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This article proposes a spatial–temporal expansion method for remote-sensing
reflectance by blending observations from sensors with different spatial and temporal
characteristics. Compared with the methods used in the past, the main characteristic of
the proposed method is consideration of sensor observation differences between differ-
ent cover types when calculating the weight function of the fusion model. The necessity
of the temporal difference factor commonly used in spatial–temporal fusion is also anal-
ysed in this article. The method was tested and quantitatively assessed under different
landscape situations. The results indicate that the proposed fusion method improves the
prediction accuracy of fine-resolution reflectance.

1. Introduction

In the remote-sensing community, there is an increasing need to integrate Earth observation
data with complementary spatial, temporal and spectral characteristics (Zurita-Milla et al.
2009). As a result, image fusion techniques have received more and more attention, and a
large number of data fusion methods have been developed (for a review, see Ehlers 1991;
Hall and Llinas 1997; Luo, Chih-chen, and Kuo Lan 2002; Pohl and Van Genderen 1998).
Classical remote-sensing image fusion techniques include panchromatic/multispectral
(PAN/MS) fusion (Thomas et al. 2008; Wang et al. 2005), multispectral/hyperspectral
(MS/HS) fusion (Eismann and Hardie 2005), and multitemporal fusion (Shen et al. 2009).
These fusion techniques are aimed at extracting information and enhancing visual effects.
However, they are not effective in enhancing temporal resolution and spatial resolution
simultaneously and cannot provide high spatial resolution observations with a dense time
series.

Gao et al. (2006) developed a filter-based framework to blend Landsat and MODIS
(Moderate Resolution Imaging Spectroradiometer) data for predicting daily surface
reflectance at Landsat spatial resolution and MODIS temporal frequency. Their frame-
work is called the spatial and temporal adaptive reflectance fusion model (STARFM).
The STARFM algorithm has been shown to be a relatively reliable model for generating
synthetic Landsat images, which may then be used to investigate vegetation dynamics in
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4368 H. Shen et al.

different land-cover types (Hilker et al. 2009b). Watts et al. (2011) improved the classifica-
tion accuracy of conservation tillage adoption by incorporating STARFM-based synthetic
data sets into the classification model. The STARFM fusion method has also been applied
to the generation of gross primary productivity (Singh 2010), the analysis of dryland
forest phenology (Walker et al. 2011), the examination of virus dissemination (Liu and
Weng 2011), and the estimation of daily evapotranspiration (Anderson et al. 2011). Hilker
et al. (2009a) and Zhu et al. (2010) extended the STARFM method for cases where there
are two or more base image pairs as inputs to the simulation of surface disturbance and
heterogeneous fine-grained landscapes, respectively.

In other frameworks, Roy et al. (2008) proposed a semi-physical fusion framework,
which uses the MODIS bidirectional reflectance distribution function (BRDF)/albedo land
surface product and Landsat Enhanced Thematic Mapper Plus (ETM+) data to predict
ETM+ reflectance on the same, an antecedent, or subsequent date. Hansen et al. (2008)
used regression trees to fuse Landsat and MODIS data based on the 500 m, 16 day MODIS
BRDF/albedo land surface characterization product. The method demands a single ‘best’
image to map forest-cover status for a given year or decade. Zurita-Milla et al. (2009)
proposed an unmixing-based Landsat Thematic Mapper (TM) and Medium Resolution
Imaging Spectrometer MERIS full resolution (FR) data fusion algorithm, which requires a
high-resolution land-use database for pixel unmixing.

In this article, an extended spatial–temporal reflectance fusion method is presented.
Unlike the works of Hilker et al. (2009a) and Zhu et al. (2010), which are based on two
base image pairs, we concentrate on improving the STARFM method in the single-pair
case. The main characteristic of this method is the consideration of sensor observation
differences based on within-class regression to improve fusion accuracy. This study also
validates removal of the measure of temporal difference from the spatial–temporal fusion
model.

The rest of this article is structured as follows. Section 2 reviews the original STARFM
framework. The proposed method is presented in Section 3. Experimental results and quan-
titative evaluations are shown in Section 4. In Section 5, we provide some concluding
remarks.

2. STARFM framework

The premise of STARFM is that the preprocessed and corrected reflectances of differ-
ent sensors are consistent and comparable (Gao et al. 2006; Masek et al. 2006). For a
homogenous coarse-resolution (MODIS) pixel, the corresponding fine-resolution (ETM+)
reflectance can be expressed as (Gao et al. 2006)

F(xi, yj, t0) = C(xi, yj,t0) + ε0, (1)

where F and C denote fine- and coarse-resolution reflectance, respectively, (xi, yj) denotes
the pixel location, t0 is the acquisition date, and ε0 is the residual. Similarly, the
fine-resolution (ETM+) reflectance at predicted date t1 can be expressed as

F(xi, yj, t1) = C(xi, yj,t1) + ε1. (2)

Supposing the residual ε0 = ε1, the following equation can be obtained:

F(xi, yj, t1) = C(xi, yj,t1) + F(xi, yj, t0) − C(xi, yj, t0). (3)
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Considering neighbouring same-class pixels with similar reflectance changes, a moving
window method is used to take full advantage of the information from neighbouring pixels.
The fine-resolution (ETM+) reflectance is calculated with a weight function (Gao et al.
2006),

F(xw/2, yw/2, t1) =
w∑

i=1

w∑
j=1

Wij

(
C(xi, yj, t1) + F(xi, yj, t0) − C(xi, yj, t0)

)
, (4)

where w is the size of the moving window and (xw/2, yw/2) is the central pixel. It should
be noted that only spectrally similar and cloud-free pixels within the moving window are
selected to calculate reflectance.

The spatial weighting function Wij determines by how much each similar pixel con-
tributes to the central pixels. Ensuring the sum of all weights is 1, Wij can be normalized
as

Wij = 1

Eij

/
w∑
i

w∑
j

(1
/

Eij), (5)

where Eij may be related to spectral difference, temporal difference, and geometric distance
to the central pixels in the moving window and can be expressed as

Eij = ln(SijA + 1) ln(TijA + 1)Dij, (6)

where A is a scale factor (equal to 10,000 when using MODIS reflectance products, which
linearly scale reflectance from 0 to 10,000) (Gao et al. 2006), Sij represents the spectral
difference, Tij represents the temporal difference, and Dij represents the geometric distance.
Equations (5) and (6) show that one pixel may be assigned a higher weight Wij if the pixel
has lower values of Sij, Tij, and Dij.

3. Proposed method

3.1. Calculating spectral difference Sij

Although the observation data can be preprocessed before the fusion process, system-
atic observation differences may still exist between the different sensors. The observation
differences may come from differences in spectral range and/or calibration algorithms.
To minimize the effects of observation differences on fusion results, this study proposes to
fit regression curves for different cover types when measuring spectral difference.

The original STARFM calculates the spectral difference as

Sij = ∣∣F (xi, yj, t0
)− C(xi, yj, t0)

∣∣ . (7)

It would be assigned a higher weight when a pixel has a lower value of Sij, because this
means the fine-resolution pixel has spectral features closer to the averaged surrounding pix-
els. However, (7) fails to consider the observation differences of fine- and coarse-resolution
sensors, which may lead to inaccurate estimation. For example, assume that the reflectances
of river water retrieved by the fine- and coarse-resolution sensors are, respectively, 0.1 and
0.09 under normal conditions. Furthermore, assume that there are two pixels in the mov-
ing window, and that their spectral differences are 0.005 and 0.01, respectively. According
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4370 H. Shen et al.

to (7), the pixel whose spectral difference is 0.005 will be assigned a higher weight.
In fact, since the value of 0.01 is the normal difference between the two sensors, the
pixel whose spectral difference is 0.01 should be assigned a higher weight. In order to
consider observation differences, a simple linear regression relationship between coarse-
resolution (MODIS) and the corresponding fine-resolution (ETM+) reflectance at time t
can be described as

C(xi, yj, t) = aF
(
xi, yj, t

)+ b, (8)

where a is the gain parameter of the linear regression function between coarse- and fine-
resolution pixels and b is the bias. Thus, the spectral difference can be calculated as

Sij = ∣∣aF
(
xi, yj, t0

)+ b − C(xi, yj, t0)
∣∣ . (9)

It is worth noting that the linear regression coefficients (a and b) between the two sensors
may vary significantly for different cover types. To confirm this, an experiment was per-
formed. Figure 1(a) shows a Landsat ETM+ sub-image with NIR-red-green composites,
and Figure 1(b) shows the corresponding MODIS image. From the two images, three cover
types of water, vegetation, and bare area were manually selected to perform a linear fit-
ting for each band, and the fitted parameters are shown in Table 1. We can recognize that
the linear relationship between MODIS and ETM+ reflectance is significantly related to
land-cover type.

To solve this problem, the spectral difference Equation (9) can be rewritten as

Sijc = ∣∣acFc

(
xi, yj, t0

)+ bc − Cc(xi, yj, t0)
∣∣ , (10)

where the subscript c represents land-cover types, which can be obtained by classifying
the fine-resolution image. The classification provides the possibility of using the regres-
sion coefficients for different cover types. Our experiments indicated that the proposed

(a) (b)

Figure 1. Images from selected regions for the linear fitting test. (a) ETM+ image, (b) MODIS
image (resampled).
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Table 1. Quantitative linear fitting results of the ETM+ and MODIS images for different cover
types and spectral bands. The results represent three cover types for the NIR, red, and green bands,
respectively.

Water Vegetation Bare

a b a b a b

NIR 0.11 0.09 0.47 0.17 0.83 0.02
Red 0.13 0.11 0.76 0.05 0.60 0.05
Green −0.15 0.15 0.56 0.08 0.49 0.07

algorithm is not sensitive to the choice of classification algorithm. It is also not sensitive to
class number when the number is greater than 5 (see the experiment part). For convenience,
the unsupervised IsoData classification method was employed, and the number of classes
was set as seven in all experiments described in this article.

Once the cover map is determined using the classification algorithm, the linear
regression coefficients for each cover type and spectral band can be solved by various opti-
mization estimation methods. The simplest method is the least squares approach, although
this is sensitive to the distribution assumption of noise and the existence of outliers. When
noise distribution is abnormal and there are outliers in the observations, the estimation may
be unsatisfactory (Wu and Tam 2001). In order to improve the accuracy of the parameters
estimated, we used the M-estimation method with the Huber cost function (Huber 1964) to
solve the coefficients.

Let eij be the residual of the ijth data point:

eij = acFc

(
xi, yj, t0

)+ bc − Cc(xi, yj, t0). (11)

The standard least squares method tries to minimize
∑
ij

e2
ij, but M-estimators try to reduce

the effect of outliers by replacing the squared residuals e2
ij by another function of the

residuals (Fox and Weisberg 2011):

min
∑

ij

ρ(eij), (12)

where p (•) is a symmetric, positive-definite cost function with a unique minimum of zero.
There are many different kinds of cost function, but here we chose the Huber cost function:

ρ(eij) =
{

e2
ij/2

∣∣eij

∣∣ ≤ k

k
∣∣eij

∣∣− k2/2
∣∣eij

∣∣ > k
, (13)

where k is the Huber parameter.
In order to facilitate the optimization process, the minimization problem of (12) can be

equivalently converted into an iteratively reweighted least squares problem:

min
∑

ij

(
ω
(
eij

)
eij

)2
, (14)

where

ω
(
eij

) = ρ ′(eij)

eij
(15)
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4372 H. Shen et al.

represents the weight and ρ ′(eij) is the derivative of the Huber function ρ(eij). By this
means, the coefficients can be solved by an iterative procedure (Fox and Weisberg 2011).

Consideration of sensor observation differences when calculating spectral differences is
a primary contribution of this article. Here, the observation differences are described using
the gain and bias parameters, ac and bc, as shown in (10). It should be noted that although
the method described in Zhu et al. (2010) also considered gain and bias parameters between
coarse and fine sensors, the meaning is very different. We used gain and bias parameters to
improve the solution precision of the weights of neighbouring pixels. However, Zhu et al.
considered gain and bias parameters when setting up the relational models (Zhu et al. 2010),
and used (16) and (17) to replace (1) and (2):

F
(
xi, yj, t0

) = a0C(xi,yj, t0) + ε0, (16)

F
(
xi, yj, t1

) = a1C(xi,yj, t1) + ε1. (17)

Suppose ε0 = ε1 and a0 = a1, the following equation can be obtained:

F
(
xi, yj, t1

) = F
(
xi, yj, t0

)+ a1(C(xi,yj, t1) − C(xi, yj, t0)), (18)

where a = a0 = a1. To deal with mixed pixels, the conversion coefficient a can be obtained
by linearly regressing the reflectance changes of fine- and coarse-resolution pixels of the
same end member (Zhu et al. 2010). Equations (16)–(18) have been validated as being
effective for the two-pairs case in which there are two high-quality input images (Zhu et al.
2010). It should be noted that although (16) and (17) are theoretically more reasonable
due to their additional consideration of gain parameter at each observation date, an addi-
tional condition, a0 = a1, is added when we deduce (18). In the single-pair case, the gain
parameter a is often very large or very small in linear regression because the change can be
balanced by the bias parameter ε. Once the parameter ε is removed, as in (18), the solution
stability would be considerably affected. Therefore, in this article, we used (1)–(3) rather
than (16)–(18).

3.2. Calculation function

Besides the spectral difference Sij, there are two other parameters in (6), i.e. the distance
measurement DTJ and the temporal difference Tij. Here, Dij can be easily obtained by (Gao
et al. 2006)

Dij = 1 +
√(

xw/2 − xi

)2 + (yw/2 − yj)2

/
(w/2), (19)

where w is used to normalize distance, ensuring that the distance range for similar pixels
in different search windows changes from 1 to 1+ 20.5 (Gao et al. 2006). As for Tij, it is
defined as (Gao et al. 2006)

Tij = ∣∣C (xi, yj, t1
)− C(xi, yi, t0)

∣∣ . (20)
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A smaller value of Tij means less phenological change between time t1 and t0 for a pixel,
and it would be assigned a higher weight in the STARFM algorithm (Gao et al. 2006).
In most single-pair applications of the STARFM method, the temporal difference is retained
(Anderson et al. 2011; Liu and Weng 2011; Walker et al. 2011; Watts et al. 2011). In the
paper by Hilker et al. (2009b), however, this factor was excluded. There have been no
comparisons between these two choices. Here, we analyse the ambiguity of the two cases.

Case 1. The predicted central pixel showed a little or no phenological change. In this
situation, the central pixel to be predicted at time t1 should have spectral features closer
to the corresponding pixel at time t0, and all similar neighbouring pixels used for pre-
diction should also show a few phenological changes. Therefore, it is reasonable to set
higher weights for pixels with small temporal differences Tij.
Case 2. The predicted central pixel showed a considerable phenological change. In this
case, similar pixels of values lower than of Tij are unable to indicate whether the pre-
dicted central pixel will show certain phenological changes. Setting with greater weight
would yield poor results.

In reality, it is difficult to know in advance whether the predicted central pixel will show
significant reflectance change. Since our aim was simply to predict reflectance changes, the
factor of temporal difference Tij should be removed. Even when there are two or more fine-
resolution input images, the aspect of temporal difference should use other more suitable
expressions, as described in papers by Hilker et al. (2009a) and Zhu et al. (2010).

Based on the foregoing, the spatial weighting function Ey is related only to spectral
difference and geometric distance and can be expressed as

Eijc = ln(Sijc(A + 1))Dij. (21)

In order to ensure that sum of all weights is 1, WJC can be normalized as

Wijc =
(

1
/

Eijc

/
w∑
1

(
1
/

Eijc

))
. (22)

Equations (21) and (22) mean that a difference in regard to reduced distance and spectral
difference between the similar pixel and the central pixel should yield a greater weight. The
fine-resolution image can now be predicted using

F(xw/2, yw/2, t1) =
w∑

i=1

w∑
j=1

Wij

(
C(xi, yj, t1) + F(xi, yj, t0) − C(xi, yj, t0)

)
. (23)

Note that only spectrally similar pixels in the neighbourhood are selected to calculate
reflectance. The neighbouring pixels may be selected using

∣∣F (xi, yj, B
)− F(xw/2, yw/2, B)

∣∣ ≤ d × 2F(xw/2,yw/2,B), (24)

where F(xw/2, yw/2, B) is central pixel reflectance, F
(
xi, yj, B

)
is neighbour pixel reflectance,

with B being the band number, and d is a free parameter. For different sensors, the parameter
d may be slightly different. However, this may be distributed within a very limited range for
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Preprocessed
fine-resolution

image at t0

Classification
result

Preprocessed
coarse-resolution

image at t0

Compute the regression relationship within every class
(M-estimation (Huber))

Search
similar pixels

Compute weight of
similar pixels within

each class

Preprocessed
coarse-resolution

image at t1

Calculate fine-resolution
reflectance at t1

Figure 2. Flowchart of the proposed method.

a given sensor, and in this article, it was set to 0.01 for the ETM+ case. Figure 2 presents a
flowchart of the proposed method.

4. Results and analysis

In this section, we tested the performance of the proposed method on several different data
sets. The data were obtained from both USGS LPDAAC portal (https://lpdaac.usgs.gov/)
and NASA GSFC portal (http://modis.gsfc.nasa.gov/). Moderate spatial resolution MODIS
surface reflectance data (MOD09) and 30 m spatial resolution Landsat ETM+ data were
used. Both MOD09 and ETM+ data were preprocessed geometrically and radiometrically.
The ETM+ data (L1T product) downloaded provided systematic radiometric and geometric
accuracy by incorporating ground control points while employing a digital elevation model
(DEM) for topographic accuracy. More details on L1T data currently available can be found
online (Gutman and Masek 2012). In order to fit with ETM+ data, MOD09 data were re-
projected to Universal Transverse Mercator (UTM) mode using the MODIS re-projection
tool and were resampled to 30 m spatial resolution using the cubic interpolation approach.

Two MOD09 data sets were acquired to correspond with each ETM+ scene: daily
reflectance (MOD09GA) and 8 day composite reflectance data (MOD09A1). The daily
reflectance data set comprised intra-day data collected by the MODIS sensor on the Terra
satellite. However, MOD09GA data may be affected by BRDF effects (Gao et al. 2010).
The 8 day composite comprises the best possible observation obtained from the Terra satel-
lite during an 8 day period, as selected on the basis of high observation coverage, low
view angle, absence of clouds or cloud shadow, and aerosol loading (Walker et al. 2011).
To illustrate the BRDF effects associated with MODIS daily observations, two MOD09GA
sub-images were chosen in the following experiments. One was chosen only when view-
ing zenith angles were between 0◦ and 8◦ (near-nadir), a range similar to ETM+ data.
The other was chosen by selecting a nearby date, but with a different viewing zenith angle
(off-nadir) and/or different resolution. In addition, the influence of sampling resolution on
fusion results was also analysed.

In the first series of experiments, the proposed method was tested on heterogeneous
regions under a long time interval (144 days) in Wuhan, China. The second experiment
and the third experiment were tested in Beijing, China and Qinghai-Tibet Plateau, China,
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(a) (b)

(c) (d)

(e) (f) (g)

Figure 3. Prediction results from the first experiment (band combination: NIR, red, and green). (a)
ETM+ image acquired on 3 May 2001, (b) MOD09GA image (0–5◦ near-nadir view) acquired on
3 May 2001, (c) MOD09GA image (0–5◦ near-nadir view) acquired on 24 September 2001, (d)
classified image of (a), (e) predicted synthetic ETM+ image by the STARFM method, (f ) predicted
synthetic ETM+ image by the proposed method, and (g) observed ETM+ image on 24 September
2001.

respectively. Figure 3 shows the first experimental results with a 30 × 30 km subset.
Figure 3(a) shows the ETM+ image acquired on 3 May 2001, and Figures 3(b) and (c)
show the MOD09GA sub-images (near-nadir) acquired on 3 May and 24 September 2001,
respectively. Figure 3(d) shows the class map using the IsoData algorithm. The predicted
synthetic ETM+ images by STARFM and the proposed algorithm are shown in Figures 3(e)
and (f ). The observed ETM+ image in Figure 3(g) can be used to evaluate the predicted
result. From visual inspection, it can be seen that the predicted images in Figures 3(e) and
(f ) are very similar to the observed image in Figure 3(g), which indicates that both methods
can capture reflectance changes to some extent. However, it can be seen that the results of
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both methods appear more ‘hazy’ than the observed images. One reason for this is that
the large resolution difference between ETM+ and MODIS sensors makes it difficult for
fusion algorithms to capture changes in small-grained ground objects with arbitrary distri-
bution. The other reason is that the long time interval (144 days) between the observed and
predicted images further aggravates the blurring. When spatial distribution is more homo-
geneous and temporal interval is shorter, the problem can be relieved to some extent (see
the second experiment).

Figure 4 shows the scatter plots between the observed and predicted ETM+ reflectance
for the NIR, red, and green bands. Figures 4(a), (c), and (e) show the correlation between
the actual reflectance images for 24 September and 3 May for the NIR, red, and green bands,
respectively. All scatter plots deviate from the 1:1 line, which indicates there are distinct
changes between the two temporal images. Figures 4(b), (d), and (f ) show the correlation
between the observed 24 September image and the predicted reflectance images of the
proposed method. It is can be seen that these data all fall closer to the 1:1 line, indicating
that the proposed method captured the changes between the May and September images.
After the fusion process, the determination coefficients R2 greatly increased from 0.05,
0.36, and 0.38 to 0.66, 0.65, and 0.63 for the NIR, red, and green bands, respectively.

Similar experiments were also conducted using the corresponding MOD09A1 data sets
and MOD09GA data at a nearby date, but with different view angle and resolution, respec-
tively. In order to quantitatively compare the proposed method with STARFM using the
different MOD09 data sets, the evaluation index of average absolute difference (AAD) was
adopted (Gao et al. 2006; Walker et al. 2011; Zhu et al. 2010). AAD represents the average
absolute difference between predicted and observed actual ETM+ images. Furthermore,
the IR (improvement ratio) index

IR =
∣∣AADSTARFM − AADProposed

∣∣
AADSTARFM

× 100% (25)

is defined to evaluate the degree of improvement in the proposed method in compari-
son with STARFM. Quantitative values are shown in Table 2. For all the data sets, the
MOD09GA sub-images observed at a near-nadir view yielded the lowest AAD values.
The quantitative results became significantly worse when the MOD09GA sub-images were
observed at an off-nadir view, which can be explained by BRDF effects associated with the
MOD09GA data sets. Although a coarser resolution (2 km × 2 km) may reduce the uncer-
tainty of surface reflectance at an off-nadir view (55–60◦) (Gao et al. 2010), its influence
on fusion results is very small. In addition, AAD values from the MOD09GA sub-images
at a near-nadir view were slightly better than those from the MOD09A1 sub-images for all
three bands. The reason for this may be that a small number of pixels of the 8 day com-
posite MOD09A1 were composited during periods of phenological change. However, when
the region of interest is subject to BRDF effects, 8 day composite MOD09A1 data sets may
be more applicable than MOD09GA.

On the other hand, in all cases, ADD values from the proposed method were lower
than those from the original STARFM, which proves that the proposed method is
applicable to both MOD09GA and MOD09A1. In particular, improvement ratios from
the MOD09A1 data sets were 8.1%, 4.5%, and 5.9% for the NIR, red, and green
bands, respectively. In general, because of the factor of sensor observation differences,
the proposed method produced better quantitative evaluation results than the STARFM
algorithm.
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Figure 4. Scatter plots of the first experiment. Left column: comparison between ETM+ reflectance
observed on 24 September and ETM+ reflectance observed on 3 May, for NIR (a), red (c), and green
(e) bands. Right column: comparison between ETM+ reflectance observed at 24 September and
predicted ETM+ reflectance, for NIR (b), red (d), and green (f ) bands. The plots shown in the right
column show a better fit with the 1:1 line than those in the left.

The sensitivity of the proposed method in regard to class number and different clas-
sification algorithms was evaluated, and the results are shown in Table 3. Using the
unsupervised IsoData algorithm, fusion accuracy is poor when the class number is less
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Table 2. Quantitative evaluation results (AAD) from the first experiment.

STARFM Proposed method IR (%)

MOD09GA (0–5◦) NIR 0.033182 0.031218 5.9
Red 0.010914 0.010674 2.0
Green 0.006925 0.006628 4.2

MOD09GA NIR 0.052045 0.050202 3.5
(55–60◦) Red 0.013250 0.013141 0.82
(0.5 km × 0.5 km) Green 0.009352 0.009100 2.7

MOD09GA NIR 0.058393 0.056115 3.9
(55–60◦) Red 0.014994 0.014835 1.1
(2 km × 2 km) Green 0.009942 0.009687 2.6

MOD09A1 (0–5◦) NIR 0.035140 0.032278 8.1
Red 0.011431 0.010916 4.5
Green 0.007187 0.006760 5.9

Table 3. Evaluation of the sensitivity of the proposed algorithm to class number and classification
algorithms.

Algorithm IsoData ML SA

Class number 3 5 7 10 7 7

AAD NIR 0.032114 0.031242 0.031218 0.031238 0.031192 0.031189
Red 0.010805 0.010683 0.010674 0.010698 0.010671 0.010663
Green 0.006813 0.006648 0.006628 0.006637 0.006650 0.006635

than 5. When the class number is equal to or greater than 5, however, AAD values change
very slightly. Even when some ground classes were divided into several sub-classes, fusion
accuracy was not markedly affected. This implies that we can set a relatively large class
number when implementing the proposed method.

The supervised classification algorithms of maximum likelihood (ML) and spectral
angle (SA) were also implemented for comparison with the IsoData algorithm for the fusion
problem. The results show that the proposed method is not sensitive to the choice of classifi-
cation algorithm. In the experiments, we found that although slight classification errors may
exist, fusion accuracy can still be ensured because of usage of the M-estimation method,
which is very robust with regard to outliers.

To further test the performance of the proposed method, it was implemented on a rel-
atively homogeneous area (90 km × 90 km). The temporal interval (32 days) was also
shorter. Figures 5(a)–(c) show the ETM+ image acquired on 13 December 2001, the
MOD09GA sub-image (near-nadir) acquired on 13 December 2001, and the MOD09GA
sub-image (near-nadir) of 11 November 2001, respectively. Figure 5(d) shows the classified
image of Figure 5(a). The synthetic ETM+ images predicted by STARFM and the pro-
posed method are shown in Figures 5(e) and (f ), and the actual ETM+ image acquired on
11 November 2001 is shown in Figure 5(g). To enhance visual judgement, some detailed
regions cropped from Figures 5(e)–(g) are shown in Figures 6(a)–(c). It is clear that the
image predicted by the proposed method is similar to the actual image, while the image
predicted by STARFM seems incoherent and has some outliers. The evaluation results
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(a) (b)

(c) (d)

(e) (f) (g)

Figure 5. Prediction results of the second experiment (band combination: NIR, red, and green). (a)
ETM+ image acquired on 13 December 2001, (b) MOD09GA image (0–8◦ near-nadir view) acquired
on 13 December 2001, (c) MOD09GA image (0–8◦ near-nadir view) acquired on 11 November 2001,
(d) classified image of (a), (e) predicted image by STARFM, (f ) predicted image by the proposed
method, and (g) observed ETM+ image on 11 November 2001.

shown in Table 4 agree with the visual judgement in that the proposed method yields higher
evaluation scores. For the different MOD09 data sets, the same conclusions as the first
experiment can be drawn from the results shown in Table 4. In addition, since spatial distri-
bution was relatively homogeneous and the time interval was quite short in this experiment,
the improvement ratios are all much higher than those from previous experiments. To be
specific, the improvement ratios from the MOD09A1 data sets reached 8.5%, 9.8%, and
10.6% for the NIR, red, and green bands, respectively.

The final experiment was performed to confirm that it is reasonable to remove the tem-
poral difference Tij from the weight function (6). The original STARFM and Tij-removed
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(a) STARFM (b) The proposed method (c) Actual image

Figure 6. Detailed regions cropped from Figures 5(e)–(g): (a) and (b) are the prediction images
by STARFM and the proposed method, respectively, and (c) is the actual image observed on
11 November 2001.

Table 4. Quantitative evaluation results (AAD) from the second experiment.

STARFM Proposed method IR (%)

MOD09GA (0–8◦) NIR 0.020321 0.018834 7.2
Red 0.012968 0.011862 8.4
Green 0.009886 0.008945 9.3

MOD09GA NIR 0.023358 0.021995 5.8
(26–34◦) Red 0.017884 0.017232 3.6
(0.5 km × 0.5 km) Green 0.013761 0.013182 4.2

MOD09GA NIR 0.024028 0.023042 4.1
(26–34◦) Red 0.018229 0.017771 2.5
(1 km × 1 km) Green 0.013937 0.013512 3.0

MOD09A1 (0–8◦) NIR 0.021322 0.019501 8.5
Red 0.013696 0.012354 9.8
Green 0.010461 0.009353 10.6

STARFM were, respectively, implemented, and the input and resulting images are shown
in Figure 7. Although there are no distinct visual differences between the two resulting
images, the quantitative evaluation results of Figure 7(e) (without Tij) are better than those
of Figure 7(d) (with Tij) for all three bands, as shown in Table 5. Furthermore, similar
experiments were implemented using several different data sets. In most cases, the removal
of temporal difference yielded improved results, the exception being when multitemporal
images contained few changes.

5. Conclusion

This article presents a method of fusing ETM+ and MODIS reflectance data in order to
enhance the temporal resolution of fine spatial resolution data. Compared with the original
STARFM, the proposed method pays attention to the issue of sensor observation differ-
ences and the removability of temporal differences when calculating pixel weights. The
proposed method was tested under varying landscape situations, MOD09 scenes, and time
intervals. The experimental results show that the issues addressed by the proposed method
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(a) (b) (c)

(d) (e) (f)

Figure 7. Prediction results of the third experiment (band combination: NIR, red, and green). (a)
ETM+ image acquired on 4 November 2001, (b) MOD09GA image (0–3◦ near-nadir view) acquired
on 4 November 2001, (c) MOD09GA image (0–3◦ near-nadir view) acquired on 13 June 2001, (d)
predicted synthetic image by STARFM, (e) predicted synthetic image by the revised STARFM, which
removes the factor of temporal difference, and (f ) observed ETM+ image on 13 June 2001.

Table 5. Validation of removal of temporal difference in the STARFM method.

STARFM STARFM (without Tij) IR (%)

MOD09GA (0–3◦) NIR 0.015000 0.014846 1.1
Red 0.013001 0.012782 1.7
Green 0.008622 0.008518 1.2

can improve the accuracy of synthetic images. As with other methods, nevertheless, the
predicted image appears smoothed when the temporal interval is long and/or the spa-
tial distribution is inhomogeneous. These issues will be further addressed in our future
work.
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