and
QuickBird images.

4.1 Experiment 1: Xiaqiao PHI

The data set used in this experiment was collected in September 1999 at the Xiaqiao
test site, a mixed agricultural area in Changzhou city, Jiangsu province, China, and
was airborne PHI. The image was acquired at an approximate height of 2000 m with a
3 m spatial resolution. A sub-scene (346 × 350 pixels) of the PHI image with 80 bands
was tested, and its spectral range was 417–854 nm. Figure 1 shows the experimental
PHI image cube. The ground truth spectral data were collected in September 1999 by
field spectrometer SE590. The observed image was expected to be classified into eight
representative classes, that is, corn, vegetable – sweet potato, vegetable – cabbage, soil,
float grass, road, water and puddle/polluted water.

Figure 2 shows the reflectance curves of the above eight land-cover classes. As can
be seen from figure 2, distinct spectral differences among these materials are at
700–840 nm, which is the best spectral range to discriminate between various vege-
tations. Therefore, it is expected that more bands will be selected in this range. The
list of classes and the number of labelled samples for each class are given in table 1.
The available labelled samples amount to 4308 pixels. A total of 1630 samples are ran-
domly selected for training the classifier, and the remaining 2678 samples are employed
for classification accuracy assessment. Prior study on the relationship between train-
ing sample size and data dimensionality has validated that the GMLC classifier can
achieve a satisfactory classification accuracy if the number of training samples per
class amounts to 2–4 times bands (Van Neil et al. 2005). Since spectral features are

Figure 1. Experimental hyperspectral image cube of Xiaqiao.
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Figure 2. Reflectance curves of eight land-cover classes.

Table 1. List of classes and number of labelled training data-testing samples in each class for
experiment 1.

Class name Training samples Testing samples Number of labelled samples

Soil 186 329 515
Grass 154 290 444
Potato 190 330 520
Cabbage 162 309 471
Water 264 389 653
Puddle 178 285 463
Corn 188 382 570
Road 308 364 672
Total number of samples 1630 2678 4308

continuous attributes, the reflectance of all bands was first partitioned into six intervals
using the equal-width and equal-frequency method.

The CCR is plotted versus the feature selection steps for cross-validation in figure 3.
The optimal number of features predicted by the lower limit of the CCR is plotted with
a red line. The vertical red line indicates the steps where the optimum selected feature
subset is derived. It is clearly seen from figure 3 that the optimal feature number of
PHI data is five with the CCRLower

K,cross measurement. Consequently, only the first five
ranked features obtained by the aforementioned methods were used for classification
and comparisons.

Figures 4(a)–(c) illustrate the classification results using the GMLC classifier with
full bands, SFS, and the mRMR feature selection algorithm, respectively, and figures
4(d) and (e) show the results with the proposed feature selection methods. To evaluate
the classification accuracy, a test field map is provided in figure 4(f ) based on field
investigation.

A visual comparison of the five classification results in figure 4 suggests varying
degrees of accuracy of pixel assignment. It can be found from figure 4 that five methods
exhibit similar classification results, but classification images with feature selection
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Figure 3. Lower limit of CCR estimated by cross-validation versus the feature selection steps
for PHI data.

outperform the classification result with full bands, where cabbage, grass, corn and
potato are confused to some degree.

For a more detailed verification of the classification results, we compared ground
truth data with the classified images and assessed the accuracy of each method quan-
titatively using both overall accuracy and kappa coefficient. Tables 2 and 3 list the
results of comparisons between ground truth data and classified images obtained by
different methods. It is apparent from tables 2 and 3 that the classification accuracies
with feature selection significantly outperform the original image, as well as greatly
reduce the feature bands. The MMAIQ improved the overall accuracy from 79.1%
to 89.2%, an increase of 10.1%, and the kappa coefficient from 0.76 to 0.87, improv-
ing by 0.11. Comparing SFS, mRMR, MMAIS and MMAIQ, MMAIQ obtains the
best overall accuracy, i.e. the best percentage of correctly classified pixels among all
the test pixels considered. The overall accuracy improved by 2.9% and 3.4% for the
SFS and mRMR methods, respectively. MMAIS also achieves satisfactory accuracy;
the overall accuracy and kappa coefficient are 87.1% and 0.852, respectively. Another
comparison is to examine the five selected bands with different methods. It can be
seen from table 3 that MMAIS and MMAIQ select more bands in the range of the
near-infrared interval in accord with spectral curves shown in figure 2, where the best
spectra to capture vegetable characteristics at 700–840 nm.

4.2 Experiment 2: Fuzhou QuickBird

To further validate the effectiveness and generalized ability of the proposed method, a
subset image with 3859 × 2806 pixels (figure 5(a)) chosen from the QuickBird image
of Fuzhou was also investigated. The image was acquired in June 2003, collecting
panchromatic images with 0.6 m resolution and multispectral images with 2.4 m reso-
lution. According to ground truth data, the test site contains typical parcels in urban
areas of roads, vegetation patches, water, building areas, bare land and shadow regions.

Because high spatial resolution data often create higher spectral variance within
each class corresponding to land-cover units owing to fewer bands and lower spec-
tral separable ability, pixel-based classification schemes employing only spectral
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Road Corn Water Puddle Grass

(a)

(c)

(e) (f)

(d)

(b)

Potato Soil Cabbage

Figure 4. Classification images with GMLC classifier for PHI data set. (a) full bands, (b) SFS,
(c) mRMR, (d) MMAIS, (e) MMAIQ and (f ) the image for test fields used in experiment 1.
Some easily confused objects are highlighted with black boxes.
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Feature selection 5501

Table 2. Confusion matrix with GLMC classifier.

Methods Soil Grass Potato Cabbage Water Puddle Corn Road Total

Full bands
Soil 230 58 9 97 0 1 1 10 406
Grass 15 71 11 1 0 1 0 0 99
Potato 36 147 298 17 1 0 1 0 500
Cabbage 45 44 10 160 1 8 7 10 255
Water 2 0 0 6 382 13 0 0 403
Puddle 1 0 0 25 5 262 0 2 295
Corn 0 0 2 0 0 0 373 0 375
Road 0 0 0 3 0 0 0 342 345
Total 329 290 330 309 389 285 382 364 2678

SFS
Soil 220 13 16 45 0 0 0 17 311
Grass 37 231 51 0 0 0 0 0 319
Potato 19 42 257 14 0 0 0 0 332
Cabbage 53 4 4 243 6 20 7 1 338
Water 0 0 0 0 383 8 0 0 391
Puddle 0 0 0 7 0 257 0 0 264
Corn 0 0 2 0 0 0 375 0 377
Road 0 0 0 0 0 0 0 346 346
Total 329 290 330 309 389 285 382 364 2678

mRMR
Soil 240 35 3 43 0 0 1 18 340
Grass 24 195 47 1 0 0 0 0 267
Potato 10 60 271 10 0 0 0 0 351
Cabbage 55 0 3 249 7 22 11 1 333
Water 0 0 0 0 377 11 0 0 388
Puddle 0 0 0 6 5 252 0 0 263
Corn 0 0 6 0 0 0 370 0 376
Road 0 0 0 0 0 0 0 345 345
Total 329 290 330 309 389 285 382 364 2678

MMAIS
Soil 238 6 3 36 0 0 0 33 316
Grass 24 225 28 1 0 0 4 0 382
Potato 15 59 297 9 0 0 0 0 380
Cabbage 50 0 0 240 13 19 4 1 327
Water 0 0 0 1 368 6 0 0 375
Puddle 0 0 0 22 8 260 0 0 290
Corn 0 0 2 0 0 0 374 0 376
Road 2 0 0 0 0 0 0 330 332
Total 329 290 330 309 389 285 382 364 2678

MMAIQ
Soil 261 19 2 49 0 0 0 21 352
Grass 33 255 48 1 0 0 1 0 338
Potato 0 16 275 8 0 0 0 0 299
Cabbage 35 0 1 248 8 16 8 1 317
Water 0 0 0 0 377 11 0 0 388
Puddle 0 0 0 3 4 258 0 0 265
Corn 0 0 4 0 0 0 373 0 377
Road 0 0 0 0 0 0 0 342 342
Total 329 290 330 309 389 285 382 364 2678
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5502 B. Wu et al.

Table 3. Comparison of classification accuracy using GMLC classifier with different feature
selection methods.

Feature
selection

Full
bands SFS mRMR MMAIS MMAIQ

Overall
accuracy
(%)

79.08 86.33 85.85 87.08 89.20

Kappa
coefficient

0.7603 0.8436 0.8380 0.8521 0.8765

Selected
bands

All 7, 18, 46, 63, 64 13, 37, 57, 65, 74 7, 59, 62, 67, 70 5, 54, 61, 76, 79

119°17′ 0″ E

119°17′ 0″ E

119°17′ 30″ E

119°17′ 30″ E
(a) (b)
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26
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N
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°2
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Figure 5. Experimental data of the QuickBird image in Fuzhou (a) fused image and (b)
segmented results.

information often result in lower classification accuracy (Bruzzone and Carlin 2006).
On the other hand, object-based methods can capture detailed geometrical, struc-
tural and textural feature information inherent in high spatial resolution images. All
of these are potentially important features to discriminate between spectrally similar
objects. Consequently, we adopt an object-based classification method to accomplish
the classification of high spatial resolution data. In order to make full use of spec-
tral and spatial information, panchromatic and multispectral images were first fused,
and a 0.6 m multispectral image was obtained. Then the fused image was segmented
into 7141 objects using the Fractal Network Evolution Approach (Baatz and Schape
2000) with the support of eCognition software (Definiens Imaging 2003). The scale,
colour and shape parameters needed in eCognition were chosen as 80, 0.8, and 0.2,
respectively, such that small objects, such as shadows and trees beside roads, etc.,
could be easily identified. Figure 5(b) shows the segmented objects. Various object
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Feature selection 5503

features, such as geometrical, structural and textural features, were extracted from the
segmented image.

Generally, image spectral information provides the principal measure to identify
ground objects in remotely sensed imagery; hence spectral features are first extracted
from the segmented objects. Image characteristics such as shape, pattern and texture
are possibly the most important features used in the visual interpretation of high spa-
tial resolution imagery (Van Coillie et al. 2007). Measured textural parameters should
therefore be extracted based on co-occurrence matrices of the image grey level. Object
shape is obtained by calculating object length/width, proportion, shape, index and
area, etc. Moreover, the normalized difference vegetation index (NDVI) and nor-
malized difference water index (NDWI) are also extracted for better separation of
vegetation and water from other materials (Xu 2006). Table 4 summarizes the object
features into four categories, namely spectral, shape, texture and index features, which
add up to 82 features.

A hybrid classification scheme (table 5) was employed according to the US
Geological Survey land-use/land-cover classification system. The available labelled
samples amount to 2981 objects. These labelled objects are randomly selected and
validated by field investigation. Among them, 1055 samples (about 40%) are stratified
and randomly selected for training the GMLC classifier, and the other 1926 samples
are employed for classification accuracy assessment. The list of classes and the number
of labelled samples for each class are given in table 6. From table 6, it can be seen that
the training samples per class agree with the relationship between training sample size
and data dimension (Van Neil et al. 2005).

The partition of intervals was carefully chosen as 3. Again, the optimal number
of features was also determined by the lower correct classification rate (CCRLower

K,cross)
criterion. The CCR versus the feature selection steps for cross-validation was plotted
in figure 6. It can be seen from figure 6 that the optimal feature subset was found with
the CCRLower

K,cross measurement when the selected number reached 6. Consequently, the
first six ranked features were used for classification and comparison.

The classification maps using different methods are shown in figure 7. For compari-
son purposes, a map identified by human interpretation is also displayed in figure 7(f ),
and some objects that are easily confused are highlighted with black boxes in figure
7(f ). Figure 7(a) shows many uncertainties in the classification map that use whole
features. These significant misclassifications include buildings, roads and bare land.
In addition, water and shadows are confused to some extent. A possible reason is that
some features exhibit high correlation, deteriorating the GMLC classification accu-
racy. It can be seen that figures 7(b)–(e) show a considerable improvement over figure
7(a), where buildings and bare land, and water and shadows are better recognized.
Comparing figures 7(b)–(f ), it is apparent that MMAIQ can better separate buildings
from bare land and roads than SFS and mRMR (see top right box). Another observed
improvement is that MMAIQ can discriminate polluted water from vegetation (see
central box), whereas SFS and mRMR cannot. Comparing MMAIQ and MMAIS,
both exhibit similar classification results, but some water near roads was inaccurately
classed as shadow by MMAIS. These visual analyses are quantitatively illustrated by
the confusion matrix in table 7.

Tables 7 and 8 list the results of comparisons between ground investigation data and
classified thematic maps obtained by different methods. It is apparent from tables 7
and 8 that MMAIQ obtains the best overall accuracy again, that is, the best percentage
of correctly classified pixels among all the test pixels considered. The overall accuracy
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5504 B. Wu et al.

Table 4. Summarized object features extracted from segmented image.

Feature categories Sub-class Object features
Num. of
features

Sequential
number

Spectral features (22) Mean Brightness 1 5
Max. diff. 1 56
Means 4 59–62

Std Standard deviations 4 74–77

Pixel based Contrast with neighbouring pixels 3 8–10
Max. pixel value 1 57
Mean diff. to neighbours NIR

band
1 58

Mean of inner border NIR band 1 63
Mean of outer border 1 64
Min. pixel value 1 65
Band ratio of red and NIR 2 69–70
Std. dev. to neighbour pixels NIR

band
2 78–79

Texture features (40) GLCM Ang. 2nd moment 5 13–17
Contrast 5 18–22
Correlation 5 23–27
Dissimilarity 5 28–32
Entropy 5 33–37
Homogeneity 5 38–42
Mean 5 43–47
Std. dev. 5 48–52

Shape features (16) Generic shape Area 1 1
Asymmetry 1 2
Border length 1 4
Compactness 1 6
Compactness 1 7
Density 1 11
Elliptic fit 1 12
Length 1 53
Length/width 1 54
Main direction 1 55
Number of edges (polygon) 1 66
Radius of largest enclosed ellipse 1 67
Radius of smallest enclosing

ellipse
1 68

Rectangular fit 1 71
roundness 1 72
Width 1 80

Index features (4) Shape based Border index 1 3
Shape index 1 73

User defined NDVI 1 81
NDWI 1 82

Total 82

and kappa coefficient are 89.9% and 0.876%, respectively, improving the overall accu-
racy of SFS and mRMR methods by 2.2 and 2.4%, respectively. The MMAIS also
achieves higher accuracy. The overall accuracy and kappa coefficient are 89.7% and
0.874%, respectively.
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Feature selection 5505

Table 5. Land-use classification scheme.

Class name Description

Bare land Vacant area, including bare soil, and unproductive surfaces, etc.
Building Residential, industrial, commercial buildings
Road Transportation, including roads, bridges, railways and their affiliations
Shadow Shadow, including tree shadow, high building shadow and bridge shadow, etc.
Vegetable Green vegetation, including parks, green belt, grass and trees, etc.
Water Water, including rivers, reservoirs, ponds and streams, etc.

Table 6. List of classes and number of labelled training data-testing samples in each class for
experiment 2.

Class name
Training
samples

Testing
samples

Number of labelled
samples

Bare land 148 280 428
Building 267 514 781
Road 154 292 446
Shadow 192 345 537
Vegetable 198 373 571
Water 96 122 191

Total number of samples 1055 1926 2981
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60

Figure 6. Lower limit of CCR estimated by cross validation versus the feature selection steps
for QuickBird data.

From tables 8 and 4, the six features correspond to 5, 8, 34, 54, 70 and 81, which
stand for brightness, contrast to neighbouring pixels, textural entropy, length/width,
near-infrared band ratio, and NDVI, respectively. This result demonstrates that
spectral, geometrical, structural, NDVI and textural features do make significant
contributions to high spatial resolution image classification. This has also been val-
idated by a good deal of earlier research. The selected features are shown in figure 8,
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5506 B. Wu et al.

(a) (b)

(c)

(e) (f)

(d)

Building Road Vegetation Shadow Bare land Water

Figure 7. Classification images with different methods. (a) Without feature selection, (b) SFS,
(c) mRMR, (d) MMAIS, (e) MMAIQ and (f ) the map of manual interpretation. Some easily
confused objects are highlighted with black boxes.
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Feature selection 5507

Table 7. Confusion matrix of QuickBird data with GLMC classifier.

Methods Bare land Building Road Shadow Vegetation Water Total

SFS
Bare land 249 4 4 0 2 0 259
Building 11 466 88 5 0 3 573
Road 4 29 182 0 5 0 220
Shadow 0 7 5 323 0 13 348
Vegetation 16 4 13 15 363 0 411
Water 0 4 0 2 3 106 115
Total 280 514 292 345 373 122 1926

mRMR
Bare land 252 8 4 0 2 0 266
Building 3 384 19 2 0 0 408
Road 9 110 246 3 0 0 368
Shadow 0 8 5 318 0 3 334
Vegetation 16 4 18 15 368 3 424
Water 0 0 0 7 3 116 126
Total 280 514 292 345 373 122 1926

MMAIS
Bare land 252 0 4 0 2 0 258
Building 3 417 19 0 0 0 439
Road 11 80 259 0 5 0 355
Shadow 0 13 5 321 0 6 345
Vegetation 14 4 5 15 363 0 401
Water 0 0 0 9 3 116 128
Total 280 514 292 345 373 122 1926

MMAIQ
Bare land 257 5 4 0 2 0 268
Building 3 410 14 2 0 0 429
Road 9 79 264 0 5 0 357
Shadow 0 16 5 321 0 6 348
Vegetation 11 4 5 19 363 0 402
Water 0 0 0 3 3 116 122
Total 280 514 292 345 373 122 1926

Table 8. Comparison of classification accuracy using GMLC classifier with different feature
selection methods.

Feature
selection SFS mRMR MMAIS MMAIQ

Overall
accuracy

0.8769 0.8744 0.8972 0.8988

Kappa
coefficient

0.8474 0.8461 0.8739 0.8758

Selected
features

82, 44, 4, 1, 3, 8 82, 4, 44, 37, 81, 10 70, 54, 61, 31, 10, 81 70, 54, 5, 34, 8, 81

which shows that they all correlate with our interpreted experience, and accordingly
have good visual interpretation. First, brightness contains spectral energy providing
the principal measure of identifying objects. Second, band ratio and contrast with
neighbouring pixels are two important features to enhance image quality. In addition,
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5508 B. Wu et al.

Figure 8. Selected features with the MMAIQ method are shown in the images. (a) Brightness,
(b) length/width, (c) GLCM entropy, (d) band ratio, (e) contrast with neighbouring pixels and
(f ) NDVI.

D
ow

nl
oa

de
d 

by
 [

W
uh

an
 U

ni
ve

rs
ity

] 
at

 2
0:

39
 0

8 
A

pr
il 

20
13

 



Feature selection 5509

length/width is a good shape indictor to separate roads from buildings, although they
have similar spectral characteristics. Again, NDVI is a good vegetation descriptor to
improve classification results, and textural entropy may be the most important clue in
identifying homogeneous regions.

5. Discussions

A key parameter in the preprocessing step of discretization is the number of intervals
used to partition each feature, which will be further discussed later. In general, a trade-
off must be made between information quality and statistical equality that indicates
good predictive accuracy and sufficient sample size in every interval. Figure 9 shows
the CCR versus the number of partitioned intervals. It seems that there is no obvious
rule with different data. When the partitioned interval increases from 2 to 10, the CCR
of PHI data and QuickBird data varies from 84.7% to 89.2%, and 77.9% to 89.7%,
respectively. From figure 9, the parameter seems insensitive; therefore, we can obtain
a satisfied classification accuracy even if the parameter does not optimize.

As for the proposed MMAIQ and MMAIS, in general, MMAIQ imposes a greater
penalty on redundancy. Empirically, MMAIQ often leads to better classification than
MMAIS for candidate features. However, the joint effect of these features is less
robust, especially for features containing noise. By contrast, MMAIS has an addi-
tional parameter to neatly adjust the function of A and R conditions. Generally,
enlarging the parameter λ in the MMAIS model may stress a penalty on the
redundancy, and result in similar effects to MMAIQ.

We are aware of several research areas yet to be considered regarding the pro-
posed method. To begin with, discretization of continuous variables with equal-width
and equal-frequency can be further refined by using instance class labels in the
discretization process, such that features are optimally partitioned into a fixed num-
ber of unequal intervals. This optimal process has the potential to further improve
feature selection. In addition, because of the computational complexity of joint asso-
ciation among features, the proposed scheme adopts an incremental forward selection
method. A mechanism to remove potentially redundant features with a backward
refining process from already selected features can be considered. Moreover, as with
filter-based feature selection methods, they can be wrapped by other classifiers such
as Support Vector Machines (SVMs) and k-nearest neighbour (k-NN) classifiers to
demonstrate their generalized capability. Furthermore, although the method has been
proven to be effective with remotely sensed data, other types of data, for instance

76
2 3 4 5 6 7 8 9 10
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Figure 9. CCR versus the partitional number of features.
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5510 B. Wu et al.

mixed type attribute data, need to be examined in order to strengthen its robustness.
We will test the method with benchmark databases in the future.

6. Conclusions

In this article, new methods, MMAIQ and MMAIS, for feature selection in remote-
sensing images and its derived data have been introduced. Our methods have been
compared in terms of overall accuracy and kappa coefficient with the SFS and mRMR
methods, which are known for their general abilities and good performance. The
experimental results consistently show that the proposed feature selection methods
can provide an effective tool for feature selection and improve classification accu-
racy significantly. When compared with SFS and mRMR, MMAIQ performs the best
feature selection, and offers better or comparable classification accuracy in two exper-
iments with different types of image. MMAIS also achieves satisfactory results in the
same experiments. These results testify that MMAIQ and MMAIS provide new and
effective options for feature selection.
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